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Abstract. This paper concerns the application of Ortiz' recursive formulation of the Tau 
method to the construction of piecewise polynomial approximations to the solution of linear 
and nonlinear boundary value problems for ordinary differential equations. A practical error 
estimation technique, related to the concept of correction in Zadunaisky's sense, is considered 
and used in the design of an adaptive approach to the Tau method. It proves efficient in the 
numerical treatment of problems with rapid functional variations, stiff and singularly per- 
turbed problems. A technique of increased accuracy at matching points of segmented Tau 
approximants is also discussed and successfully applied to several problems. Numerical 
examples show that, for a given degree of approximation, our segmented Tau approximant 
gives an accuracy comparable to that of the best segmented approximation of the exact 
solution by means of algebraic polynomials. 

1. Introduction. We discuss the use of Ortiz' recursive formulation of the Tau 
method [23]-[25] in the numerical solution of boundary value problems for linear 
and nonlinear differential equations defined over an interval a < x < b. We con- 
sider global approximations over [a, b], with a single polynomial expression, and 
segmented forms based on a step-by-step formulation of the Tau method considered 
by Ortiz in [26]. 

The Tau approximate solution of a differential problem defined by a differential 
operator D is represented in terms of the elements of a sequence Q of canonical 
polynomials. Such a sequence is uniquely determined by D, it is independent of the 
specific boundary conditions of the problem, and of the particular interval [a, b] in 
which the solution is required. These properties make possible the use of segmenta- 
tion within the framework and with the software [32] designed for the recursive 
formulation of the Tau method. The concept of correction, in Zadunaisky's sense 
[37] (see also Stetter [36]), is discussed in the context of the Tau method and related 
to a practical error estimation technique. This technique, based on Tau estimators 
introduced here, is systematically applied to all examples, linear or nonlinear. It is 
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also used in the control of the segmentation process: an adaptive form of the Tau 
method, based on this, is considered. 

A technique of increased accuracy at matching points of segmented Tau ap- 
proximations, introduced by Ortiz in [27] for initial value problems, is successfully 
used in linear and nonlinear boundary value problems. Numerical comparisons with 
other standard methods and, in particular, with an accurate technique of collocation 
with splines followed by a finite difference correction (see [18]) is definitely favora- 
ble to our approach. We find that, for a given degree of approximation, our 
segmented Tau approximants are close to the best segmented approximations by 
algebraic polynomials. This optimal result has been reported for the global case by 
Freilich and Ortiz in a recent paper [6]. 

Convergence results and error bounds for Tau approximations of the solution of 
differential equations are discussed by Luke [13], Lanczos [10]-[12], and Ortiz and 
Pham [30]-[31]. Systems of differential equations have been discussed by Freilich 
and Ortiz [6] and Crisci and Russo [3]. The effect of approximating the coefficients 
of a differential equation on the accuracy of the Tau approximant is discussed by 
Namasivayam and Ortiz in [17]. An interesting feature of the Tau method is the fact 
that no trial solutions, approximate quadratures or large matrix inversions are 
required. A summary of the results of this paper was presented to the Dundee 
Conference of Numerical Analysis, June 1981. 

2. Recursive Formulation of the Tau Method: Some Basic Definitions and Nota- 
tion. Let Pj be the class of polynomials of degree less than or equal to j. We shall 
consider the equation defined by the differential operator D: 

(1) Dy(x):= pV(x)y(V)(x) + * * * + p1(x)y(')(x) + p0(x)y10)(x) =f (x), 

where either pi(x) E Pa, i = 0(1)v, and f(x) E PF, or they are close polynomial 

approximations of given functions. The symbol y(i)(x) stands for the ith derivative 
of y(x), and y 0)(x) = y(x). The solution y(x) of (1) satisfies boundary conditions 
of the general form 

v-1 

(2) E [ariy(i)(a) + briy(l)(b)] = Ar, r = 1(1)v, 
i=o 

where some of the coefficients ari' bri may be equal to zero. We shall follow Ortiz' 
algebraic theory of the Tau method, of which we will give here some basic 
definitions and results. Further details and proofs can be found in [23]-[25], and 
[14]. 

A useful number associated with any differential operator D of the class Q, 
characterized by (1), is its height h, 

h= max (ai - i). 

Each differential operator D E 9 -is uniquely associated with a sequence Q of 
canonical polynomials Qn(x) defined for all indices n E N - S. The set 
N := {0, 1, 2, 3,... }; S is finite, usually very small, and the number s of its elements 
is bounded by v + h. The polynomials Qn(x) satisfy the functional equation 

(3) DQ (x) = n + r,(x), n E N - S, 
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where rn(x) E Rs = spani s{x11 is called the residual of Qn(x). If all powers of x 
can be obtained as images of polynomials under the differential operator D, then S 
will be empty. If D is applied to the monomial xm, we obtain the generating 
polynomials 

n 

(4) Dxm= E aixi, mEE N, 
i=O 

from which a recursive relation, involving at most v + h (assuming p0(x) :P 0) 
canonical polynomials, can immediately be deduced if an # 0 (see Ortiz' Theorem 
3.3 in [24]). Otherwise, (4) is used to find the minimal set S of indices of undefined 
canonical polynomials and Ker(D), the algebraic kernel of D, which contains all the 
exact polynomial solutions of (1). The recursive relation for the Qn(x)'s is self 
starting and the polynomials themselves depend neither on the supplementary 
conditions ((2) in our case) imposed on y(x), nor on the interval in which the 
solution is required. These properties will be used in the design of a segmented 
formulation of the Tau method of [26] for boundary value problems. 

Let v = { vi(x)} = Vx be a polynomial basis defined by a lower triangular matrix 
V= ((vij)), i, j E N, acting on x = (1, x, x2,...)'. Clearly Q = {Q (x)}, n E N- 

S, is such that DQn(x) vn(x) + n(x), P (x) E Rs, if 

n 

(5) Qn(x) = E vn1Q1(x), withj e S. 
j=O 

Definition 1. A polynomial g(x) is called a Tau approximant of order n of y(x) if it 
satisfies exactly the differential equation (1) with a polynomial perturbation term 
Hn(x) E Pn, and if it satisfies exactly boundary conditions (2). 

Clearly g(x) E Pn-h. Let 

m 

(6) Hn(x) = ~E T(ln)Vn (x) E 
i=O 

be the perturbation term, expressed in the basis v, and let Tin), - O(1)m, be free 
parameters. Let us assume further that 

F 

f (x) E fivi (x), 
i=O 

and that n is chosen sufficiently large for F < n. Then, 

m F 

(7) inX :E inQn-i(X) + E: NMiX), with i o4 S, 
i=O i=O 

satisfies the equation Dyn(x) = Hn(x) + f (x) if s parameters Tin) are chosen in such 
a way that the residuals of Dyn(x) match the components of Hn(x) + f (x) belonging 
to R . If v further parameters Ti(n) are fixed for yn(x) to satisfy exactly the boundary 
conditions (2), then yn(x) is a Tau approximant of order n of y(x). If there exist t 
exact polynomial solutions of (1), then m = s + v - t - 1. 
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Finally, if (1) is given in an integrated form, through an integral operator I, a 
sequence Q = {Qn(x)}, n E N - SI, such that IQn(x) = n X + i(x), Pn(x) E Rs, 
can be constructed immediately in terms of the sequence Q associated with D: 

(8) Qn(x) = (n)! Qn-,(x), with S={ n E N: n < P, n-v E S}. 

A variety of choices of basis v is possible in the Tau method. If v is Xn }, n E N, the 
Tau method realizes the power series expansion method, where a high accuracy is to 
be expected near the point of expansion. Lanczos [11]-[12] suggested the choice of 
Chebyshev and Legendre polynomials to obtain a better distribution of errors in the 
equation over the interval in which the approximate solution is required. The error 
in the equation, namely Hn(x), is related to the error of approximation 

en (X) = Yn (X) y (x) 

through the inverse operator of D: D- 'Hn (x) = en(x), on account of the linearity of 
D. The choice of Hn(x) close to a best uniform approximation of the function 
identically equal to zero in [a, b] by means of algebraic polynomials is an attempt to 
take advantage of the relation between Hn(x) and en(x). However, that relation 
requires a careful analysis if quantitative results are required. The behavior of en(x) 
relative to the perturbation term Hn(x) is discussed by Namasivayam and Ortiz [16]. 

Remark 1. If the solution y(x) of (1)-(2) is a polynomial of degree k, any Tau 
approximate solution of degree > k will detect it exactly. In this sense we say that 
the Tau method is exact of degree k. 

3. Correction of Tau Approximants. We now consider the correction technique of 
Zadunaisky [37] and Stetter [36] in the context of the Tau method. 

THEOREM 1. Correction of a Tau approximant leads to a Tau approximant of a 
higher order. 

Proof. Let us consider the error function en(X). From (1) it follows that en(x) E 
C(v)[a, b] and that it satisfies the differential equation Den(x) = Hn(x), where all 
T-parameters in Hn(x) are fixed. It also satisfies boundary conditions (2) with 
Ar =O,forr= 1(1)v. 

Let [en(x)]m be an mth order (m > n) Tau approximant of the error function. 
Then the polynomial [en(x)],m satisfies the differential equation 

(9) D [ en (x)]m= Hn (x) + Hm (X) =f (x) + Hn (X)-[ f (x)-Hm (x)] 

with homogeneous boundary conditions (2). Let ym(x) be the mth order Tau 
approximant of y(x). Then, en(x) - em(x) = yn(x) - ym1(x). From the uniqueness 
of the Tau approximant for a given order m (see Ortiz [24]) and (9), it follows that 

[.en(X)] = en(X) - em(x). Thus, yn(x) plus the correction term [en(x)]m equals 
Y171W) 

Definition 2. [en(x)] m defined by (9) is called the Tau estimator of order n, m. 
Examples of Tau approximants corrected with the Tau estimator, for m > n + 1, are 
given in the last section of this paper. 
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4. Implicit Matching of Tau Approximants. Let 

fi = {xo = a < xl < x2 < ... < xpl < xp = b} 

be a partition of the interval [a, b] into subintervals [xj1, xj],j = l(l)p, 
Definition 3. The vector 

(10) Yn(X) [yn(X), Yn2(X) I... y s (x)]X, 

with yn j(x) defined for xj1 < x < xj, j = l(l)p, is a piecewise Tau approximant of 
order n of the solution y(x) of the boundary value problem (1)-(2) if each of the 
ynj(x), j = l(l)p, satisfies (1) with a polynomial perturbation term Hj,(x) defined 
for xj - x < xj1, and 

v-1 

(11-a) i [ariynj)(a) + briyn,)(b)] Ar for r = 1(1) v, 
i=O 

(11-b) y0 1 (Xj 1) = yn,y) (x. 1) forj = 2(1)p, i = (1)v - 1. 

Remark 2. Condition (11-a) imposes on yn(x) the v boundary conditions given by 
(2), while (11-b) is a continuity requirement for ynj(x) and its v - 1 derivatives at 
the p - 1 interior partition points of H. If S # 0, matching coefficients of terms 
belonging to Rs in the right-hand side of the differential equation with the residuals 
of Dynj(x) provides us with s conditions in each of thep subintervals defined by the 
partition. Thus, a total of p(s + v) conditions. 

THEOREM 2. The construction of an nth order piecewise Tau approximation yn(x) of 
the solution y(x) of boundary value problem (1)-(2) depends on only one matrix V and 
one canonical sequence Q. 

Proof. Let us consider the family of mappings Yj, j = l(l)p (see Ortiz [26]) acting 
on yn(x) of (7) and such that 

5'3yn (X) = ynj(X), Xj1 < X < Xj, 

and let us call TjP) the free parameters corresponding to ynj(x). Without loss of 
generality, let us assume that a = 0, and let Ej = I/(xj - xj1), j = l(l)p. The 
mappings Yj admit a trivial realization: replacing vnj by vji = v"j(Ej), we find that 
(( vn,i)) defines the basis vi corresponding to the interval xj1 < x < xj, forj = l(l)p. 
Taking into account (7) the result is proved. 

We now discuss the computational implications of Theorem 2. Let #rj') ( 
= 0(1)s + v - 1, be a vector, the elements of which are the Tau parameters of the 

component ynj (x) of yn(x), forj = l(l)p, and let ?(n) =r '(n)t n),J)' be a vector 
with p(s + v) components. Let a = xj-1, b = xj. Then (7) gives us ynj(x) for 
j = I(l)p. The piecewise polynomial Tau approximant yn(x) of y(x) will be de- 
termined if T(n) is found . 

From Remark 2 it follows that r(n) is implicitly defined by a system of linear 
algebraic equations of the form 

(12) Znr (n) = Wn. 

Let us split y1j(x) (see (7), with a = xj-1, b = xi) into two parts: one dependent on 
the Tau parameters, and then related to Zn, and the other independent of them, thus 
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related to W,. We shall write 1nj(X))'(") for the vector with P rows, containing as 
elements that first part of ynj(x) and its v - 1 derivatives. Let ni,(x) be a vector 
containing in each of its rows the second part of ynj(x) and its P - 1 derivatives. 
The residual Dynj(x) of ynj(x) belongs to Rs, which is a subspace generated by s 
linearly independent basis elements. We will split the residual of ynj(x) in the same 
way as before, placing the s components in Rs of the first part, dependent on the 
Tau terms, in successive rows of a vector pnj jT (") and the rest of it in the successive 
rows of a vectorq7Bj. 

With the help of matrices Onj and pnj, of orders P x (s + P) and s x (s + v), 
respectively, we can discuss the structure of matrix Z,, of (12). Zn is made up of 
blocks a5n), each one of them related to one component of yn, forj = l(l)p. These 
blocks have the form 

a(n) - PnJ forj = 2(1)p - 1; 

? >nj (Xi) 

in a(n) the third subblock is missing, and a(n) has the same second and third 
subblocks, but a different first subblock ynl. Let 

_V= ((ari)), -' = ((bri)), r = 1(1)v, i = 0(1)v - 1, and A = (A1,...,Aj% 

where ari' bri, and Ai are the coefficients of the boundary conditions (11-a); then yn 
is such that 

(n) = .s/nj ( a )fr (n) + ?c,, (b) ' n1) 

Matrix Zn is constructed by linking the blocks a(n) in such a way that the third 
subblock of a(n) faces the first subblock of an+) for j = l(l)p - 1. The first v 
components of Wn have the following form: 

A - A/nI(a) -np(b); 

with this choice the boundary conditions (11-a) are incorporated into (12). The 
remaining elements of Wn follow if (n,,, and nnj are assembled following the same 
rules as for the corresponding Tau-dependent elements in Zn. The rows of Zn with 
''s realize the continuity conditions (11-b), while the rows with p's make sure that 
the sum of residuals of each component ynj match the terms in Rs on the right-hand 
side of the Tau problem for each xj_- < x < xj, j = l(l)p. We have assumed that 
t = 0, if this is not the case, only s + P - t Tau parameters are required, as t free 
parameters are provided by the exact polynomial solutions of Dy(x) = 0. 

Remark 3. The following observation enables us to introduce a considerable 
simplification in the computational procedure. Let us assume for simplicity that 
lxjl - xjl = lb - al/p = constant forj = l(l)p; otherwise a scaling factor Ej will 
be required. Let us single out one of the subintervals defined by the partition H, say 
the first one [x0, xl]. On account of Theorem 2, all components ynj (x) of yn (x) can 
be determined as shifts of a Tau master element (see [26]) ynl(x) if we only replace 
xJ1 1 by x1 in the left-hand side of (11-b), and xj1- by x0 in its right-hand side. Then, 
the only basis required will be v, defined for x0 < x < xl, and the same sequence of 
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canonical polynomials (see (5)) will be sufficient to construct all components of the 
piecewise Tau approximant yj(x). The procedure for the construction of yn1(x) 
could be regarded as an integration formula based on the Tau method of [25] and 
specifically designed for each differential equation (1)-(2). The graphs of successive 
segmented Tau approximants ynj(x), j = l(l)p, will all be in the interval [x0, x1]. 
The ordinate at the endpoint of the graph of ynj(x) will be the same as that of 

ynj,1(x0). Sliding these graphs in the direction of x0xp we obtain the graph of 
Yn (x) 

If Remark 3 is taken into account the structure of Zn is greatly simplified: except 
for the subblock representing the boundary conditions, all blocks a(n) are similar. 

As early as 1956 Lanczos observed a significant increase in accuracy at the 
endpoint of the approximation range of a Tau approximant when Chebyshev 
polynomials are replaced by Legendre polynomials (see Lanczos [11], [12] and Luke 
[13]). Ortiz [26] used this property in the design of a segmented formulation of the 
Tau method for initial value problems, with increased accuracy at matching points. 
Examples given in Section 7 of this paper show that the accuracy of segmented Tau 
approximants for linear and nonlinear boundary value problems improves by the use 
of the technique of increased accuracy at matching points. Theoretical results in this 
direction have been recently reported by Freilich and Ortiz [7] and by Namasivayam 
and Ortiz [16]. As collocation is a special realization of the Tau method, where the 
collocation nodes are the zeros of Hn(x), it is clear that Lanczos' observation, the 
results reported in this paper, and those of [24] and [26] apply to the collocation 
method. 

6. Nonlinear Boundary Value Problems and the Tau Method. The numerical 
solution of nonlinear boundary value problems with the recursive formulation of the 
Tau method [24] is based on the approximation of the solution of the nonlinear 
problem by a sequence of Tau approximants Yn,k(X) of linear boundary value 
problems with variable coefficients. Each of the Ynlk(X) is used, in an iterative cycle, 
to represent the nonlinear terms of the given differential equation, and gives a new 

Yn,k? 1(x). The fixed point of such a sequence is, under convergence conditions 
depending on the linearization scheme used, the function y(x), solution of the initial 
problem. Details of this procedure can be found in Ortiz [28]. In practice such a 
process is only repeated a small number, N, of times and stopped when the 
maximum difference between the coefficients of two successive approximations is 
smaller than a given tolerance parameter T, specified beforehand. A test is also made 
on the size of the perturbation term corresponding to that approximation. If the 
sequence of approximants does not reach the tolerance parameter T after N cycles, 
either the degree of the Tau approximants is increased, the initial approximation 
redefined or the interval segmented by using the technique sketched in Section 5. 
The initial approximation is usually chosen to be a polynomial satisfying (2). In 
some special cases the differential equation allows for the immediate determination 
of an algebraic curve with a contact of order v - 1 with the solution y(x) which is 
equally effective. For instance, a tangent to y(x) in the case of a second order 
differential equation. The technique of increased convergence at matching points 
improves the accuracy of numerical results, as will be shown in Section 7. 
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Remark 4. In the case of nonlinear boundary value problems the piecewise Tau 
approximants yfj1k(x), at stage k of the process, satisfy different differential 
equations in each subinterval [x11, X], j = l(l)p. 

7. Numerical Examples. 
(1) Dirichlet and Neumann Linear Boundary Value Problems. Let us consider the 

problem (see de Boor and Swartz [4]): 

(14) (Dy(x):= y"(x) - 4y(x) = 4coshl, 
ty(O) = y(l) = O, O < x < 1 , 

for which results obtained by using finite difference residual correction of a 
collocation solution constructed with four cubic splines centered at the points 0, 
1/3, 2/3, and 1, have been reported recently by Oliveira [18]. In Table 1 we are only 
concemed with global Tau approximants defined for 0 < x < 1. For both the 
differential form (14) and the corresponding integrated form we compare the first 
Tau correction, defined by [en(x)]n+I for n = 3(2)9, with the exact error. We wish to 
remark that the integrated form is never constructed, its Tau approximant is 
computed by using the result of (8). 

TABLE 1 

Global Tau approximants and their corrections 

DIFFERENTIAL FORM INTEGRATED FORM 

Degree First Tau Correction Exact Error First Tau Correction Exact Error 

3 7.369 x 10-2 7.415 x 10-2 9.866 x 10-3 9.940 x 10-3 
5 4.576 x 10-4 4.589 x 10-4 7.358 x 10-5 7.390 x 10-5 
7 1.275 x 10-6 1.278 x 10-6 3.172 x 10-7 3.181 x 10-7 
9 3.378 x 10-9 3.384 X 10-9 9.048 x 10-10 9.064 x 10-10 

In Table 2 we present the same information when segmentation is used: four Tau 
approximants are constructed over subintervals of [0,1] of equal length. We remark 
that for n > 4 the approximation of the differential form is more accurate than that 
of the integrated form. 

TABLE 2 

Four piecewise Tau approximants over the equally 

segmented interval 0 < x < 1 and their corrections 

DIFFERENTIAL FORM INTEGRATED FORM 

Degree First Tau Correction Exact Error First Tau Correction Exact Error 

3 2.072 x 10-3 2.073 x 10-3 2.016 x 10- 2.032 x 10- 
4 1.141 x 10-5 1.196 x 10-5 1.405 x 10-5 1.644 x 10-5 
5 5.448 x 10-7 5.470 x 10-7 2.373 x 10-6 2.386 x 10-6 
6 2.115 x 10-9 2.235 x 10-9 1.163 x 10-8 1.282 x 10-8 
7 1.192 x 10-10 1.196 x 10-10 1.181 x 10-9 1.186 x 10-9 
8 3.766 x 10-l' 3.908 X 10-l' 4.440 x 10-12 4.750 x 10-12 
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In Table 3 we attempt a ranking of our global and segmented approximations 
before and after correction with the Tau estimator [e, (x)],+ ,. After correction, a 
global Tau approximant of the solution of (14) is more accurate than the piecewise 
polynomial approximation obtained by Oliveira [18] by using collocation with four 
cubic splines and a finite difference correction. 

If four cubic Tau approximants are corrected with the Tau estimator, the accuracy 
over Oliveira's approximation increases by a factor of 3.169 x 10-3. By using the 
technique of increased accuracy at matching points, which accounts for a switch 
from Chebyshev to Legendre polynomials in the basis v, that factor, now 1.619 x 
10-4, would show an even higher accuracy. 

TABLE 3 
A hierarchy of global and segmented approximants 

of the boundary value problem (14) 

Numerical technique Maximum Abs. Error Type of Approximant 

Corrected piecewise cubic differen- 
tial Tau with the use of the tech- 
nique of increased accuracy at 
matching points 5.8 x 10-7 Segmented 

Corrected piecewise cubic differen- 
tial Tau 1.1 x 10-5 Segmented 

Corrected piecewise cubic integra- 
ted Tau 1.4 x 10-5 Segmented 

Corrected cubic global integrated 
Tau 7.4 x 10-5 Non-segmented 

Piecewise cubic differential Tau 
with the use of the technique of 
increased accuracy at matching 
points 1.6 X 10-4 Segmented 

Corrected cubic global differential 
Tau 4.6 x 10-4 Non-segmented 

Finite differences corrected collo- 
cation with four cubic splines [18] 3.6 x 10-3 Segmented 

Piecewise cubic differential Tau 4.0 x 10-3 Segmented 

Cubic global integrated Tau 1.0 x 10-2 Non-segmented 

Collocation with cubic splines [18] 1.5 x 10-2 Segmented 

Cubic global differential Tau 7.4 x 10-2 Non-segmented 

Remark 4. The accuracy obtained with the Tau approximant at the top of Table 3 
(5.827 X 10-7) is almost identical to the upper bound for the best uniform seg- 
mented approximation of the exact solution y(x) by means of four algebraic 
polynomials of degree four, which is the degree of the corrected Tau pieces. The 
upper bound was estimated on the basis of Lagrange's error formula (see Meinardus 
[15]). Therefore, it seems possible to use segmented Tau approximants as an initial 
guess for the construction of segmented best approximations. 
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A similar linear boundary value problem, now with Neumann conditions, and 
over a longer interval is: 

{ Dy(x):= y"(x) -y(x) = 1, 
y(0) = 0, y'(20) = 1, 0 < x < 20, 

considered in detail by Scott [35] with finite difference techniques. 
Table 4 displays the maximum of the value of the first Tau estimator and of the 

exact absolute error for some of the Tau approximants considered before. They have 
been constructed either over [0, 20], or over four equal and consecutive subintervals 
of [0, 20]. In this, as in many other Neumann problems, the differential form gives 
consistently better results than the integrated one, even for small values of n (see 
Onumanyi [20]). 

TABLE 4 

Tau approximation of a Neumann problem over a large interval 

n =7 n= 8 
Approximantn7n=8 

Exact error Tau estimator Exact error Tau estimator 

Global integral Tau 2.1 x 10-1 2.1 x 10-1 5.4 x 10-2 5.3 X 10-2 

Global differential Tau 1.1 x 10-1 1.3 x 10-1 2.1 X 10-2 2.3 x 10-2 

Piecewise integral Tau 8.8 x 10-4 8.7 x 10-4 1.5 x 10-4 1.4 X 10-4 

Piecewise differential 1.4 x 10-4 1.3 x 10-4 2.4 x 10-5 2.4 x 10- 

Tau 

(2) A Stiff Boundary Value Problem With Nonpolynomial Coefficients. If coeffi- 
cients or the right-hand side of a differential equation are not polynomials, the Tau 
method can be used to find polynomial approximations of them. The same applies 
to transcendental nonlinear terms (see for example Ortiz and Samara [33]). 

Let us consider the singular perturbation boundary value problem 

(15) { 
Dy(x):= y"(x) - Py(x) = cos x, 
y(O) = y(v'2) = 1, 0 < x < r/2 

(see Guderley [8]). The nonpolynomial term will be replaced by a polynomial 
approximation of degree 14 which, in this case, we generate with the present Tau 
method technique. 

The graph of the solution y(x) of the singularly perturbed boundary value 
problem (15) is, for large P, close toy = 0 inside the interval (0, V/2), and jumps to 
y = 1 when x approaches either x = 0 or x = w/2 (see Figure 1). 

We have computed Tau approximations of y(x) for P = 1000 and for P = 10000. 
They are global Tau approximations of a moderately large degree (n = 27) and 
segmented Tau approximants of a lower degree (n = 14). The ability of these 
approximations to follow the rapid variation of y(x) near the endpoints of the 
interval [0, T/2] is reported in Table 5 for both Chebyshev and Legendre perturba- 
tion terms. The graphs of the two segmented Tau approximants for P = 1000 and 
P = 10000 are reproduced in Figure 1. 
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TABLE 5 

Tau approximation of a stiff boundary value problem 

with a nonpolynomial term (15) 

Degree of Perturbation Nr. of equal 
Stiffness approximant term used subintervals Max. Abs. Error 

103 27 Chebyshev 1, no segm. 1.0 X 10-7 
103 14 Chebyshev 8 2.0 x10-'? 
103 14 Legendre 8 1.1 x 1010 

104 28 Chebyshev 1, no segm. 1.0 X 10-2 
104 14 Chebyshev 12 7.8 x 10-7 
104 14 Legendre 12 4.4 x 10-7 

P = 10 000 

'r/2~~~~~' 

FIGURE 1 

Graphs of the exact solution of the singularly perturbed boundary value 
problem (15), for P = 10000, and of a segmented Tau approximant of 
degree 14, in the construction of which the technique of increased accuracy 
at matching points has been used. The maximum deviation between the 
two curves, seen as one in the graph, is 4.4 x 10-7 (see Table 5). 

(3) Control of the Segmentation Process With [en(x)]m in an Adaptive Formulation 
of the Tau Method. We now consider the singular perturbation boundary value 
problem with a boundary layer at x = 1 defined by the differential equation 

f Dy(x):= -y"(x) + d[P(i - cx)y(x)] = 0, 

(16) \y(0) = 1, y'(1) = 0, 0 < x < 1, 
where c = 0.98 and P = 1000. The graph of the solution is a spike, symmetric about 
x = 1, extending in the y-axis direction from 1 up to about 50 when x is in [0, 2]. 
Problem (16) has been discussed numerically in a recent paper by Barrett and 
Morton [1], with a quasi-symmetrization technique based on Galerkin's method with 
a piecewise linear trial space; further references can be found in that paper. 

We have constructed for this problem global Tau approximants of degrees 27 and 
28, then a segmented piecewise Tau approximant of degree 7 defined over four equal 
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subintervals of [0, 1]. The Tau estimator [en(x)]m, with m = n + 1, was used to 
detect the region of rapid variation of the last segmented approximant, and then a 
new nonuniform segmentation was introduced, with nodes in x = 0.0; 0.7; 0.8; 0.9 
and 1.0. A segmented Tau piecewise approximant, of degree 7 over each subinterval, 
was constructed. In Table 6 we reproduce our numerical results; we have also 
included the values of the exact solution up to 2D. Agreement to 2D is provided by 
the Tau approximant. 

TABLE 6 

Use of the Tau estimator [en(x)]m for the generation of a 
nonuniform segmentation strategy, better adapted to the singular 
nature of the solution of the boundary layer problem (16); 
m = n +1. 

Type of approximant Nr. of pieces x = 0.7 x = 0.8 x = 0.9 x = 1.0 

Global Tau, n = 27 1 3.10 4.73 9.32 49.99 

Global Tau, n = 28 1 3.21 4.73 9.32 49.94 

Segmented piecewise Tau, 4 3.22 4.48 8.40 48.21 
uniform segmentation, n = 7 

Segmented piecewise Tau, 4 3.21 4.73 9.31 49.95 
adapted-nonuniform segmen- 
tation, controlled by the 
Tau estimator [ en (X)] m, In = 7 
EXACT RESULTS 3.21 4.73 9.31 49.95 

Results reported in [1] with quasi-symmetrization lead to large errors: + 0.14 and 
-0.52, near x = 1 (x = 0.8 and 0.9 respectively). A comparison between the 
upwinding technique of [2] and Tau method approximants is also favorable to the 
recursive formulation of the Tau method (see Ortiz [29]). 

(4) Tau Approximate Solution and Error Estimation of a Nonlinear Boundary Value 
Problem With Global and Segmented Approximants. The numerical solution of 
nonlinear differential equations with the recursive formulation of the Tau method is 
reduced to the approximate solution of a sequence of linear problems, as indicated 
in Section 6, that is, to problems of the type considered before. However, we shall 
discuss explicitly a nonlinear problem with a singularity of the first kind proposed 
by Russell and Shampine [34], for which results with the finite difference techniques 
of de Hoog and Weiss [5] are available, 

d Yi (x) ] Ir 01o Yi(x)] + 2 [(X1 (17) -i 
dx-y2 (x) J x 0 2j E Y2(x) J [y5(x) j 

[Y2 (0)] 0 

which we treat as the second order boundary value problem 

(18) fDy(x):= y"(x) + (2/x)y'(x) + y5(x) = 0, 
( ) A l,nay'(0 = n, y{ (1 = ./n 75, n < x < 
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A direct approximation of systems of differential equations with the recursive 
formulation of the Tau method is also possible if vector canonical polynomials are 
used; see [6] for details on this approach. The exact solution of (17)-(18) is known to 
be y(x) = (1 + X2/3)- 1/2, which makes it possible to compare the error of our Tau 
approximations of y(x) with the estimation of that error provided by the Tau 
estimator [en(x)Im. 

We fix the tolerance parameter T (see Section 3) equal to 10-6 and the maximum 
permissible number of cycles N equal to 5 which turns out to be sufficiently large. 
Table 7 displays the errors of approximation of a global and a segmented Tau 
approximant, the latter over the subintervals [0, 0.5] and [0.5, 1]. 

TABLE 7 

Maximum absolute error of approximation for the nonlinear 
boundary value problem (18) when approximated with global 
and segmented Tau approximants. 

Degree of the Global Approximation Segmented approximation 
Tau approximant Max. Abs. Error Nr. of cycles Max. Abs. Error Nr. of cycles 

required required 

4 8.7 x 10-4 3 7.8 x 10-5 3.3 
5 6.0 x 10-5 3 1.6 X 10-6 3.3 
6 6.6 x 10-6 3 1.0 x 10-6 3.3 

The Tau error estimator [e,(x)]m, applied to both global and segmented ap- 
proximants, leads to remarkably accurate estimations of the exact error. Table 8 
reproduces results for n = 4, m = n + 1 and n + 2, with global and segmented Tau 
approximants. For m = n + 1 the order of the error is correctly estimated in both 
cases. 

TABLE 8 

Error estimation of global and segmented Tau approximants of 
the nonlinear singular boundary value problem (18), given by the 
Tau estimator [ en (x)]m for n = 4. 

Global Tau approximant Segmented Tau approximants 

m Difference between the m, m Difference between the 
exact and estimated errors exact and estimated errors 

n + 1 6.01 x 10-5 n + 1,n1 + 1 1.57 x 10-6 
n + 2 6.50 x 10-6 n + 2, n + 2 1.05 x 10-6 

The nonlinear system of differential equations 

d y, (x) 2 (x) [y1(-1)] [0.96] 
dx Ly2(X)] - (11/e)[y2(x) - x2]y2(x)J [ Yi(O) j 0.001 

-1 < x < 0, is a nonlinear model of a singularly perturbed differential equation 
where the leading coefficient of the reduced equation has turning points, the location 
of which depends on the unknown function. It is a stiff problem with a multiplicity 
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of solutions which has been treated by Kedem [9] by collocation (e = 15), and by 
Ortiz [29] with the Tau method (global approximant); further references can be 
found in these papers. High-order boundary value problems for differential equa- 
tions are considered in [21] (global approximant). Further numerical results on a 
large variety of problems where the technique discussed in this paper has been 
successfully applied are reported in Onumanyi [19]-[20]. 
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