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Splitting of Quartic Polynomials 

By William W. Adams 

Abstract. For integers r, s, t, u define the recursion A(n + 4) = rA(n + 3) - sA(n + 2) + 
tA(n + 1) - uA(n) where the initial conditions are set up in such a way that A(n) = a' + /Bn 

+ y" + 8 " where a, ,B, y, 8 are the roots of the associated polynomialf(x) = X4 - rx3 + sx2 
- tx + u. In this paper a detailed deterministic procedure using the A(n) for finding how 

f(x) splits modulo a prime integer p is given. This gives forp not dividing the discriminant of 
f(x) the splitting of p in the field obtained by adjoining a root of f(x) to the rational 
numbers. There is an interesting connection between the results here for reciprocal polynomi- 
als and some work of D. Shanks. 

1. Introduction. Let 

f(x) = x rd- rX d 
+ rd_2x d-2 +(_)dro = (x - a. 

... (x - ad) 

be a polynomial with integer coefficients factored over the complex numbers. Set, 
for n = 0, 1, 2,..., 

(1.1) A(n) = Af(n) = an + * + adn. 

The purpose of this paper is to relate how f(x) splits modulo a prime p, to the 
congruence properties of A(n) mod p for n near p and for d < 4. Such a criterioh is 
implicitly given for d = 3 in [1]. (The case of d = 2 is well known, and also may be 
done by quadratic reciprocity.) 

The usual algorithm for finding the splitting of f (x) mod p is due to Berlekamp; 
see [2], 15]. The current method is completely different from that given by him. The 
current algorithm can be executed in O(log p) steps (where "0" depends on 
f(x)) -this is the same as Berlekamp. We note however that Berlekamp's method is 
not limited to d < 4 as this algorithm currently is. 

There is another solution given to this problem by Stefan Schwarz [6] which again 
is not limited to d < 4. He derives for d = 4 a congruence mod p for the number of 
factors of degree 1 involving a sum of three 3 x 3 determinants in the A(n). The 
A(n) must be computed for n near p and 2p. The current criterion is again quite 
different and involves less computation. 

It is easy to see that A (n) satisfies the recursion 

d 

A(n + d) = E (-1)i1rd1jA(n + d - j) 
j=l 
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for the initial conditions 

(1.2) A(O) = d, A(1) = rd_l, A(2) = rdL - 2rd-2d 

A(3) = rd_L1 - 3rd-3 etc., 

derived from Newton's identities. 
The test to be described involves computing for n = p - 1 the so-called signature 

of p, namely the vector An = [A(n), A(n + 1),... ,A(n + d - 1)]. If we define the 
matrix D as the companion matrix of f(x): 

0 1 0 0.. O 
O 0 1 .. Oj 

D= 

O 0 0 1 

(1)d-lro (-1)d-2ri . . rd 

then we see that K,, = DA!,, 1 and hence 

Vn = D Wo, 
where Ao is given by the initial conditions (1.2). It is well known (see [5]) that Dn can 
be computed in O(log n) steps. Thus we indeed see that the computation of the 
signature of p may be done in O(log p) steps, and so the splitting of p may be 
quickly determined using the criteria described below. 

In [1] it was suggested that these A(n) could be used for a fast pseudoprimality 
test for d = 3. This is based upon a big extension of the following fundamental 
congruence: 
(1.3) A(p)=A(1) (modp) 
for any prime p. (It is very difficult for this congruence to be true when p is not a 
prime.) Congruence (1.3) may be proved as follows: 

Let K be the splitting field of the polynomial f(x) over the rational numbers. Let 
p be a prime of K lying over the prime p. Then a -- aP is the Frobenius automor- 
phism over Z/pZ. Hence, mod p, a. . . ,ag is a permutation of a,,. . . ,ad, and we 
obtain (1.3) immediately. 

There has been no assumption that the polynomial f(x) is irreducible, and, 
indeed, this is not necessary. We will then be able to deduce the case for d = 3 from 
that for d = 4 (by letting a4 be an appropriate integer). 

The paper is organized as follows. In Section 2 the notation for quartic polynomi- 
als and the main tools are discussed. In Section 3 we discuss "generalized reciprocal" 
quartic polynomials, as they must be handled separately. In Section 4 the discussion 
of Section 3 is continued wherein work of D. Shanks [7] is discussed and, in 
particular, we see precisely how well the splitting of these dihedral quartics may be 
determined by congruences. Many of the results stated there were anticipated by L. 
Carlitz [3] for the special case a = 1 in Eq. (3.4). In Section 5 the more " usual" case 
is discussed, i.e., not the case of Section 3. In Section 6 an ad hoc procedure to 
determine the splitting of ramified primes is given. In Section 7 the results of Section 
5 are applied to derive the analogous results for cubic and quadratic polynomials as 
well as one case of a degenerate quartic polynomial. Finally, in Section 8 a detailed 
algorithm is given summarizing the above results on quartic polynomials. 
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Based upon the algorithm of Section 8 a PASCAL program has been developed 
which is currently yielding interesting data, cf. [8, Table 1]. 

I would like to take this opportunity to thank D. Shanks for many helpful 
discussions and in particular for pointing out to me how one might derive Eq. (4.3). 

2. Quartic Polynomials. We now specialize the notation: Let 

(2.1) f(x) = X4 - rx3 + sX2 - tx + u 

(2.2) = (x - a)(x - )(x -y)(x - 8). 

The sequence A(n) = Af (n) is defined by 

(2.3) A(n + 4) = rA(n + 3) - sA(n + 2) + tA(n + 1) - uA(n) 

for integers n > 0, and for the initial conditions (1.2) 

(2.4) A(O) = 4, A(1) = r, A(2) = r 2- 2s, A(3) = r3 - 3rs + 3t. 

This guarantees that 

(2.5) A(n) = an + /3n + yn + 8n. 

For a given rational prime p, there are different ways f(x) may split mod p, five 
of which are unramified (have no repeated factors). I will label the unramified ones 
as S = 1 1 1 1, 1 3, 1 1 2, 2 2, I = 4, where the indicated digits give the number of 
distinct irreducible factors of f (x) of that degree mod p. Of course, for any given 
f (x) some of these cases may not occur. For example, if over Z, f (x) is a product of 
a linear polynomial and a cyclic cubic, then only S and 1 3 may occur. 

The method of obtaining the results will be through the use of the Frobenius 
automorphism applied to the splitting field of f (x). So let K be the splitting field of 
f(x) over the rational numbers Q (K = Q(a, /3, y, 8)), and let IK denote its ring of 
integers. Fix an unramified rational prime p and let p be a prime of K lying over p. 
Then IK/p is a cyclic Galois extension of Z/p Z, whose Galois group is the decom- 
position group G, of p and is generated by the Frobenius automorphism 

0": q1 71, P (mod JP) (71 E =_IK ) 

The splitting types of f(x) are characterized by the action of u, on the four roots 
a, /,, y, 8 as follows (rearranging a, /3, y, 8, if necessary): 

( S aP _ a, aBP _, yP y, SP 8 (mod p), 
1 3 aP a,/P- y,yP 8,SP-/3 (modJp), 

(2.6) 1 1 2 aP a, P _,yP 8, SP _y (mod p), 
2 2 aP _, ,,PP- a, yP --8,SP _ y (modJp), 

I ap -9 pB, Y9 y,p -9 8,p- a (mod p). 

Moreover, for p = a, /, y or 8, pP p(p), whenever we have p k (mod Jp) for 
some k in Z, this characterization will be the primary tool (in Section 3 the notation 
will be changed however). 

One other tool is required, namely the sequence going backwards. Since u may not 
be + 1 and the reverse sequence will consist of rational (not integral) numbers, we 
will define the reverse sequence only modulo the prime p. 
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Let p be any rational prime p such that p t u (the case where p I u will be discussed 
later, see Corollary 7.2). Define u* by uu* 1 (mod p). Define A(-n) (n > 0) by 
the recursion 

(2.7) A(-n - 4) u*tA(-n - 3) - u*sA(-n - 2) 
(2.7) +u*rA(-n - 1) - u*A(-n) (modp) 

with the initial conditions corresponding to (2.4). Then, of course, for any prime p 
lying over p in K, we have 

A(-n) a-n + f3-n + y-n + 8-n (mod ,). 

Moreover, working mod p, both recurrences (2.3) and (2.7) hold for all integers n 
(positive, negative or zero) and mod p, (2.5) holds for all n. 

3. Generalized Reciprocal Quartics. Fix a rational prime p (p t u). Let 4 be a 
prime of K lying over p. The quartics satisfying the condition 

(3.1) ur2 = t2 (modp) 

must be handled separately. 
If p t r, then u must be a quadratic residue mod p. Let a satisfy 

(3.2) a2 u(modp) and ar = t(modp). 

If pI r, then pIt also, and we see that, for any root p of f(x), -p is also a root. So, 
say a2f32 u (mod 4). We set a ? +a/ (either sign). In this case (3.2) still holds 
(although a may not lie in Z/p Z). 

We now see by induction on n that the following congruence is true for all integers 
n: 

(3.3) A(n) anA(-n) (mod p). 

It should be noted that if pir, then A(n) 0 (p) for all odd n, and thus the 
congruence (3.3) is in reality a congruence over Z. 

The reason (3.1) must be singled out as a special case is that the main criterion 
uses a comparison between A(n) and A( - n) for n = p - 1 and p + 1. This cannot 
work in the present case because both the sequences A(n) and A(-n) are "essen- 
tially" the same. But in the present case A(p - 1), A(p + 1) and A(p + 2) are 
easily recognized. Moreover, this case exhibits interesting behavior in its own right 
(see Section 4). 

From (3.2) we see that we are now considering 

(3.4) f(x) = X4 - rx3 + sX2 - arx + a2 (mod p). 

We note that if p is a root of f(x), then so is a/p (p4f(a/p) a2f(p) 0 (mod 4)). 
We see then that a, 8, y, 8 is a permutation of a/a, a/l,8, a/y, a/8 mod t. 

Indeed, assuming that f(x) is unramified at p (as we do in this section), we may 
assume that mod 4 the roots of f(x) are 

(3.5) a, a/a, 13, a/,l. 

For the next discussion we assume that r % 0 (mod p) so that a is an integer. For 
a polynomial over Z of the shape (3.4) we see that its Galois group G (viewed as a 
permutation group of its roots (3.5)) must be a subgroup of the dihedral group D4 of 
permutations of the square of Figure 1, i.e. 
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alp -alc 

FIGURE 1 

(3.6) G < D4 = {id, (a, a/a), (13, a/fl), (a, /3)(a/a, a/l), (a, a//l)(fl, a/a), 

(a, a/a)(fl, a/l), (a, 13, a/a, a/fl), (a, a/l, a/a, 1)). 
Let Gp, be the decomposition group of p. Then we have the following standard 

criteria for the splitting type of p: 
(3.7) S if andonlyif Gp= {id}, 

(3.8) 1 1 2 if and only if G, = ((a, a/a)) or ((1, a/l)), 

(3.9) 22A if andonlyif Gp, =((a, a/a)(fl, a/l)), 

(3.10) 2 2B if and only if Gp = ((a, fl)(a/a, a/fl)) or 

((a, a/l)(f, a/a)), 

(3.11) I if and only if Gp = ((a, l, a/a, a/l)). 

(Here ( * means the group generated by -.) 
Following D. Shanks [7] we distinguish here between two types of 2 2 splittings. 

Namely we say p has a 2 2A splitting if and only if Gp = ((a, a/a)(fl, a/fl)) and a 
2 2B splitting otherwise. This corresponds, in D4, to permutations which are, in 
Figure 1, planar rotations or not. We will see that, as in Shanks paper, this 
distinction is necessary. 

Now G, is the Galois group of the residue class field of p/p and so is cyclic and is 
generated by the Frobenius automorphism p - pP. Thus, for example, if p is 1 1 2 
and G, = ((a, a/a)), we have the relations 
(3.12) aP=a/a and flP=fl(modP). 
We note that a 1 3 splitting cannot occur (there are no 3-cycles in D4). 

We are now ready to prove the following splitting criteria. 

THEOREM 3.1. Let f(x) be the polynomial (3.4), and let p be a prime. Assume that 
a % 0 and r t 0 (mod p) and f(x) does not have multiple roots mod p. Then f(x) 
cannot have a 1 3 splitting, and the following table characterizes the possible splittings 
of f(x) mod p. 

Type A(p - 1) A(p + 1) aA(p-1) + A(p + 1) A(p + 2) 

S 4 r2 - 2s r2 - 2s + 4a r3 - 3rs + 3ar 
112 t 4 t 4a r2 - 2s + 4a 
22A a*(r2 e2s) 4a r2-2s + 4a ar 
22B a*(s-2a) $ s-2a 2(s-2a) 

I a*(s - 2a) s - 2a 2(s- 2a) 

(a is defined by aa* 1 (mod p).) 
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Proof. To check the table for S splitting we trivially have A(p - 1) A(O), 
A( p + 1) A(2) and A(p + 2) A(3) (mod p), and so the result follows from (2.4) 
and (3.2). 

Now assume f(x) is split 1 1 2 mod p and by symmetry G, = ((a, a/a)) so that 
(3.12) holds. Then 

A(p - 1) aP-1 +(a/a)-l + /P-l +(a/3)P-1 3a/a2 + a2 

and 

A(p + 1) = aP+1 +(a/a)'+l + /P+l +(a//3)"+ 2a + 2 +(a/l)2 

Hence 
aA(p -1) + A(p + 1) 4a + A(2) (mod p), 

as desired. Moreover, A(p + 1) 4a (mod p) implies (/3 - a/fl)2 0 (mod p), 
which means p is ramified. Similarly A(p - 1) 0 4 (mod p). 

Now consider the case wheref(x) is split 2 2. In the case 2 2A (3.9) we have 

aP a/a and P 3a/,8 (mod 4). 

Hence 

A(p-1) =a/a2 + a2/a + a/fl2 + fl2/a a*A(2) 

A(p + 1) 4a 

A(p + 2) aa + a(a/a) + a/3 + a(a//3) = aA(l). 

Switching to the case 2 2B (3.10), by symmetry we may assume that aP = /B and 
,8P = a. Then 

A(p-1) 3,/a + a//3 + //a + a/3 = 2(a/# + /a) 

and 

A(p + 1) 2(a/3 + a2/a/3). 

Hence 

aA(p - 1) + A(p + 1) =2(a(a//3) + 8(a/a) + afi +(a/a)(a//f)) 

=2(s-2a) (mod p). 

Moreover, A(p + 1) s - 2a implies a/3 + a2/a - aa/l - a/l/a 0 or 

(a - a/o)(j3 - a/lp) 0 (mod 0). This implies that p is ramified,which we have 

assumed is not the case. Similarly, A(p - 1) - a*(s - 2a) (mod p). 
Finally, assume that f(x) is inert mod p (3.11). Again by symmetry we may 

assume that aP , and 8iP a/a. Then 

aA(p - 1) al//a + aa/l + a2/a/ + ao8 = s - 2a 

and 
A(p + 1) afi + a/a/8 + 8a/a + aa/,8 = s - 2a. 

It remains to show that the table of Theorem 3.1 characterizes the splitting type. 
Checking the table we see that the only confusion that could occur is when 
r - 2s + 4a 2(s - 2a) (mod p) or, when this is not the case, the only remaining 
possible ambiguity is between S and 2 2A. Both of these possibilities imply multiple 
roots as we see in Lemma 3.2. Thus Theorem 3.1 is completely proved once Lemma 
3.2 is proved. El 
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LEMMA 3.2. Let f(x) be the polynomial of (3.4) with a 0- 0 (mod p). Then 
(1) r2 - 2s + 4a 2(s - 2a) (mod p) if and only if, for some integer r1, f(x) 

(x2 - rlx + a)2 (mod p). 
(2) (a) r 0 (mod p) and r2 - 2s 4a (mod p) if and only if f(x) (x2 - a)2 

(mod p). 
(b) r 7- 0 (modp) and r2 - 2s 4a (modp) and ar- r3 - 3rs + 3ar 

(mod p) if and only iff(x) (x - r/4)4 (mod p). 

Proof. In (1) if p = 2, let r1 = s, and if p > 2, let r1 = r/2. Part (2)(a) is 
immediate. In part (2)(b) we see p # 2 (so r/4 is defined). Since r 0- 0, we may solve 
2s r2 - 4a and 3s r2 + 2a to obtain s 6a and r2 16a, from which the 
result is straightforward. 0 

It remains to consider the case where r 0 (mod p) so that, by (3.1), t 0 
mod p. Now, if p is a root, so is - p. The roots may be taken to be a, - a, /3, -/3. 
Then we have G < D4, where D4 is the group of permutations of the square in Figure 
2. 

-1L 

FIGuRE 2 

With this modification the discussions of the splitting of f(x) and the decomposition 
groups is the same. For example, 2 2A now means G,, = ((a, -a)(/3, -/3)). We may 
now state 

THEOREM 3.3. Let f(x) = x4 + sx2 + U (mod p). Assume f(x) does not have 
multiple roots mod p (so u 0- 0 (mod p)). Then p # 2 and p cannot have a 1 3 
splitting. Moreover, the following tables characterize the possible splittings of f(x) 
mod p. 

s t 0 (mod p) s 0 (mod p) 

Type A(p - 1) A(p + 1) A(p - 1) A(p + 1) (A(p + 1)/4)2 

S 4 -24 0 

11 2 0 5t00 t0 -u |2 2A2 
| 

4 
O 

s -4 0- 

22B 0 _ + 2s, 0 0 w 0 u 
I . $0 0 , 0,_4 O 0 

Proof. The table obviously characterizes the splitting once we know it is correct. 
We do not assume anything about s until it is necessary. For an S prime we have 
A(p - 1) A(O) 4 and A(p + 1) A(2) -2s (mod p). For a 1 1 2 prime we 
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may assume by symmetry that G. = ((/, -/3)), and so aP-= a, 13P -=-. Then 
A(p - 1)- 2 - 2 = OandA(p + 1)- 2(a2 - f32).IfA(p + 1)- O,thena ?+, 
violating the assumption of no multiple roots. Finally, (A(p + 1)/4)2 
((a2 + /2)2 - 2a2f2)/2 -uifs- 2(a2 + /2)= 0. 

For a 2 2A prime we have aP -a, 13P -/3, and so A(p - 1) -4 and 
A(p + 1) -2(a2 + /32) -A(2). For a 2 2B prime we may assume by symme- 
try that aP /3 and /3P a. Then 

A(p - 1) 2(/3/a + a/3) = 1/a/, A (2)= -2s/ap -O (mod p) 

if and only if s 0 (mod p). Also A(p + 1) 4a/3 # 0 (mod p). Moreover, 

(A(p + 1)/4)2 a2/2 u 
For an I prime we may assume, by symmetry, that aP , and /3P - a. Then 

A(p + 1) 2(a/ - /3a) 0. Also A(p - 1) 2(13/a - a//3) 0 mod p if and 
only if a ? /3, which violates our assumptions. O 

4. Comparison to Some Work of D. Shanks. We now compare the situation in 
Section 3 with the similar discussion given by D. Shanks [7]. 

For simplicity we assume the polynomial f(x) in (3.4) is irreducible. We have, 
(3.5),the roots of f(x) given by a, a/l, /3, a//3 and the Galois group G of f in (3.6) 
with G < D4. We identify the subgroups of order 4 in D4: 

C4 = ((a, /, a/a, a//3)), 

V4= {id, (a, P)(a/a, a/l), (a, a/a)(/, a/l), (a, a/l)(, a/a)}, 

V4' = {id, (a, a/a), (/3, a/l), (a, a/a)(/, a//3)}. 

Let A = discriminant of f(x). Let A4 = alternating subgroup of the symmetric 
group S4 = S4(a, a/a, /, a/l3). 

We note that VA E Q if and only if G < A4 n D4 = V4. Moreover, if VA E Q(a) 
- Q, then G ! A4, Q(V/A) is the fixed field of A4 n G while Q(a) is the fixed field 
of {id, (a, a/a)) n G; hence G = C4. Conversely, G = C4 implies VA e K= Q(a), 
and (a, /3, a/a, a/l8)(4/ ) = - VA implies VA 4 Q. Finally, if VA 4 Q(a), then 
[K:Q] = 8, and soG = D4.Wehave 

G = V4 if and only if VA E Q, 

G= C4 if andonlyif VA e Q(a) -Q, 

G = D4 if and onlyif VA ? Q(a). 

Set 

Al = r2 - 4s + 8a, A2 = (s + 2a)2 - 4ar2. 

Then, using the identities r = a + a/a + ,B + a/,l and s = 2a - a/3 + aa/lB + 

ap//a + a2/a/3, we easily derive 

(4.1) Al = -a-'(a - 1)(a/a - a/l3)(a - a/13)(/3 - a/a), 

(4.2) A2= [(a - a/a)(3 - a/l3)]2. 

Thus we immediately deduce that 

(4.3) A= a2yL1A2. 
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Now K contains the quadratic subfield Q(a + a/a) = Q( Aj), since 

(x -(a + a/a))(x -(13 + a/fl)) = X- rx + s - 2a 
is a quadratic polynomial with discriminant Al. It is the fixed field of V4f n G. 
Hence, for a rational prime p and a prime p of K lying over p, we have a + a/a - 
rational integer mod p if and only if Gp fixes a + a/a if and only if Gt, < V4. 
Checking the decomposition groups (3.7)-(3.11), we see that this is equivalent to p 
being S, 1 1 2 or 2 2A. Similarly, let p = (a - a/a)(13 - a/fl), so that p2 = A2 P is 
fixed by V4, and so (AX2/P) = 1 if and only if Gp < V4 if and only if p is S or 2 2. 
Thus we have the following splitting criteria: 

Sor2 2A if andonlyif (4-) = (2) = 1, 

11or2 A if and only if = 

P1 12 
22 if and only if (A )1)9 1 

We see that we may distinguish between all splitting types except S and 2 2A by 
congruences. Hence, if it is convenient, Theorem 3.1 need only be applied to those 

primes p such that both zvl and zv 2 are quadratic residues mod p. 
Another distinction between the 2 2A and 2 2B primes may be noted. Namely, 

Q(a) contains the quadratic subfield Q(a + a/a) whose primes p are split or inert 
according as (ZAl/p) = 1 or not. A split prime may move up to Q(a) as an S, 1 1 2 
or 2 2 prime, and an inert prime may move up as an 2 2 or I prime. Noting (4.4), we 
get the following more precise version: 

Q(a + a/a) Q(a) 

Split S,22A,112 
Inert I, 2 2 B. 

Finally, to tie in with the section on ramified primes, Section 6, we note that the 
decomposition (4.3) for A gives some information on the splitting type of a ramified 
prime. So let p IA, p + a be a prime, and let p lie over p. Using the expressions (4.1) 
and (4.2) for Al and A 2, it is easy to verify the following criteria: 

p IAl and PIA2 if and only if all roots are the same mod 4, 
p IA, and p + A 2 if and only if two pairs of roots are the same mod 4, 
p + Al and p I A 2 if and only if there are exactly three distinct roots mod P. 
The first is Case I in Table 6.1, the second is Cases III, IV and the third is Cases 

V, VI (Case II cannot occur). 

5. Nonreciprocal Quartics. We now give the criteria for polynomials and primes 
not covered by Theorem 3.1, for which p + u. 

THEOREM 4.1. Let f(x) = X4- rx3 + sX2 - tx + u be a polynomial with integer 
coefficients. Let p be a rational prime. We assume that f(x) does not have multiple 
roots mod p, p + u and ur2 7 t2 (mod p). Then the following table characterizes the 
splitting of f(x) mod p. 
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Type A(p - 1)-A(-p + l)(p)? A(p + 1)=- uA(-p - l)(p)? A(p - 1)- 4(p)? 

S Yes No Yes 
112 Yes No No 
13 No No 
2 2 Yes Yes 
I No Yes 

Proof. The table clearly characterizes the cases. So we need only prove it is valid. 
We use the criteria (2.6). Recall that the reverse sequence (A(n) for negative n) is 
defined in (2.7). 

If p is an S prime, then triviallyA(p - 1) A(-p + 1)- 4, A(p + 1) A(2) - 
r - 2s and A(-p - 1) A(-2) = (u*t)2 - 2u*s (mod p). We see that A(p + 1) 

A(-p - 1) (mod p) is equivalent to ur2 t2 (mod p). 
For the remainder of the proof it is convenient to make the following observation. 

Set 

fk(x) = (x - ak)(x - k)(x - yk)(x - 3k) 

= X4- A(k)x3 + S(k)x2 - ukA(-k)x + uk 

for some integer S(k). Then let p be an unramified prime with p above it as before. 
First we have 

fp _ (X) = X4 - A(p - 1)x3 + S( p 
1 
)X2 - A(-p + 1)x + 1 (mod p), 

and so we see 

(A(p- 1)=A(-p+ 1)(modp) ifandonlyif 

(5.1) ( {aP1fP-1 yp-1 Sp-1} 

11 laP-1 11,8XP-1 1 /yP- 1, 118P- 1 (mod P ).* 

Moreover, 

hp+1(X) = x4 - A(p + 1)x3 + S(p + I)x2 - u2A(-p - I)x + u2 (mod p). 

Thus, as we saw in Section 3, 

A(p + 1) =uA(-p + 1)(modp) ifandonlyif 

(5.2) a ( flP+1 yP+l 8P+1 

{u/aP+l, u/P+l, u/yP+1,u/8P+1} (modp). 

Now, if p is a 1 1 2 prime, then A(p - 1) 1 + 1 + 8/y + y/l3 A(-p + 1) 
(mod p) and A(p - 1) * 4 (mod p), or else y S. If A(p + 1) uA(-p - 1) 
(mod p), then (5.2) yields 

{ a2 232, -yS -yO} {UI/a2, U//32, u/-y, U/y3) (mod i), 

from which we easily deduce that (yS)2 = U (mod p). Then a13y6 = u implies 

* Here we mean that the two sets are the same mod p, counting multiplicities. 
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(af)2 u (mod p) as well, and we see that 

(5.3) t2= u2(a 1 + / -1 + y-l + 3_1)2 

- 2 (a +f+y+3)2_ur2 (mod p), 

(af) 

violating the hypothesis. 
If p is a 1 3 prime, then from (5.1) we see that A(p - 1) A(-p + 1) (mod p) 

implies 

(1, , 'Y, ) - (1, , aY: ) 
(mod P), 

which is trivially seen to imply that two of /3, y, 8 are the same mod p. If 
A(p + 1) uA(-p - 1) (mod p), then (5.2) yields {a2, fly, y3, B/3) 
{ ua -2, u/fy, u/y3, u/f U,} (mod p). It is then easily checked that this implies that 
two of a, fi, y, 8 are the same (mod p). 

If p is a 2 2 prime, it is trivially seen that the sets in (5.1) and (5.2) are the same. 
Finally, if p is an I prime, it is again clear that the two sets in (5.2) are the same. 

If, on the other hand, A(p - 1) A(-p + 1) (mod p), then 

(: y7 8 a)_( a P -Y 8 (mod p>). 

Since p is unramified, there are two possibilities. First, a/fl fl/a implies that 
8/y y/8, and so a - and y -8 which implies, since afly3 = u, that 
(ay)2 U; and then exactly as in (5.3) we get ur2 t2 (mod p). Second,/fl,8 8/y 
or ay flS (mod p); again using afly3 = u, we derive a contradiction as in 
(5.3). 0 

6. Ramified Quartics. The above procedures have all assumed that f(x) does not 
have multiple roots mod p, i.e. p is unramified. We now outline an ad hoc procedure 
to deal with the ramified primes. 

The discriminant A of f(x) is given by (see [4, p. 184]) 

27A = 4(S2 - 3rt + 12u)3 -(2s3 - 72su + 27r2u - 9rst + 27t2)2. 

Here we continue to assume Eq. (2.1): f(x) = X4- rx3 + sX2 - tx + u (but we 
allow p u). Of course, p is ramified if and only if p A, which we assume from now on 
in this section. 

Determining the splitting type of f(x) mod p amounts to determining the degree 
of each factor (/) and the power to which it occurs (e). There are six possibilities 
which are summarized in Table 6.1. The first column list the e's and/ 's. The second 
gives the explicit factorization of f(x) over Z/pZ: here all the factors listed are 
assumed irreducible and distinct. The third column shows the greatest common 
divisor of f(x) and its derivative f'(x), while the fourth simply gives the degree of 
gcd(f, f'). The table is valid for p > 3. The cases p = 2, 3 are easy to deal with 
separately. 
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TABLE 6.1 

e,4/e/uf f (x) gcd(f, f') deg gcd(f, f') 

I 41 (x - a)4 (x - a)3 3 
II 31 11 (x-a)3(x-b) (x-a)2 2 
III 22 (x2 - VX + W)2 X2 - VX + W 2 
IV 21 21 (x-a)2(x-b)2 (x-a)(x-b) 2 
V 21 1 1 1 1 (x - a)2(x - b)(x - c) x - a 1 
VI 21 12 (x-a)2(x2 _ vx + w) x-a 1 

After establishing that p I/v, the next step is to compute g(x) = gcd(f(x), f'(x)). 
Now the totally ramified case is detected (deg g = 3), and Cases II, III, IV 
(deg g = 2) are separated from Cases V, VI (deg g = 1). 

Write g(x) = x2 - vx + w in Cases II, III, IV. Then we may distinguish between 
these three cases simply by computing D = v2 - 4w. Indeed, D 0 (mod p) if and 
only if we are in Case II. Otherwise, the Legendre symbol (D/p) = 1 if and only if 
we are in Case IV. 

Finally, to distinguish between Cases V, VI we simply compute f(x)/g(x)2 = x2 

- vx + w and again check the value of ((V2 - 4w)/p). 

7. Cubic and Quadratic Polynomials. Let 

(7.1) g(x) = x-VX2 + wx-q 

be a cubic polynomial with integer coefficients. Define Ag(n) as in (1.1). Let p be a 
prime, p + q, such that g(x) is unramified mod p. Then for p > 7 we may choose an 
integer i such that (iq/p) = -1 and f(x) = g(x)(x - i) is unramified mod p. The 
first condition guarantees f(x) is not a generalized reciprocal quartic (condition 
(3.1)). We have 

Af (n )--in + Ag (n ) (mod p) 

for any integer n. In particular, Af (p - 1) 1 + Ag(p - 1) and Af (-p + 1) 1 + 

Ag(-p + 1) (mod p). Moreover, the splitting type off and g are directly related: 

g f 

S S 
12 112 
I 13 

where, as usual, S means split completely and I means irreducible (or inert). Thus we 
may apply Theorem 4.1 to obtain the following theorem (the cases of p = 2, 3, 5 are 
easily verified). 

THEOREM 7.1. Let g(x) be given by (7.1) with integer coefficients. Let p be a rational 
prime such that g(x) has no multiple roots mod p and p + q. Then the following table 
characterizes the splitting of g(x) mod p (here Ag(n) = A(n)). 

Type A(p - 1) A(-p ? l)(p)? A(p - 1) 3(p)? 

S Yes Yes 
12 Yes No 
I No 
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This theorem is implicit in [1]. Ramified primes can be handled as in Section 6. 
We now go back to the quartic polynomial f(x) = X4 - rx3 + sx2 - tx + u of 

(2.1). Before we assumed thatp + u, so we now assumeplu. If plt as well, thenf(x) 
is ramified, and we discussed this case in Section 6. Set g(x) = x - rx2 + sx - t. 
Then g is unramified if f is. Moreover, Ag(n) Af (n) (mod p) for any integer n. 
Hence we conclude. 

COROLLARY 7.2. Let f(x) be given by (2.1) as usual. Assume that p is a rational 
prime, pI u, p + t and f (x) is not ramified at p. Then the following table characterizes 
the splitting of f (x) mod p(Af (n) = A(n)). 

Type A(p - 1)-A(-p + l)(p)? A(p - 1)-3(p)? 

S Yes Yes 
112 Yes No 
13 No 

Applying precisely the same procedure as above for deducing Theorem 7.1 from 
the quartic case, we obtain the following result, trivially derived independently. 

THEOREM 7.3. Let h(x) =x2 - vx + w be a polynomial with integer coefficients. 
Let p be a rational prime such that p + w and h (x) is not ramified mod p. Define A(n) 
for h(x) as above (Eq. (1.1)). Then h(x) splits mod p if and only if A(p - 1) 2 
(mod p). 

8. Algorithm for Quartic Splitting. In this section we will compile the results of the 
previous sections and present the complete procedure for determining the splitting 
type of a quartic polynomial modulo a prime. The notation is given in Eqs. (2.1), 
(2.3), (2.4), and (2.7). We assume that we are given the polynomial f(x) and the 
prime p in advance. All computations below are done mod p. 

Case I. The discriminant A 0 (mod p). 
Compute g(x) gcd(f(x), f'(x)). 
If deg g = 3 thenf, p is totally ramifiede = 4,/= 1 else 
If deg g = 2 write g(x) = x2-vx + w 

If v2 4w then f(x) (x - a)3(x - b) 
else if ((V2 - rw)/p) = 1 then f(x) (x - a)2(x - b 

elsef(x)- (X2 - vx + w)2 
else deg g = 1, write f(x)/g(x)2 = x2 - vx + w 

If((v2 - 4w)/p) = 1 thenf(x) (x - a)2(x - b)(x - c) 
elsef(x) (x - a)2(x2 - vx + w). 

Case II. A 0 (mod p) andp|u. 
ComputeA(p - 1),A(-p + 1) 
If A(p - 1)-A(p + 1) then 

if A(p - 1)- 3thenpisanSprime 
elsep is 1 1 2 prime 

else p is 1 3 prime. 
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Case III. A 0 0 (mod p), u 0 0 (mod p) and r s t 0 (mod p). 
Compute A(p - 1), A(p + 1) 
If A(p + 1)- Othen 

if A(p - 1)- 4thenpisS 
else if A(p - 1) -4 thenp is 2 2A 

elsep is I 
else if (A(p + 1)/4)2 uthenpis22B 

elsep is 1 1 2. 

Case IV. A 0 0 (mod p), u 0 0 (mod p) and r t 0 (mod p), s 0 0 (mod p). 
Compute A (p - 1), A (p + 1) 
IfA(p - 1) 0Othenpisi1 2 
else ifA(p + 1) 0 thenp is I 

else if A(p + 1)- 2s then p is 2 2A 
else if A(p + 1) -2s thenp is S 

else p is 2 2B. 

Case V. A 0 0 (mod p), u 0 0 (mod p), r $ 0 (mod p) and ur2 t2 (mod p). 
Compute a t/r, A(p - 1), A(pj + 1), A(p + 2), A aA(p - 1) + A(p + 1) 
If A 2(s - 2a) then 

ifA(p + 1) s - 2athenpisI 
elsep is 2 2B 

else if A(p - 1) 4 then 
if r- 2s 4a then 

if A(p + 2) ar thenp is 2 2A 
elsep is S 

elsep is S 
else if A(p + 1) 4a thenp is 2 2A 

elsep is 1 1 2. 

Case VI. A 0 0 (mod p), u 0 0 (mod p), ur 2 o t2 (mod p). 
ComputeA(p - 1),A(-p + 1),A(p + 1),A(-p - 1) 
IfA(p - 1)-A(-p + 1)then 

if A(p + 1) uA(-p - )thenpis22 
elseifA(p - 1)- 4thenpisS 

elsep is 1 1 2 
else if A(p + 1) uA(-p - 1) thenp is I 
else p is 1 3. 
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