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Numerical Viscosity and the Entropy Condition 
for Conservative Difference Schemes* 

By Eitan Tadmor** 

Abstract. Consider a scalar, nonlinear conservative difference scheme satisfying the entropy 
condition. It is shown that difference schemes containing more numerical viscosity will 
necessarily converge to the unique, physically relevant weak solution of the approximated 
conservative equation. In particular, entropy satisfying convergence follows for E 
schemes- those containing more numerical viscosity than Godunov's scheme. 

1. Introduction. There is a close relation between the concepts of entropy and 
viscosity, associated with systems of conservation laws. It is well known, for 
example, that vanishing viscosity weak solutions for such systems must satisfy the 
entropy inequality across their discontinuities, and that the converse holds, at least 
in the small (in the large for scalar problems); both are used to identify the so-called 
" physically relevant" solution of such systems, e.g., [7]. 

In this paper we amplify a certain aspect of this relation, with regard to 
conservative difference schemes 

(1.1) v,(t + k) = v>(t) 

-X[h(rv-p+,(t),. .,uv+P(t)) -h(v,-p(t),. . . ,v,+p-,(t))] 

serving as consistent approximations to the scalar conservation law 

(1.2) aut (x, t) + af-(u(x, t)) = O. 

To make our point, consider a difference scheme which is known to satisfy the 
entropy inequality; roughly speaking, this should indicate according to the above, 
the existence of a certain amount of numerical viscosity present in such a scheme. It 
is therefore plausible to assert that other schemes, containing more numerical 
viscosity, will also have to satisfy the entropy inequality. After putting these terms in 
a more precise framework, we show the validity of the above assertion subject to the 
technical assumptions listed below. Thus, we prove the entropy inequality by means 
of comparison. 
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In [12], Osher introduced, for the method of lines, a class of E schemes which were 
shown to converge to the physically relevant solution. Making use of the terminology 
just introduced, the so-called E schemes can be identified as exactly those having no 
less numerical viscosity than that of Godunov. Since the latter is known to satisfy 
the entropy inequality, we are able to extend Osher's ideas to the fully discrete case, 
as a special case of the above assertion. This is carried out in Section 5, paving the 
way for the proof of the more general assertion in Section 6. Prior to that, we give in 
Sections 3 and 4 a brief discussion of the entropy inequality in relation to the all 
important Godunov and Lax-Friedrichs schemes. 

2. Preliminaries. We consider difference schemes 

(2.1a) v,(t + k) = H(v,'P(t). . . ,+vP(t); f, A) 

which admit a conservative form 

(2.1b) H( v p , uv+p, fA 

and are serving as consistent approximations to the scalar conservation law 

(2.2) au- (x, t) + af-(u(x, t)) = 0. 

Here, v,(t) v(x^, t) denotes the approximation value at the gridpoint (xv PAx, t), 
k and Ax are respectively, the temporal and spatial mesh size such that the mesh 
ratio A k/Ax is being kept fixed, and p, a natural number. Finally, h+1/212 
h ( v._p+-,... , v.+p) is the Lipschitz continuous numerical flux consistent with the 
differential one, h (w, w,. . . , w) = f (w); for the sake of simplifying the notations, its 
possible dependence on f and A is suppressed. 

We begin by putting the scheme (2.1) in an increment form: using the difference 
operator Aw, + 1/2 W W+1 - w, we set for v.+,1 # v. 

(2.3a) f= A hVi2 

(2.3b) 1 A /v+i/2 ; 

adding and subtractingf, to the RHS of (2.1b) and making use of (2.3), (2.1a) reads 
(2.4) v,(t + k) = VJ(t) + Cv+112AVv+12(t)- Cv-112AVv-112(t)' 

Next, we denote 

(2.5) Qv+112 Cv+112 + Cv+1- AJ2 + 
v+ 

Noting the identity 

- I - CY+1/2 = Af1 
Cv+112 P+1/2 

Av+1/2 

the incremental coefficients C.++ 1/2 equal 

(2.6) Cv+1/2 = 2 (Qv+1/2T+ Afv 12 
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Inserting this into (2.4), our scheme then assumes the form 

(2.7) v,(t + k) = v,(t) - 2[jf(Av+1(t)) -f(v1 _1(t))] 

+ 
I 

[,A (Qv -112'Av - 1/2 (t))] 

which reveals the role Q plays as the numerical viscosity coefficient. We will therefore 
use Q as a measurement of the amount of viscosity present in such a scheme. 

Remark. In the case of 3-point schemes, p = 1, this measure of viscosity is rather 
general in the sense that such schemes are completely determined by their coefficient 
of numerical viscosity, e.g., [10]. We do not claim such generality for (2p + 1)-point 
schemes p > 1: this definition of numerical viscosity is in fact 3-point oriented, as 
we shall see in a more precise form later on. 

Let TV[v(t)] -- E lv,+1(t) - v,(t)l denote the total variation of the computed 
solution at time t; we then have the following 

LEMMA 2.1. The scheme (2.1) is total variation nonincreasing provided its numeri- 
cal viscosity coefficient, Q.+ 1/2, satisfies 

(2.8) Al + 1/2 < Qv+1 1. 
'Vv?+1/2 

Proof. The inequalities (2.8), expressed in terms of the incremental coefficients in 
(2.6), are translated into 

(2.9) >C++1/2 0--, Cv;+1/2 > 0, 1- C+1/2 - C+1/2 . 

A straightforward calculation, based on the incremental form (2.4) and the inequali- 
ties (2.9), shows the nonincrease in total variation, TV[ v (t + k)] < TV[ v(t)], see [5]. 

Lemma 2.1 implies, in particular, the convergence of the scheme (2.1), provided its 
numerical viscosity coefficient meets the requirement (2.8): one can select a bound- 
edly a.e. converging subsequence, v,(t; Ax'), such that its limit 

v(x, t) = lim v (t; Ax') 
x=vAx', Ax-O 

satisfies (2.2) in the weak sense, e.g., [1], [3], [9].*** Weak solutions of (2.2) however, 
are not necessarily unique. The lower bound on the LHS of (2.8) requiring that much 
of viscosity for convergence to a limit weak solution, does not guarantee this weak 
solution to be the physically relevant one: it is well known, for example, that the 
3-point Courant-Isaacson-Rees scheme where Q,112 = A1IAf,+112/1v?+1121, may 
admit limit weak solutions violating the physically relevant entropy condition, e.g., 
[5], [12]; thus, a greater amount of viscosity is required for the entropy condition to 
hold. In the next section we discuss Godunov's scheme which turns out to play a 
central role in determining that additional required amount. 

We note in passing, the fundamentally different role played by the upper bound on 
the numerical viscosity, appearing on the RHS of (2.8). It is related to the hyperbolic 
nature of the approximated equation (2.2), as it amounts to the CFL-like condition, 

***We consider compactly supported initial data; a further Lx bound, derived below, is required for the 
more general initial data in L1 n LI n B V. 
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see (2.5), 

(2.10) XI (f(v) - h?+172) +(f(v,+,) - h?+172)| < Iv,1 - v'I, 

which usually results in placing a limitation on the mesh ratio, A, being used (recall 
that h (... ) may depend on A as well). A stricter CFL condition of this type was 
introduced in [9]. In particular, the numerical flux of a difference scheme satisfying 
(2.10) admits the consistency relation 

(2.11) h(v^_P+1, ..,vP_1, wI w v+2 .vv+p) = f(w) 

Such essentially 3-point schemes include, beside the standard 3-point schemes, several 
of the recently constructed second-order accurate converging schemes, e.g., [5], [8]. 

Finally, we would like to point out that by halving the CFL number, one obtains a 
maximum principle; that is, 

LEMMA 2.2. Consider the scheme (2.1) with a numerical viscosity coefficient, Q +1/2, 
satisfying 

(2.12) A __1_2 QV_ + 1/2 < 
AVP?1/22 

Then, the following maximum principle 

(2.13) inf[v,(t)] < v,(t + k) < sup[v,(t)] 

holds. 

Proof. The incremental coefficients in (2.6) do not exceed a value of 

V+/ Q+2 +AVD ) 
1/ 2 2+1 2 

Making use of the incremental form of the scheme, see (2.4), 

v,(t + k) = CP+1?2VP+l(t)i+( - Cv+r12 - Cv-112) v(t)+ C+-112VP-1(t) 

and noting the convexity of the combination on the RHS, (2.13) follows. 

3. The Entropy Condition and Godunov's Scheme. The building block in Godunov's 
scheme, [4], is the solution of the Riemann problem. Let uR(x/t; Uleft, uright) denote 
the similarity solution of the Riemann problem (2.2) subject to initial condition 

O =0) 1- sgn(x) 1+ sgn(x)uiot u(x, 
~~~2 

uf + 2 ugt 

Godunov's scheme is determined by 

(3.1a) v,(t + k) = HG(v-, v^ , v^,+?) _ VV1/2 + Vv+1/2 2 

where 

(3.1b) v1/2-v-(Vv-1 VV) = A1/2 | / uR(x/k; v,,1, v,) dx, 

(3.1c) v+1,2 v (v>, v>?1) = Ax/2 J7uR(x/k; v,,vv?+) dx. 
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Assume the CFL condition 

(3.2a) X-max1a(u)j < a(u) !(u) X n a 2 

holds. The RHS of (3.1b-c) can be evaluated from the integral form of (2.2), see 
Figure 3-1, giving 

(3.2b) = v.- 2A(fv -hG 

(3.2c) v++112 = VV + 2A(f, - hG+1/2) 

where 

(3.3) hG = hG(VV, VV + 1) =f (u (O?; VV, VV,+ 1) 

stands for the numerical flux of Godunov's scheme: indeed, by averaging (3.2b-c), 
(3.1a) takes the desired conservative form 

(3.4) v,(t + k) = v,- X(h 
G - hG 

+ + 

VV 112 vv-1/2 V+1/2 V+1/2 

I _n_______ I___________ __I_\_\_7_7 

FIGUREi 3-1 
Consider a pair of scalar functions (U(w), F(w)) such that 

the entropy condition for a physically relevant solution of (2.2), u -u(x, t), requires 
the following entropy inequality 

(3.5b) atU(u) +- 
a F(u) <O (weakly) 

to hold for all entropy pairs related through (3.5a). Recalling (3.lb-c), Jensen's 
inequality and the integral form of (3.5b) yield 

(3.6a) U( ) 1 x/2 U(R(x/k; vv)) dx 

v U(vv)v- 2X(F(v )-v 

(3 .6b) U( v1x l /2 ) 2 U( uR( x/k; VV :, A dx 

3 U(vU ) + 2X(F(vu ) -<(ely) 
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where 

(3.7) FvG +1/2 F (v., v+1) = F(uR(O?; v., v,+,)) 

is Godunov's numerical entropy flux, consistent with the differential one, FG(w, w) 
= F(w). Averaging (3.6a-b) we find on account of (3.1a) that Godunov's scheme is 
consistent with the differential entropy inequality (3.5b), 

(3.8) U(vU(t - k)) U(v1/2 ) V U(VV+1/2) UV - (FVG+12 - FvI1/2). 
2 

We now summarize what we have shown in the following 

LEMMA 3.1. Assume the CFL condition 

(3.9) A max Ia(u)I 2 

holds. For VV++ 12 given by 

(3.10a) v^-172 = VV - t(ft - fv) - QG-172 Av-172' 

(3.10b) + QG ?12 (3.10b) U~~v+112 = VV - /(v+l v^ + QV1/2A VV +1/2, 

we have the following entropy inequalities 

(3 .11a) U(VV-172) U(vV) - 2A(F(v,) - 1/2) 

(3.11b) U(Vv++172) < U(v,) + 2X(F(v,) -^ j+1/2) 

Proof. Inserting the definition of the numerical viscosity coefficient in (2.5), one 
obtains (3.10a-b) from (3.2b-c). The conclusion appears in (3.6a-b). 

Remark. We have shown that Godunov's scheme satisfies the entropy inequality 
(3.8) by averaging (3.11a-b), while assuming the CFL condition (3.2a), NX 

maxuja(u)l < 2; the latter was required in order to guarantee that waves issued 
from the two opposite faces of the v,-cell do not interact. In the scalar case, an 
entropy solution is known to exist whether or not these waves interact. Hence, (3.8) 
follows from the integral form of (3.5b) applied over the whole v,-cell (rather than as 
we have done over its left and right halves), provided the relaxed CFL condition 
X- maxula(u)l < 1 holds, thus preventing these waves from reaching the cell's other 
faces. The reason for our introduction of v, (t + k) as the average of v-172 and 
VV++/2, each of which satisfies the entropy inequality (3.11a-b), will prove itself 
essential, however, in studying E schemes in Section 5 below. We note that the so 
introduced averaging is nothing else but a restatement of the following identity, 
whose verification is left to the reader 

(3 .12 ( HGV(, V., VV+1; X) = (v_, v., v.; 2X) + HG(v,, v., v,,; 2X) 

In closing this section, we would like to point out the following geometric 
interpretation of the numerical viscosity coefficient associated with Godunov's 
scheme, QG?1/2. integrating (2.2) over the left half of the v, 1-cell, see Figure 3-1, we 
find 

V = v^ - 2X(fl?+l -hG 
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while integration over the right half of the vp-cell yields, as before, 

VP++ 1/2 = VV + 2 X ( fp -hGP+1/2)- 

Subtracting the second from the first, we have 

V^+l/2 - VV+1/2 = VV+1 - V - 2X(fv + fj+1 - 2h 

(I - 2QG?172) (v?l vp) 

Thus, 1 - 2Q G1/2 gives us the compression ratio VP+1/2 - VP++ - VV)- 

4. Lax-Friedrichs Scheme and Its Entropy Satisfying Modification. The Lax- 
Friedrichs scheme [2], [6], given by 

(4.1) vP(t + k) =H LF(vP_,, vP, vP+?; X) -vP1(t) + v2 1(t) 
2 

- \(f(v+?) -f(Av-)), 

has the most allowable numerical viscosity under the total variation nonincreasing 
requirement (2.8), Q4LF1/2 = 1. A. Harten has observed [private communication] that 
the scheme coincides with that of Godunov, when the latter is applied over a 
staggered grid, see Figure 4-1, 

v,(t + k) = 2Ax | - UR(x/k; vV,1, vV+1) dx 
HLF(V_1, v^, v^?1; A), 

provided the CFL condition 
(4.2) X maxla(u)I < 1 

is met. 

v (t+k) 

k 

Vv_1 V+L 
I - + Ax AX - I 

FIGURE 4-1 

Integrating the differential entropy inequality (3.5b) over the same domain, we 
end up with its discrete version 

U(v,,(t 
-- k)) U(VV+1(t)) + U(VV 1(t)) _ X (F(VV+ - F(v -1)); 

2 2 L((v1 
after little rearrangement, it can be put into the more standard form, compare (3.8), 
(4.3a) U(vV(t + k)) < U(V) - - 1/2), 

where 
(4.3b) LV+~I1L2 FLF(v,, VP+1) = F(v>+,) + F(vP) 1 
is.3b) F n e 12 wn(U(vv?n) - U(v,w )) 

is LF numerical entropy flux, consistent with the differential one FLF(W, W) = F(w). 
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We note that the LF scheme does not admit a simple averaging of the type 
introduced above for Godunov's scheme. Instead, one might consider the following 
modification 

(4.4) v^(t + k) = HM(v^_, vV, v,?1; X) 

_ V --+ 2v- + V-,1 - 

A(f(vv+?) -f(vv-i)). 

The so modified scheme has half the numerical viscosity of the LF-scheme, Qv+1/2 
2, and can be rewritten in the desired averaged form 

(4.5a) v,(t + k) = HM(v 1 v, V,+v,l) = V- /2 v+1/2 
2 

where 

(4.5b) v(v-1, v~) - VJ) ?V+ v- Xf (4 .5b) sV^ + 1/2 
- 

( r - lv )= V 2 - v - fv - J ) 

(4.5c) V V++ = /v+ - VV+I ) - -V, f) 

The new scheme introduced, (4.4), can also be viewed as a two-cell averaging of two 
noninteracting Riemann problems, see Figure 3-1, 

vV(t + k) = HM(v,-, v., v,,+1) 
A x/2 A ~~fLx/2u(/k v?) 

- 2Lx [| ~// uR(x/k; v,-,, v,) dx + u'(xlk; v, v,,,) dxj 

provided the CFL limitation 

(4.6a) A. maxIa(u)| 2 
u 

is met. Integrating the entropy inequality (3.5b) over the same two-cell domain, the 
scheme is found to satisfy that entropy inequality in its standard discrete version 

(4.6b) U(v^(t + k)) < U(v^(t)) - -(Fm+12'Fv1/2) 

with a numerical entropy flux 

(4-6c) F'MJ+/2 FM(v,, v+?) = F(v1) + F(v) _ 1(U( ) 24 

consistent with the differential one, FM(w, w) = F(w). 
In analogy with Lemma 3, we are now ready to state 

LEMMA 4.1. Assume the CFL condition 

(4.7) A maxla(u)l < 
u2 

holds. For V+- 1/2, given by 

(4.8a) V -1/2 = VV - X(fv -fv -) - 2AVv-1/2 

(4.8b) Vv + 1/2 = VV - X( f? -f I ) + 2 Av+1/2 

we have the following entropy inequalities: 

(4.9a) U(v 7172) < U(v)- 2X(F(v) - Fm-1/2)' 
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(4.9b) U(VV++172) < U(uv) + 2/X(F(uv) - FJ,+1/2). 

Proof. The RHS of (4.8a) and (4.8b) coincide with HLF( v,_, vu, vu; 2X) and 

HLF(vp, vp+P vI+1 ? 2X), respectively; applying for the latter the LF entropy inequal- 
ity as quoted in (2.3a-b), one obtains the conclusion (4.9a-b). 

Remark. In [7], P. D. Lax gave a direct proof of the entropy inequality (4.3), for the 
LF scheme approximating an arbitrary system of conservation laws. (In comparison, 
the arguments used in the above scalar analysis requires the existence of an entropy 
satisfying the Riemann solution in the large.) Since the modified scheme is nothing 
else but an average of two LF-solvers, Lax's result goes over in this case; that is, for 
an arbitrary system of conservation laws, both LF and the modified scheme, satisfy the 
entropy inequality for all entropy pairs associated with the differential system.t As 
much as we are aware, these are the only two known examples satisfying the entropy 
condition in such generality. 

5. The Entropy Condition and E Schemes. In this section we study difference 
schemes containing no less numerical viscosity than that of Godunov, Q > Q'. Such 
E schemes-after Osher [12]-are shown to converge to the unique physically 
relevant solution of (2.2), provided the CFL limitation 

(5.1) X (f(V) - hp+1/2) + (f(v+1) - hp+1/2)1 
, 2v,+1 - vjl 

is met. Ideally, one would like to allow the relaxed CFL limitation (2.10) to be used; 
the reason for introducing the stricter (5.1) (half the usual CFL number) stems from 
the fact that we were unable to rewrite the LF scheme in the desirable averaged form 
as discussed in Section 4. We note that (5.1) takes the equivalent form 

(5.1') 1 

which, in the case of Godunov's scheme, amounts to preventing waves interaction. 
As before, such a CFL limitation yields, in particular, the consistency relation (2.11), 
characterizing essentially 3-point schemes. 

THEOREM 5.1. An E scheme converges to the physically relevant solution of (2.2), 
under the CFL restriction (5.1). 

Proof. Convergence was established in Lemma 2.1 and Lemma 2.2, since an E 
scheme is necessarily total variation and maximum norm nonincreasing (e.g., [10, 
Section 2]) 

A| ! | 2 P+1/2 < Qp+112 < 12 < 1 

We turn to examine the entropy inequality. We attach the superscript G, M, and E 
to distinguish between Godunov's scheme (3.1), the modified scheme (4.4), and the E 
scheme under consideration, (2.7), 

vv(t + k) = vp(t) - 2 ((vV+1(t)) -f(vV 1(t))) + 2(/(QV-112AVv-12(t))) 

We rewrite the latter in the averaged form 

(5.2) vV( t + k) = P1/2 
2V 

+1/2 

For the exact CFL limitation in this case, see [7]. 
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where 

(5.3a) v-1/2 = VV - (f v-f1) - Qv-12 -1/2, 

(5.3b) V+1/2 = VV - X(JV+1 -fv) + Qv+1126Vv+1/2 

Recall the corresponding averaging forms for Godunov's scheme, see (3.10), 

(5.4a) =G - LG 
V-1/2 = Vv - A(fv fv-1) V-112AVv-1/2' 

(5.4b) + = - X(f^?1 -f) + QG?i72 Vv?i72 

and that for the modified scheme, see (4.8), 

(5.5a) v1$i1/2 = VV - X(fV -fJ_) - 2AVv-112, 

(5 .5b) V'+ 1/2 = VV - A(fv+ 1 - fv ) + 2 Vv+ 1/2' 

According to our assumption 

(5.6) Qv+172 = 
OV+1/2Q V1/2 +(1 - 

6v+1/2)2' 0 v 6 +1/2 < 1. 

Multiply (5.4a) by v-1/2, (5.5a) by (1,, 6-1/2) and add to find that (5.3a) amounts 
to 

VF-1/2 = v-1/2)vv-1/2 - 

similarly, multiplying (5.4b) by , +1/2' (5.5b) by (1 - , +1/2) and adding, we end up 
with (5.3b) having the form 

VV + 1/2 v + 1/2Vv + 1/2 + 01- + 1/2 1/2 - 

Averaging the last two equalities, (5.2) becomes 

(5.7) vV(t + k) = v-1/2 G- ( + - v 1/2 

6+ 1/2 (1 - 1/2) 1M? 
V +1/2 G?+ + O / ~I 

+ 2 v?+1/2 2 v+1/2 

Thus, we see that every E scheme can be written as a convex combination of one-sided 
averaged Riemann solutions. 

Let (U(w), F(w)) be an entropy pair associated with (2.2). By the convexity of U, 
(5.7) implies 

(5.8) U(v,(t + k)) 1/2 U(v1??1/2) + (1 - 1/2) 2 ~~~~2 U( v1 1/2) 

6 (1-612 O ?1/2 ) 
++/2 U(vV+172) + 2 U(VV+1/2)- 

Next, we invoke the entropy inequalities concluded in Lemmas 3.1 and 4.1 

U(vvG?-12) < U(vV) - 2X(F(v,) - 1/2) 

U(V,G+12) 1< U(v^) + 2X(F(u,)) - 2), 

U(v;ij72) <s U(v^) - 2X(F(v^) -F^ 1/2 

U(uvA++i2) U((vV) + 2X(F(v.) -F.1l/2)A 
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When these are inserted into (5.8), we end up with the desired entropy inequality 

(5.9a) U(v.,(t + k)) < U(v^) - (E+ 1/2 - F^-1/2 

with a numerical entropy flux 

(5.9b) F+1/2 = Ov+1/2 FPG1/2 +(1 -+1/2)F^M1/2 

consistent with the differential one, FE(_... W, w, w,_ ) = F(w). 
Remarks. (i). An explicit formula for Godunov's numerical flux, 

hG(v>, v,,+1) = Min [sgn(v, + 1-vp)f (v)], +1/2 -< V < V+ m1/2, 
U 

was given in [12]; here+ = Min/Max(v,, v,+,). Hence, an equivalent char- 
acterization for E schemes, requiring 

sgn(v+1 - vp)[hp+1/2 -f(v)] < ? g1/2 < V -< Vr+1n2, 

shows that a 3-point monotone scheme is an E scheme. Unfortunately, E schemes, 
like monotone ones, are at most first-order accurate [12]. 

(ii) We have seen that E schemes satisfy the entropy inequality (5.9) for all 
entropy functions, U(.); their corresponding numerical entropy fluxes are given as 
convex combinations of two numerical fluxes associated with monotone 
schemes-Godunov and the modified LF scheme (4.4). Hence, an LP-convergence 
rate estimate of order (Ax)1/2 follows along the lines of [9, Theorem IV] 

IIv(, t) - u(*, t)IIL1 < 1v(*, t = 0) - u(, t = O)IIL1 + K (tAX)1/ 

Considerations of the constant coefficients case shows this Ll-estimate to be sharp, 
e.g., [11, Sections 9 and 10]. 

(iii) As an immediate corollary from Theorem 5.1 we obtain verification of the 
following "folklore" result. 

COROLLARY 5.2. A conservative difference scheme with a nonvanishing numerical 
viscosity, 0 < Qmin < Q++172(X) < 4, is converging to the unique entropy solution for 
sufficiently small mesh ratio, A. 

Such nonvanishing viscosity schemes were specifically " tailored", for example, in 
[5, Section 5]. Here we note, that the CFL-like restriction on the mesh ratio, A, 
depends heavily on the behavior of the flux, f, near the sonic points. 

6. Numerical Viscosity and the Entropy Condition. In this section we would like to 
systematize the kind of arguments introduced above, emphasizing those essential 
ingredients which prevail in the more general context. 

We consider a general conservative scheme which we rewrite in the averaged form, 
compare (2.7), 

vu(t + k) 
(6.1) [VJ(t) 

- A(f, - f-1) - Q -1/2pAV-1/2] + [ V(t) - 
X(fp+l 

- fp) + QP+1/2A('+1/2] 
2 

the entropy condition follows by constructing a consistent discrete entropy inequal- 
ity for each of the averaged terms on the RHS (6.1), thus opening the door for 
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showing the former by means of comparison. For that purpose, pick a 3-point 
entropy condition satisfying the scheme 

(6.2) vp(t + k) = H( vP_1 v, vp+1;f, N)-vp - -(h,1/2 hp-1/2) 

such that the following holds: 

Assumption. The numerical flux h +1/2iS independent of the mesh ratio N. 

The plausibility of the above assumption stems from the fact that the Riemann 
problem admits similarity solution uR(x, t; Uleft, urg) uR(x/t; Uleft, Unght), and 
hence all difference approximations based on Riemann solvers must satisfy such a 
requirement; this is not the case, for example, with the LF scheme (4.1), where we 
were forced to consider instead its modification (4.4). 

The reason for introducing the last assumption is becoming clear upon writing 

H(v_1, vV, v+1; A) 
(6.3) [VV - X(fv - fv1) - 

Q1/2At'l/+ - 1(f1+1 - f1,) + Q +1/2Atl, +1/2 
2 

where, see (2.5), 

(6.4) L, + 2 
- QP+1/2 '6 v + 1/2 

depends linearly on A; hence, the two averaged terms on the RHS of (6.3)-abbrevi- 
ated as before by v^~1/2 and v+ 1/2-can be equivalently expressed as 

VP --1/2 -H(v-, v., v.; 2A), v^++ 1/2 - H( v., v., v. + ; 2A), 

each of which satisfies the entropy inequality, provided the CFL limitation is being 
halved. Termwise comparison of the averaged forms, (6.1) and (6.3), shows their 
difference only in the numerical viscosity coefficients; assuming QP +1/2 to vary 
between two coefficients of numerical viscosity associated with entropy satisfying 
schemes, we are able to represent (6.1) as a convex combination of the latter. The 
discrete entropy inequality follows for the corresponding convex combination of 
entropy fluxes. 

We have shown 

THEOREM 6.1. Consider the difference scheme (6.1) and assume that the CFL 
condition 

QP+1,2I 
f ' f?+l-2h |172 <1 

holds.tt Then, the scheme satisfies the entropy condition, provided we can find another 
entropy satisfying difference approximation with less numerical dissipation, Q + 1/2, 

QP+ 1/2 < QP+1/2 

ttOne may assume, instead, IQ1,+l/21 < IQo,+1/21' Q,+l/2 denoting the numerical viscosity coefficient 
of a difference scheme admitting the desired entropy satisfying averaged form. 



THE ENTROPY CONDITION FOR CONSERVATIVE DIFFERENCE SCHEMES 381 

The corresponding numerical entropy flux is given by 

F /2 [ Qz +l/2 l F 
?[Qv+1/2 Qv+1/2] 

Fp+1/ =L-1/ 2 /2 
P 

+1/2 L 2-Q^112 
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