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Finite Element Formulation of the General 
Magnetostatic Problem in the Space 

of Solenoidal Vector Functions 

By Mark J. Friedman 

Abstract. A new finite element method for the solution of the general magnetostatic problem 
is formulated and analyzed. The space of trial functions consists of solenoidal piecewise 
polynomial vector functions. We start with an integral formulation, in terms of the flux 
density, in the domain occupied by magnetic material. Using the properties [10] of the 
spectrum of the relevant singular integral operator we derive a weak formulation involving an 
integral operator on the boundary only. Thus the resulting finite element matrix consists of a 
sparse part corresponding to the interior of the iron domain and a full part corresponding to 
the boundary. Using the method of monotone operators, existence and uniqueness of the 
solution of the weak formulation as well as its discretization are proven. Error estimates are 
derived with the special emphasis on the case when magnetic permeability is large. Finally, 
solution of the problem by successive iteration is analyzed. 

1. Introduction. 
1.1. In this paper we analyze the general (i.e., nonlinear, nonhomogeneous and 

anisotropic) magnetostatic problem without hysteresis, and develop a new finite 
element method for its numerical solution. The problem is to calculate the magnetic 
field inside and outside of a ferromagnetic material placed in a given field (produced 
by currents in free space). One encounters the problems of this type in, for example, 
the design of electromagnets, electrical motors and other electromagnetic devices. 

Currently, the magnetostatic problems have been solved by using a differential 
interface formulation in the whole space or an integral formulation in a bounded 
ferromagnetic domain. The numerical methods based on the differential formula- 
tions have been considered, e.g., in [4], [11], [16], [24], [25]. For the numerical 
methods based on integral formulations, see, e.g., [1], [2], [5]-[7], [20], [22] and 
references therein. Recently some "coupled" finite element-boundary solution proce- 
dures have been introduced (see, e.g., [3], [15], [17], [8], [9], [21] and the discussion 
there). The common features of these coupled methods are that they lead to sparse 
matrix systems in the interior of the ferromagnetic domain and full matrix systems 
only on the boundary nodes. 

As far as we are aware, the first detailed mathematical analysis of the magneto- 
static problem has been done by I. Mayergoyz [16] for the differential formulation 
and by the author in [5], [7] and the present paper for the integral formulation. 
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Similar results have been obtained by J. E. Pasciak [21]. The later paper also 
contains a numerical procedure (similar to the one suggested by the author and J. S. 
Colonias in [8] and by the author in [9]) and the results of numerical experiments. 

1.2. Let us now describe the problem more precisely. Let i2 c c R3 be a bounded 
domain, containing the ferromagnetic material, with Lipschitz boundary F. We will 
denote by C the closure of 2, and the notation u(x) = (ul(x), u2(x), u3(x)) will 
stand for a vector function on R3. We also set u Jul = 2u + U 3 + u 

Maxwell's equations for magnetostatics are given in terms of the flux density B, 
the net field H and the current density &: 

v B=O, V xH=H 
These equations are connected by a constitutive relation H(x, B) giving H as a 
function of x and B; this relation is determined experimentally. We shall also often 
use an operator notation 

(1.1) (hB)(x)--H(x, B): S2 x R3-- R3 

Throughout the exterior region S2' = R3/C we always have H = B. In the isotropic 
case, (1.1) is usually written using the permeability A, as 

(1.2) H(x, B) = B(x) 
4Lx, B)~ 

In addition, the normal component of the B field and the tangential components of 
the H field are continuous across r, and 

B=O(Ix-2) asx->oo. 

One way of reformulating the above problem is by the introduction of the volume 
integral operator, call it A, defined by 

(1.3) (AM)(x) - vM(y). Vy-dy, r = Ix -Yj, 

where A maps vector functions defined on &2 into vector functions on R3. 
Let Ba be a given "applied field", i.e., the field due to currents in free space: 

(1.4) Ba(x) = 
1 

B(y) x 1Vydy 

Note that Ba can be calculated by analytical or numerical integration from the 
known current density B. 

Define the magnetization M by 

(1.5) M = B-H-B-hB. 

Now -AM in (1.3) represents the demagnetization field due to spatial distribution of 
magnetization. Since, as is well known, the net field is the sum of the appplied field 
and the demagnetization field, by combining the above identities one can easily 
derive the nonlinear singular integral equation 

(1.6) RB-hB + A(B-hB) = Ba. 

After (1.6) is solved the field outside the ferromagnetic material, in i2', is given by 

(1.7) B(x) = Ba(X) -(A(B- hB))(x), x E i2'. 



FORMULATION OF THE GENERAL MAGNETOSTATIC PROBLEM 417 

This can also be written as 

(1.8) B(x) = Ba(x) - Vj ( dYyy 

where a is (almost) M n, the normal component of magnetization on 7; see Section 
3 for details. In practice, the outside field is often of most interest. 

We now briefly describe our method for solving (1.6). (Details will be given in 
Section 3). As a result of Maxwell's equations V B = 0, Ba and B are both 
solenoidal. Let J denote a space of solenoidal (divergence-free) vector functions. 
Letting Jh C J be a family of finite-dimensional spaces, an obvious projection 
method would be to find Bh E Jh such that 

(1.9) fRBh- udx =f Ba- udx forallu E Jh 

Even if Jh has a local basis, this formulation leads to a full matrix over the volume 2. 
We define Bh E Jh by 

(1.10) fhBh udx + Ir(Bh - PJhBh)(y) nydyyu(x) n, dy. 47T r 

=fBa udx forallu E Jh, 

where Pjh is the orthogonal projector onto Jh From (1.10), defining Ah from Bh, by 
(1.8) it follows that the error in the field outside the magnetic material is determined 
by the accuracy in a - ah on 7, more precisely, 

(1.11) IB(x) - Bh(X)I = 4 Jr [(Y) - Oh(Y)] vy - dyy 
17 1 

V It h Oh1112,Fl 47 | r 1 /2,F-), 

where jj stands for the norm in the Sobolev space HS(J) (cf. [18]). In Section 4, 
we shall derive estimates ((4.15) and (4.16)) for a - Uh, which together, show that we 
have good approximation over the whole range of permeability, even in the limit 

-* QQ. 
Compared to (1.9) and the usual volume integral method (based on straightfor- 

ward discretization of (1.6)) this has the advantage that, given a local basis for Jh, the 
system arising from the volume integral is sparse. Thus, a dense matrix enters only 
from the boundary terms. In addition to the point just mentioned, it turns out that, 
for (1.9), the errors become large with high permeability (see, e.g., [20] and the 
discussion there). The reason for this is, roughly speaking, that the lower bound of 
the spectrum of the corresponding (positive definite) operator approaches zero. This 
leads to a large constant in error estimates and also increases considerably the 
condition number of the finite-dimensional problem so that an iterative method of 
solution would be less efficient. 

1.3. The outline of the remainder of the paper is as follows. In Section 2, we 
introduce notation and give some preliminary results. We decompose [10] (L2(S ))3 
into invariant subspaces where the operator A is the zero map, the identity map and 
a subspace where A is positive definite and bounded (extending the results of [5], [7] 
to the case when i2 is not simply connected and 1 is Lipschitz). 
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In Section 3, we first present the formulation (3.1) of our problem in the space 
J c 12 of generalized solenoidal ("divergence-free" in a weak sense) vector func- 
tions. Then we define our finite element method for the numerical solution of (3.1) 
and, using the spectral decomposition of A, prove some auxiliary results required for 
the error analysis in Section 4. 

In Section 4, we prove existence and uniqueness of the solution, using the 
monotone operator method, and derive error estimates. 

In Section 5, we analyze the successive iteration method for the iterative solution 
of our problem. 

In Theorem 5.2, we derive an estimate which shows that the convergence does not 
deteriorate over the whole range of permeability, provided an appropriate choice of 
the initial approximation is made. 

2. Notation annd Preliminaries. We shall denote by HS(2) and HS(J) Sobolev 
spaces on 2 and r of order s with corresponding norms 11 Ijj, and 11 - Is'r, 
respectively [13], [18]. For negative s, the Sobolev spaces are defined by duality. Let 
9(s2) (or 2(9)) be the space of %` functions with compact support contained in i2 
(or in D2). The closure of 9(s2) in Hs(s2) is denoted by Hos(2). g(U2) is dense in 
Hs(s2). The notation H will stand for the product space H3 which has components 
in the space H. We shall also write L2 for L2(s2). When H is a Hilbert space H 
inherits the obvious norms and inner products. Let ( denote the L2 inner 
product on S2 given by 

(2.1) (u,v)= uvdx. 

The corresponding L2 inner product is 

(u, v) =fu vdx. 

We shall need some auxiliary subspaces of 12. Define 

G= {u:u= vu , EH1(&2)}. 

G= {u: u =V, Ho(2)} = closure in L2 of G 

= {u:u= V,c E (2) }. 

U = the orthogonal complement of G in G. 

J = the orthogonal complement of G in 17. 

J = {u E L: V u = 01. 

The following results for the operator A are proven in [10]. 

THEOREM 2.1. The operator A is a bounded selfadjoint map on V) and satisfies 
(i) Ker A = J. 
(ii) A is the identity when restricted to G. 
(iii) U is an invariant subspace of A. 
(iv) The spectrum of A on U is contained in the interval [Ao0 A0] where 0 < A0 < A0 

< 1 are positive constants which depend only on S. 



FORMULATION OF THE GENERAL MAGNETOSTATIC PROBLEM 419 

We next give an additional characterization of the spaces U, J and J. Denote 

E = {u E L2: V U E L2}. 

LEMMA 2.1 [26, THEOREM 1.2, REMARK 1.3]. There exists a unique linear continuous 
operator yn: E -- H-1/2(r) such that 

(2.2) ynu = the restriction of u n to r for all u Ec- 2 

where n is the outward normal (which exists almost everywhere on IF [17, Lemma 
2.4.2]). 

In what follows we shall use the notation 

U- nl = ynu Vu C E. 

LEMMA 2.2 [26, THEOREM 1.4]. 

(2.3) J = {u C E: V U=O 0,u nl = 0} = closureinL2ofJ 

= (u E 9(si): V u = 0). 

LEMMA 2.3. 

(2.4) J= closureinL2ofj={u E? .9(U):v u=O}. 

(2.5) L2= GE J. 

(2.6) J = U ED J. 

(2.7) U = {u: u = V,EH1(2), Zk = 0}. 

Proof. Let u c J. From the definition of J, J C E. By [25, Theorem 1.1] .9(S) is 
dense in E. Let {Un }?n= C .(Li) be a sequence converging to u in E as n -x 0, i.e., 

Ilun-ull -O as n-x, Io V ' Unl ?O as n x-c. 

Then 

iin = Un-V nY dy E- J 1 rVU (r 

and converges to u in E as n xo. Since J is clearly a Hilbert space, with the 
L2-norm, we have (2.4). 

Let now u c L2 be orthogonal to G. Then 

(u,Vp) = 0 forall h E e9(S), 
which means that V u = 0 in the sense of distributions, which gives (2.5). Together 
with the definitions of U and J, (2.5) implies (2.6). Since U c G for any u E U we 
have u = V?, 0 C H1(g2). From (2.6) and the definition of J we also have that 
AO = 0 in S2, which gives (2.7). 

Throughout this paper, C will denote a generic constant, not necessarily the same 
at different occurrences. 

3. Formulation of the Problem. The Numerical Procedure. From Maxwell's equa- 
tions for magnetostatics V . B = 0. Therefore, J turns out to be a natural space for 
the solution of (1.6). 

The variational formulation of (1.6) in J is for a given B, E J to find B E J so 
that 

(3.1) (RB,u) = (Bu) Vu e J. 
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Let Jh C J be a family of finite-dimensional subspaces of J. We define the 
approximate solution Bh - Jh of the problem (3.1) by 

(3.2) (RhBh,u) fH(x,Bh(x)) u(x) dx 

+ f (l/r)(Bh(y) - (PjhhBh)(Y)) * ny dyy,u(x) n, dy. 

= Ba(x) u(x) dx VU E Jh. 

We shall establish below that this formulation is indeed a discretization of (3.1). The 
following simple lemma is crucial for our numerical method. Denote by P, the 
orthogonal projector of L2 onto V c L2. 

LEMMA 3.1. 

(3.3) (AM,u)=(APjM,u) VMeL2,Vu eJ, 

(3.4) Vu e J, (PUu) *nl = u nII E H-/2(J). 

Proof. By (2.5) and (ii) of Theorem 2.1 we have (3.3): 

(3.5) (AM, u) = (AM, PJu) = (PJAM, u) = (PJ (APJM + PQM), u) = (APJM, u). 

From (2.6) for u e J, u = PuU + PJu. And (3.4) follows from the fact that by (2.3) 

(Pju) nl=0. 

THEOREM 3.1. (i) The formulation 

(3.6) (RB,u) (hB,u) +(A(B-PjhB),u) = (Ba,u) Vu e J 

is equivalent to (3.1). 
(ii) The formulation (3.2) makes sense in Jh' and it is equivalent to 

(3.7) (RhBh,u) (hBh,u) + (A(Bh-PjhhBh)u) = (Ba,U) Vu E Jh, 

where J PJh. 

Remark 3.1. The formulations (3.6) and (3.7) are used for the analysis of the 
problem and the derivation of the error estimates, while the formulation (3.2) is used 
for the numerical solution. 

Proof. Statement (i) is an immediate consequence of (3.3). For u E J, integrating 
by parts in (1.3), 

4vT(Au)(x) = V[r(llr)u(y) -ny dyy - r(llr) v u(y) dyj 

= V (1/r)u(y)- n d-yy Vx e-. 

Therefore for any u, v e J we have, integrating by parts, 

(3.8) 47T(Au,v) =1 VJ (1/r)u(y) -ny d-yy . v(x) dx 

= (l/r )u(y) -ndyyv(x) 
- n dy,. 
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Now from Theorem 2.1, (iv), Lemma 2.1 and (2.4) we have 

(3.9) (Au,v) < Aollull llvll < AoCHlu nil-1/2,FIV,nll-1/2, V u,v E J. 

Therefore the right-hand side of (3.8) is a bounded bilinear form in H'-/2(T') X 
H-1/2(TF). Thus (3.8) holds by (2.4). 

After (3.2) is solved, the approximate field outside the magnetic material, similarly 
to (1.7), is given by 

(3.10) Bh(X) = Ba(X)VLVJ Mh(y) V)y(1/r)dy, x EE S', 

where 

(3.11) Mh = Bh-Hh Bh - hBh. 

Denote 

(3.12) a= (PUM) nlr, 

(3.13) ah = (PJMh) njr 

THEOREM 3.2. 

(3.14) ah = (PUPJhMh) -nlr 

The exact field (1.7) and the approximate one (3.10), outside magnetic material, can be 
written, respectively, as 

(3.15) B(x) = Ba(X) 7v (1/r)a(y) dyy, x e S2', 

(3.16) Bh(x) = Ba(x) V f (l/r)ah(y) dYy, x EC '. 

Proof. Equation (3.14) follows from (3.4) with u = (PJhMh). From the argument 
similar to the one in the proof of Theorem 3.1, (ii), using (3.4) it follows that for 
u E- J 

(3.17) (Au)(x) = Vf (l/r)(PUu)(y) n dyy. 

Now by (2.5) L2 = J E G, and therefore to verify (3.15) and (3.16) we need only to 
show that for any u E G 

(3.18) Vfu(y) vy(1/r)dy = 0, xE i2'. 

For any u E G we have the following chain of identities 

v U(y) vy(l/r) dy = -VV j u(y)(1/r) dy = -V X v x u(y)(1/r) dy 

= v x [I (1/r)ny X u(y) dyy - f(1/r)v x u(y) dy] = 0. 

Since G is dense in G and the operator on the left-hand side of (3.18) as a mapping 
from G into L2(S2') is bounded (this follows from (3.18)), (3.18) also holds for any 
u E G. This proves the theorem. 
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Remark 3.2. In practice one is mostly interested in knowing the field outside the 
magnetic materal, in 2'. To estimate the error in the approximate solution in 2', it is 
therefore required to estimate a - ah. In the next section we shall see that when we 
estimate a - Ah directly, we obtain considerably better error estimates (for large 
permeability) than when we estimate a - ah via B - Bh. The analysis there makes 
use of the expression (3.14) for Ah, whereas (3.13) is used for the actual numerical 
solution. 

Remark 3.3. From a finite element point of view, it seems to be a fairly easy task 
to construct Jh in two dimensions, assuming that the stream functions exist. Indeed, 
standard conforming elements enable us to get directly an approximation Jh of J (for 
F E H1, V x F = {(aF/ax2), -(aF/axl)}). In a three-dimensional problem it is 
no longer possible to use stream functions to define, in a one-to-one way, a 
solenoidal vector field. Thus we need to use directly a discretization of J [12] or of E 
[19] and consider the subspace of solenoidal vector fields. 

4. Existence and Uniqueness of Solution. Error Analysis. Assume further 
throughout that the function H(x, B) in (1.1) is 1-1, differentiable with respect to B 
for all x, measurable in 52 with respect to x for all B; and for almost all x E 52, for all 
B E R3 the matrix H'(B) = (aHaBj),i =1, 2,3 is symmetric (since we neglect hyster- 
esis (see, e.g., [16])) positive definite with its spectrum 

(4.1) a( h)) cy M*]* * o 

Remark 4.1. In the isotropic case (1.2), from 

ai =a _B =I + d l l BiBj 
aBj aBjL A ] , ij dB L] B' 

i,j = 1,2,3 3 Sij= ( i: j 

1 _ dH dB + d 

we have 

Hi 1 [ llB Bj 
B1- 

8 IM JB Bj P, ik l yd A B B2 

If we choose the coordinate system el, e2, e3 in R3 so that el is parallel to B then 

1 
0 0 

Pjd 

H'(B)= 0 - 0 

0 0 1 

In this case the assumption (4.1) is equivalent to 
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LEMMA 4.1. Denote Hi = hBi, Ml =Bi- Hl, i = 1, 2. We have 

(4.2) JM2-M1J 1 (1-i IB2 - B1IJ VB1, B2 E R, 

(4.3) /A*IH2 - H1I < jB2 - B1j < M*H2 - H1I VB1, B2 E R3. 

The operator R: J -* J, defined by (1.6), is strongly monotone with 

(4.4) (RB2 -RB19B2 -BI) -> 
I 

|IB2 - BI|2VB1, B2 EE J- 

The operator R: J L2 is Lipschitz continuous with 

(4.5) ||RB -RB1|| -< (1 + 11 -* 1JIB - BIJI VB1 B2 E J. 

Proof. Inequalities (4.2) and (4.3) follow from the definitions (1.1) of H and (1.5) 
of M, (4.1) and the mean value theorem for operators (cf. [23]). 

From (1.6) using that by Theorem 2.1 III - All = 1 and the Schwarz inequality, 

(4.6) (RB2-RB1, B2-B1) = IB2- B112 - ((I - A)(M2 - M1), B2 - B1) 

>J JB2 - B112 -IM2 - M1IJI JIB2 - B1IJI. 

Now (4.4) follows from (4.2). 
Applying the triangle inequality to (1.6) and using that IIAH = 1, (4.2) and (4.3), we 

arrive at (4.5): 

IIRB2 - B1I1 <- 1H2 -HII + 11A(M2-?M1 - 

(1 + 1 - 1 IIB2 - BI11 

THEOREM 4.1. For any Ba E J (1.6) has a unique solution B E J and 

(4.7) IIBiI < /i*IIBa - ROll. 

Proof. The assertion of the theorem follows from (4.4) and (4.5) by a standard 
argument (see, e.g., [27, Theorem 18.5]) from monotone operator theory. 

THEOREM 4.2. For any Ba E J the finite element approximations Bh exist and are 
unique. Moreover, 

(4.8) IlBhll < I*IIPJ (Ba - RhO)j < M*IIBa - RhOll, 

(4.9) IIB-BhllI< I*(||(PJ-PJh)(I-A)PJM + |I(PJ-PJh)MI l+ Ba-PjhBall)- 

Proof. Rewrite (3.6) and (3.7) in operator form as 

(4.10) RB-B-Pj(I-A)PjM = Ba M = B-hB-B-H, 

(4.11) RhBh Bh - Pjh(I -A)PJhMh = PJhBa, Mh Bh - hBh Bh -Hh, 
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where we used Theorem 2.1. Taking into account that IPJ(I - A)PJhll < 1, in the 
same way as we used in arriving at (4.4) we obtain 

(4.12) (Rh Bh - RhO, Bh) 1 I 1BhI2, 

and (4.8) follows using Schwarz's inequality. 
Subtracting (4.11) from (4.10), 

B - Bh - PJh(I - A)PJh(M - Mh) - Pj(I - A)PJM + PJh(I - A)PJhM 

Ba Pjh Ba, 

and taking the inner product with B - Bh, 

(4.13) JIB- Bh2 -(PJh(I-A)Pjh(M-Mh) B-Bh) 

= ((PJ-Pjh)(I - A)PJM - PJh(I - A)(Pjh - Pj)M 

+ hB ja, B-Bh) 

Using that iIPjh(I - A)PjhIl < 1, (4.2), that lIPJh(I - A)II < 1, Schwarz's inequality 
and the triangle inequality, we arrive at (4.9). 

In the next theorem we consider, for simplicity, the isotropic case. 

THEOREM 4.3. Let Ba e U and H = (1/[i)B (see (1.2)). Then for a and Oh defined, 
respectively, by (3.12) and (3.13) we have 

(4.14) 

JIIII-1/2,r, 
llahll-1/2,r 

< C 

?o 

+ A )1 
IlBall x 0 > 0. 

Suppose, in addition, that the magnetic material is "passive ", i.e., t,(B) satisfies for 
some a* with 0 < a* < ?T/2 constant, 

(4.1b) (H2-H1) .(M2-M1) > cosa*1H2-H11 1M2-M1I VB1, B2 E R 

and that magnetization is finite (which is always true in practice), i.e., ,i(B) satisfies 
for some m > 0, 

(4.1c) 1 1 ( 
< 

m)BeJ 

Then 

(4.15) I<- hII-1/2,F < 2C(Xo + cos a 

4 
lAOPU(PJ 

- 
PJh)MIJ 

x A/ PU(PJ-PP)M 2 _ ( + _A J J 

+ - PJh)MU_, 
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(4.16) ||- ahII-J/2,F 4 c( (iJ PJ )M| + ?(1 1- JIB - PJhBI) 

x I+ 2 

L W(Me I )+ m (II(Pj- Pjh)MIJ + 
(1-* )||B-PJhB|| 

+ M 
Proof. Using that by Theorem 2.1 Ker A = J, rewrite (3.6) and (3.7), respectively, 

as 

(4.17) (H + PUAPUM-Ba,U) = O VU e J, 

(4.18) (Hh + PUAPUPJMh - Ba,X) = 0 VX eJh. 

Choosing in (4.17) u = PjM and using Theorem 2.1, (4.2) and (4.3), 

(4.19) IlBall IIPuMl > (Ba, PuM) = (Ba, PJM) = (H, PJM) +(APuM, PUM) 

> (H, B) - IIPJHII oIIPuMII (H, M) ? XOIIPUMII2 

> * U I IIMII2 + XoIIPUMII2 > 1 ? +O)IIPUMII. 

Taking into acccount Lemma 2.1, we get from (4.19) the first part of (4.14). 

Choosing X = PJhMh in (4.18) we derive the second part in the same way: 

(4.20) IlBall IIPuPJhMhll> (Ba, PUPJhMh) = (Ba, PJhMh) 

= (Hh, PJhMh) + (APUPJhMh, PUPJhMh) 

(HhBh) -PJhHh| + XOIPUPJhMhI 

,- (Hh,MO + |XO|PUPJMh ( IIPUPJ Mh 

To derive (4.16), we choose u = PJh(M - Mh), X= u and subtract (4.18) from 

(4.17) to obtain 

(4.21) I, + I2- (H-Hh, PJh (M-Mh)) + (APUPJh (M-Mh ), PJh (M-Mh)) 

= (APU( PJh - PJ)M, PUPJh(M - Mh)). 

Proceeding as above and using (4.1b), (4.2), (4.3) and (4.1c), 

(4.22) I, = (H - Hh,B - Bh) -PJh(H - Hh)II2 +(H - Hh, PJhB - B) 

> (H-Hh, M -Mh) +(H-Hh, PjhB-B) 

> cosa*(IH - HhI, IM - MhI) -IIH - HhII JB - PJhB 

? cos a IIMMII2 _IMMI|BPhB 

Cos.a* 112 2m 

~ -1 ~PPJM - M) * - 1 JIB - 
P 

(4.23) '2 j oIuP( Mh) 
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Substituting (4.22) and (4.23) into (4.21) and using Theorem 2.1, 

(4 24 (A +cos 
a II *( - )II2 (4.24) ?o A*s ) lPUPJh(M 

- 
2h 

-A OIIPU(pJ -PJ )MII IIPUPJ(M-Mh)1 l- _ JIB-PJhBII < O. 

And (4.24) implies (since ax2 - bx - c < 0, a, b, c > 0 implies, completing the 
squares, x < (b + Vb2 + 4ac)/2a), 

(4.25) hPUPJ(M - Mh)|| 

j2oIIPU(P - Ph)M ?2 /8m hcos 
a PhBII 

2(A + cosa 

And (4.15) follows from (4.25), (3.12), (3.14), Lemma 2.1, and 

(4.26) |IPU(M - PJ Mh)|| < |IPUPJh(M - Mh)l? + ||PU(PJ -J)MJ 

We proceed now to prove (4.16). Setting Bh = PJhB, Mh = Bh - hBh and sub- 

tracting (4.11) from (4.10) projected onto Jh, 

o0= Bh-Bh - Pjh(I - A)PJM + PJh(I - A)PJhMh. 

Taking the inner product with Bh - Bh, 

JIBh - Bh - (Ph(I - A)Pjh (Mh _Mh), Bh - Bh) 

= (Pjh(I - A)(PJM -PJMh), Bh - Bh) 

Using the Schwarz inequality, and that PPJh(I - A) < 1, 

(4.27) I IBh - Bh - |Pjh (I - A)PJh(M - Mh)| < IPJM 
- PJMh 

Using (4.2), the notation u PJh(Mh - Mh), Theorem 2.1, the inequality 

A/a2+ b2 - Va22 +(1 _ AX)2b2 

[1 - (1 -AO)2] b2 Xob2 

Wa2 + b2 + /a2 + (1 - )2b2 2 a2 + b2 

with a = ItPJuII, b = IPuull, and (4.1c), 

I > 11 lull - 1- ( -A)UII A ,u I lull + jIIPUII2 + lPUUl12 

-IIPuII2(+ I( - A)PuuII2 I I - 1 lull ? 211u11 

Since IIPuull < Ilull and by (4.1c) Ilull < 2m, 

I < g U1 |PUUII +ul 1 ? PUUi12- 
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And therefore, completing the squares, 

(4.28) PuPJ(Mh_Mh) I ( ( I) + m I ,u _ ) o 

2I 
21 

We now estimate p(I) using that 4(x) is monotone increasing for x >? 0. From 
(4.27) 

Il<IP M -ph Mhll 1(PJ_pJh)M|| + ||pJh(M-Mh) || 
11 (p 

-PJM+ (1-P )M ?-hl ( ) 

It follows that 

(4.29) |pUph(Mh - Mh) | 

2( I (Pj -Pj)MV ?1-}IB-BhIl) 

~~~~m 
I 

Using the triangle inequality and (4.2), 

(4.30) IIPU(M - PMh) 

11(pJ -J )M + ?|PJh(M - Mh)|? + ||PUPh(Mh Mh)11 

I (PJ - PJh)MI + (1 - J)IIB Bh? + PuPp(Mh Mh) 

Substituting (4.29) into (4.30), using (3.12), (3.14) and Lemma 2.1, we arrive finally 
at (4.16). 

Remark 4.2. Using the estimate (4.9) one can easily obtain an estimate for a - a,h 
This estimate, including A* as a multiple, is appropriate when A* is not large but 
deteriorates when [t* - oo. The estimates (4.15) and (4.16) are more accurate. They 
tend to a finite limit when [t* -x co: (4.15) is quasi optimal in the limiting case 

* -o x (and therefore jj* -x oc) and (4.16) is quasi optimal when A* is finite. We 
have not been able to obtain an optimal estimate in the limiting case A* oo, and 

[* is finite. The difficulties with the estimation of H - Hh arise because Hh ? G, 
whileHe G, i.e., PjH 0. 

5. Solution by Successive Iteration. Consider the successive iteration method 

(5.1) Bn+i = (I-A)PJMn + Ba-K(Bn) + Ba, n l0,1,... 

of solution of (3.6), where Mn = Bn - hBn. Note that Theorem 5.1 below is also 
valid for B replaced by Bh, where the corresponding iteration method of solution of 
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(3.7) is given by 

(5.1') ((Bh)n+l?lU) = ((Bh)n-h(Bh)n-A((Bh)n-P jh(Bh)n) + Ba,U) 

VU EJh. 

THEOREM 5.1. Let h satisfy (4.1). Then the operator K in J defined by (5.1) is 
Lipschitz continuous with 

(5.2) IIK(B2) - K(B1) II < (1 - *)IB2 - B1II VB1,B2 E J 

Moreover, the successive iterations (5.1) converge to the solution B of (3.6) and 

(5.3) JIB -Bnll 1*1 J, IB, -Boll. 

Proof. Inequality (5.2) follows from (4.2) and the fact that by Theorem 2.1 
I- All = 1; (5.3) follows from (5.2). 

Recall that we are mostly interested in knowing the solution B outside of the 
magnetic material. We therefore would like to know the rate of convergence of 
PUM n From (4.2), (5.3) and the fact that llPll = 1 we have 

COROLLARY 5.1. For M = B - hB we have 

(5.4) ||PU(M - M)l J - )IIB - BnIl < *(1 - 
- IB1-Bol. 

We shall now study more closely the convergence of PuMn in the case of large A. 
It is convenient to introduce a function 

e(B) = 1 - A*1A. 

Then e(B)B = B - y *H, and by (4.1a) 

(5.5) 0 < E(B) < 1, ll(F(B)B)'IIR3 < E* 1 - 

where the notation 1 II R3 stands for the Euclidean matrix norm. 

THEOREM 5.2. Let M = (1 - (1 - e(B))/pI*)B and e(B) satisfy (5.5). Then under 
the assumptions of Theorem 5.1 we have 

(5.6) IIPU(Mn+l M)- l 

x [(1 - X0)n?1(1 - 1 + XoL* -1) ? ( 

where BO solves 

(5.7) BO + I1- )ABO = Ba. 
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Proof. We shall use the notation E = e(B), en= e(Bn). Using (5.5), that jIPulj = 1 

and that for u e J, u = Puu + PJu, 

(5.8) JPU(f+-M= - 1 n+1) B t(i - 1-)B 

< (1 -* Il)IIPu(Bn+l - B)jJ + IlPu(en+lBn+l -eB)II 

- (1 - * )IIPU(Bn+l - B)J| + 1JIBn+1 - BIJ 

< (I- , IPu(Bn+1 - B)JJ + lIIPJ(Bn+1 - B)!I. 

We proceed now to estimate the first term in (5.8). Denote, for convenience, 

an =IlPu(Bn -Bn-B)Ill bn =IIBn -Bn-lll. 

From (5.1), (5.5), using that by Theorem 2.1 IIPu(I - A)II = 1 - A , (5.2), 

a =Pu(I-A4(1 -A 1 
( 1 nl)1 

< (1-NO) I[(1 - an + - )fbn]] 

(1- X)(1 - n4)(1-A )[(1 - 
1 + - 1)f2] 

-(1 Xo)2(1- )2an1 + b(- * 1(1 - )b1[1 +(1-A )] 

-(1 - A)n( _1 - n + -*( nl (1 - X)[i -(1 -Ao 

< (1 - %)n( - ) + 1A? ( 1-, ) 

If m > n it follows that 

(1m 1O n-I 

IIPu(B~ - Bm)|| rnEa (1-A X)n( 1- -)f x a 1 

(1 _ 1 )nl _ Ao e 1 1 8bn 

A0 ~* i-(i-~+ bb. 
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Passing to the limit when m -x oc, we get 

(5 9) IIPu(Bnf+l - B)II < (1i- ) [(I - Xo)n1(l- 

x +AO(*-l)a1+ A0 0y *bij. 

Substituting (5.9) and (5.8) and using Theorem 5.1 and (5.5), 

(5.10) IIPU(Mn+l- M)II 

XIP(B -1 ) 0I~ [ A ( -l )M A(*/1 1] 

o)l A0 y* eIIB1-BoII + e*(l- 1 ) 

XII|B1 -BOll 

4 (1 - 1 .){I(I -_A )n+1(1 - 1) 

|| P[BK*O+APJ(1Mz* )BO-BaI 

+-- 1 I( - A 

11 B [(O 
I ) O APJ(1 IU )BO-Ba] }n 

X(IIPJ[?1BO+(1?y)ABO-BajI+/1 PJ(CBO /APCB ))1} 

Now (5.6) follows from (5.10), (5.7) and the estimate 

|IPJ(eBo + (e + H )IIBjI - (i u*'~ )(i + * 
~-)IIB0Io 

Remark 5.1. Comparing the estimates (5.4) and (5.6) we observe that for small yt 

they are comparable. However for large yt (which is often the case in practice) (5.6) is 
much better due to appropriate choice (5.7) of B0 and the greater use of properties 
of A. 
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