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Abstract. Based on the theory of differential equations on manifolds, existence and uniqueness 
results are proved for a class of mixed systems of differential and algebraic equations as they 
occur in various applications. Both the autonomous and nonautonomous case are considered. 
Moreover, a class of algebraically incomplete systems is introduced for which existence and 
uniqueness results only hold on certain lower-dimensional manifolds. This class includes 
systems for which the application of ODE-solvers is known to lead to difficulties. Finally, 
some solution approach based on continuation techniques is outlined. 

1. Introduction. Various applications involve mixed systems of differential and 
algebraic equations (DAE's). For instance, Gear's basic article [4] was stimulated by 
problems from network analysis and continuous system simulation. A different 
example occurs in the mathematical modeling of electrophoretic separation processes 
(see, e.g., [2]), and further DAE's are found in connection with certain problems in 
nonlinear mechanics. 

In many cases, DAE's can be solved efficiently by means of standard numerical 
methods for ordinary differential equations (ODE's). This approach appears to have 
been introduced by Gear [4], and since then it has been used by several authors (see, 
e.g., [7], [8], [11] where further references may be found). But DAE's also have 
properties which may cause such ODE-solvers to run into difficulties or failures. In 
[5] and [7], some interesting results are presented about the causes of such difficulties 
in the case of a class of linear DAE's. The techniques used in these studies are 
algebraic in nature and do not provide complete information about the existence and 
uniqueness of solutions. This is the topic of our discussion here. 

Our approach here is to consider DAE's as differential equations on a manifold. 
This allows for the development of an existence and uniqueness theory which in turn 
provides new insight into the properties of such DAE's and about some of the causes 
of the mentioned difficulties. 

More specifically, after a summary of relevant theoretical results about differential 
equations on manifolds in Section 2, we present in Section 3 existence and unique- 
ness results for DAE's of the general form 

(1.1) F(y, t) = 0, A(y, t) dY = G(y, t), dt 
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where F and G are nonlinear mappings and A a matrix operator. Both the 
autonomous and the nonautonomous case are considered. Then in Section 4 some 
extensions of the basic results are discussed and, in particular, it is shown that 
certain DAE's are algebraically incomplete and possess existence and uniqueness 
properties only on specific lower-dimensional manifolds. Algebraic incompleteness 
appears to be a central cause of the mentioned difficulties when ODE solvers are 
applied, and indeed all the systems considered in [5], [7], for which such difficulties 
are known to arise, turn out to be algebraically incomplete. Finally, Section 5 gives a 
brief outlook on the numerical solution of DAE's of the form (1.1) by continuation 
techniques. 

2. Background. For ease of reference we collect in this section some basic results 
about vector fields and dynamical systems on manifolds (see, e.g., [1], [6]). For our 
purposes it suffices to consider only manifolds modelled on Rn. Thus, let X be a 
finite-dimensional Hausdorff manifold of class Cr, r >? 2. The tangent space of A at 
x E A is denoted by Tx(A) and T(A) is the tangent bundle. Recall that T(A') is 
of class Cr-1. 

A vector field on A' of class CP, 1 < p < r, is a CP-mapping v: A' -* T(A') such 
that v(x) E Tx(A') for each x E A'. For any x0 E A' an integral curve of the vector 
field through x0 is a mapping q: J -X A' of class CP on some open interval J of R1 
containing 0 such that 

(2.1) tE'(t) = v('q(t)) Vt E J,q(0) = x0. 
Such integral curves exist locally on A: 

THEOREM 1. Under the stated conditilns about A' and v, there exists for any xo E A' 
an integral curve of class CP through xo. Moreover, if 'q1: J1 -X ', Iq2: J2 -* A'are two 
such integral curves of the vector field with the same initial condition xo, then 

(t) = 'q2(t) for all t E J, n J2. 

More generally, a local flow of the vector field at x0 E A is a mapping 
(2.2) 'q: JxU -* 

with the three properties: 
(a) q is of class CP, 1 < p < r, on the product J x U of an open interval J C 

containing 0 and an open neighborhood U of x0, 
(b) for each x E U the mapping x: J -X A', %q(t) = 'q(t, x) V t E J, is an integral 

curve of v through x, and 
(c) for each t E J the mapping 'qt: U-* A', 'tq(x) = (t, x) Vx E U, is a 

diffeomorphism from U onto the open set 'q(U) c A'. 
It is then readily seen that 

(2.3) =s+t=sOt = mt Os if s, t,s + t E J, 

and that o is the identity map. Moreover, such local flows exist. 

THEOREM 2. Under the stated conditions about A' and v, there exists for any xo E A' 

a local flow of class CP at xo. Moreover, any two such local flows are equal on the 
intersection of their domains of definition. 

Theorem 1 implies that the union of the domains of all integral curves of v 
through a given point x E A' is an open interval J_ = (t,, t+) where t, = - co and 
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xt+ = + x are not excluded. Let 

(2.4) x(v) (t, x) E R' x M; t- < t < t 

then the following global result holds. 

THEOREM 3. Under the stated conditions about i and v, the set .9(v) is open in 
R1 x A and contains {O} X M. Moreover, there exists a unique CP-mapping 'q*: 
?i(v) -X M such that for any x El the mapping r*: Jx -X-4, 'q*(t) = q*(t, x) is an 
integral curve of v through x*. 

The mapping q* is called an integral of v and the curve q* a maximal integral 
curve of v through x. 

THEOREM 4. Under the stated conditions for M and v, let x E M be a point for which 
t+ < oo. Then for any compact set C c M there exists e > O such that q*(t, x) e C 

for t > t-e 

A corresponding result holds when t; > - so. 

3. Some Existence Results for DAE's. In connection with our consideration of 
differential-algebraic systems all manifolds turn out to be the solution sets of a 
finite-dimensional nonlinear equation. More specifically, we use the following basic 
result (see, e.g., [3]). 

THEOREM 5. Let F: S C Rn -) Rm, 1 < m < n, be a Cr-mapping, r > 1, on an open 
set S C Rn. Then the regularity set 

(3.1) M (F, S) = {x E S, rgeDF(x) = Rm} 

is open in Rn, andfor 0 E F(R'(F, S)) the regular solution set 

(3.2) M = x(F, S) = {x E ?R(F, S), F(x) = O} 

is a nonempty (sub)manifold of RK of class Cr and dimension n - m. 

As a first application consider the autonomous DAE 

(3.3) F(y) = 0, A(y) dy = G(y) 
dt 

where 

(3.4) F: S -* Rm, A: S -* L(Rn, Rn-m), G: S -Rnm 

are given Cr-maps, r > 2, on some open set S c R . 
If y: J c R- Rn denotes a continuously differentiable solution curve of (3.3) on 

some open interval J, then for any t E J the tangent vector q(t) = dy(t)/dt must 
satisfy 

Evidntl teN(y(t))q(t) = G t ' N(y) 
DFy 

( (Y( ))q( ) (~=G(y(t))) A(y)) 

Evidently the set 

(3.6) So = { YE S; N(y) is nonsingular} 

is an open subset of R . We assume that MO = #(F, S) n SO is nonempty. As an 
open subset of A, the set MO constitutes a submanifold of A with the same 
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dimension as./' whence T7, (Ao) = Ty,( A') for ally c X'0. Therefore, the mapping 

(3.7) v:A'0 -- T(A'0), v(y) = N(y) (G( )) vy Ce=0, 

defines a vector field on X'0. Because the mappings (3.4) are of class Cr on S, 
y -* N(y)-1 and therefore also y -> v(y) are of class Cr` on Ms. Evidently, the 
integral curves of v on At0 are exactly the solutions of (3.3) in S0. 

Now the results of Section 2 are directly applicable to v on A'0. For ease of 
reference, we summarize this in the following form: 

THEOREM 6. Let the maps (3.4) be of class Cr, r a, 2, on the open set S C Rn and 
assume that the submanifold A'0 is nonempty. Then, for any yo E A'0, there exists on 
A'0 a unique, maximally extended Cr-1-solution of (3.3) through yo which has no 
endpoint in M0. Moreover, the dependence of the solutions of (3.3) upon their initial 

pointsyo E A'0 is of class Cr-1. 

The existence and uniqueness of local solutions derives from Theorem 1, their 
extendability to a maximal solution from Theorem 3, while the fact that no such 
solution can end in M0 follows from Theorem 4. Finally, the Cr-1-dependence of 
the solutions on the initial conditions is a direct consequence of Theorem 2. 

As a simple example we consider the system 

F(y) 0.8y, + 1.6y3 - 0.6y1Y3 = 0, 

(3.8) Y1 = g1(y) -0.8y1 + 10y2 - 0.6y1)y3, 

Y = g2(y) Y- 1?y2 + 1.6y3. 

It represents a limiting case for - 0 of a system of ODE's considered in [11] and 
arising in connection with the Belousov-Zhabotinskii reaction. Here the determinant 
of the matrix N(y) in (3.5) has the value 1.6 - 0.6y1 and, clearly, the plane in R3 
defined by 1.6 - 0.6y1 = 0 does not intersect the manifold A'(F, R3). In other 
words, we have A'0 = A and the direction field v has the components 

V1(y) = 8 
- 

3Y3F(y) v2(y) = g1(y), V3(y) = g2(y) Vy E R 3,y1 Y Z# 

In particular, for any starting point xo E X', Theorem 6 ensures the existence of a 
unique maximal Coo-solution of (3.8) through that point. 

We turn now to a nonautonomous system 

(3.9) F(y, t) = 0, A(y, t) dy = G(y, t), 

where the mappings (3.4) are of class Cr, r > 1, on the open set S C Rn x R1. A 
well-known technique for reducing (3.9) to the form (3.3) is the addition of the 
differential equation 

(3.10) t' = 1. 

Then the (n + 1) x (n + 1) matrix N(y, t) of (3.5) equals 

D,,F(y, t) DtF(y, t) 

(3.11) A (y, t) 0 

0 1 
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and hence the definition of S0 is equivalent with 

(3.12) S0 = (y, t) E Rn X R1; L(y, t) A( Y t)) is nonsingular}. 

The vector field on X0 = A'(F, S) n So now becomes 

(3.13) v:AM0 -* T(Ao), v(y, t) = L(y, t) G( tF(y,t) ) (y, 

and Theorem 6 applies on this submanifold M 0 of X. 
Another approach to the treatment of (3.9) is to consider R n as the affine part of 

the projective n-space (see, e.g., [1]). Instead of developing this formally, we observe 
simply that if y = y(s), t = t(s), s E J c R1, denotes a solution of (3.9) which is 
parametrized in terms of some real parameter s, then the tangent vector of this 
solution curve must satisfy 

XS) DYF~~~(y, t) Dty,t 
(3.14) K(y(s), t(s)) ( ( 4)) = 0, K(y, t) - D,F(y ;t) - tF)J, 

where dots represent derivatives with respect to s. If K(y, t) has full rank then the 
one-dimensional null-space kerK(y, t) specifies a point in projective n-space. In 
order to define a vector field on some submanifold of M(F, S) we need to select a 
point on this one-dimensional space. One such selection was accomplished with 
(3.10). Another approach is to choose a specific direction and normalization of the 
null-vector of K(y, t). 

For this let 

(3.15) S1= {(y, t) ERn x Rl; rank K(y, t) = n} 

and assume thatA1 = 1(F, S) n S1 is nonempty. Once again, since S1 is open, X'1 
is a submanifold of the same dimension as X and at each point of M1 the 
tangent-manifolds are the same. Evidently, the specification 

(3.16) K(y, t)v(y, t) = 0, 11v(y, t)j12 = 1, det K(y, t) > 0 
v (y, t)T) 

defines a mapping (y, t) E S1 -- v(y, t) E Rn+l which is of class Cr`1 on SI, (see, 
e.g., [9]). Clearly, for (y, t) E- A1 we have v(y, t) E T(,t)(A) TI,,t)(A'l) and 
thus v: A'1 -4 T(M 1) represents a Cr-1-vector field on A1. Moreover, the integral 
curves of v on Ml are exactly the solutions of the homogenized system 

(3.17) F(y, t) = 0, A(y, t)y - G(y, t)i = 0, 2IYII2 = 1 
in the set S1. Hence, the solutions are here parametrized curves with the arclength as 
parameter. Other parametrizations may be considered as well (see, e.g., [9], [10]). 

Thus, once again, we may apply the theorems of Section 2, and, in analogy with 
Theorem 6, this gives the following result: 

THEOREM 7. Let the maps (3.4) be of class cr, r > 2, on the open set S c R n x R' 
and assume that the submanifold M1 is nonempty. Then for any (yo, to) E A1 there 
exists a unique, maximally extended Cr-1-solution of (3.17) on A1 through the point 
(yo, to). This solution curve has no endpoint in A'1. Moreover, the dependence of the 
solutions of (3.17) on their initialpoints (yo, to) E A1 is of class Cr- 1. 
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Clearly, S1 contains the set SO of (3.12) and hence we have MO c X1. The points 
in X, not in MO are limit points of solutions of (3.17) with respect to the parameter 
t. 

4. Extensions. The results of the previous section may be extended and generalized 
in various ways. For instance, we may consider a system of the general form 

(4.1) F(y, t) = 0, G(y', y, t) = O 

where-under appropriate differentiability assumptions-the derivative of G with 
respect to y' has full rank. Then the implicit function theorem allows a local 
reduction of (4.1) to the form (3.9) with the identity matrix in place of A. Hence, 
from Theorem 3 we may conclude the validity of a local existence result for (4.1). We 
shall not dwell on the straightforward formulation of such a result. 

The system (3.3) was "square," that is, the total number of algebraic and 
differential equations equalled the number of unknown variables. Suppose that we 
have a system of the same form 

(4.2) F(y) = 0, A(y) dy = G(y) dt 
where, instead of (3.4), the mappings satisfy 

(4.3) F: S -*Rrn, A: S *L(Rn, Rm2), G: S - R 2 

1 1 ml < n, n > m2 > L, ml + M2 > n, 

and again are of class Cr, r > 2, on some open set S c Rn. As before, the tangent 
vector q = q(t) at any point of a solution curve of (4.2) must solve the system (3.5). 
But now this system may be overdetermined and hence has a solution only if its 
right side belongs to the range of N(y). 

In generalization of Theorem 6 we then obtain the following result: 

THEOREM 8. Under the stated conditions (4.3) about the maps let 

(4.4) So ( yES; rank N(y) = n ( G(y)) ErgeN(y)} 

and suppose that there exists a nonempty set MO C Af(F, S) n SO which is open in }. 
Then, for any yo E MO, there exists on MO a unique, maximally extended Cr`l-solu- 
tion of (4.2) through yo which has no endpoint in Mo. Moreover, the dependence of the 
solutions of (4.2) upon their initialpoints yo E Mo is of class Cr". 

Evidently, by (4.3), SO and X = 1(F, S) have dimensions 2n - ml - M2 > 0 
and n - ml > 0, respectively, and it follows that 2n - ml - m2 > n - ml which is 
necessary for A0 to be open in A. The open set M0 constitutes a submanifold of A 
with the same dimension and hence, for each y E %0, the vector v(y) E(A T ') = 

TY(AO) specified by 

(4.5) N(y)v(y) = (G(y))' Y EAo, 

is well-defined and introduces a vector field v: A0 -- T(AO) on A0. It follows 
readily that v is of class Cr' on A0. Clearly, the integral curves of v on A0 are 
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exactly the solutions of (4.2) in that set, and hence we can apply the existence theory 
of Section 2. 

This result also extends to the nonautonomous case (3.9) when the mappings (4.3) 
are of class Cr, r >? 2, on the open set S c RA x R1. As before, we either reduce the 
problem to the autonomous case by adding the equation (3.10) or we homogenize 
the equations and consider the corresponding system (3.17). 

In some applications the set S0 of (4.4) turns out to be empty. For instance, this is 
the case for the problem 

(a) y2+y =1 

(b) y =y3 

(4.6) (c) Y2 =Y4 

(d) y3= -YlY5 

(e) y4= - y2y5 + 1 

considered in [5]. It describes a simple pendulum where Yi, Y2 are the distances from 
the pivot and y5 is the string tension. Here, the fifth column of N(y) is zero, and the 
right side of (4.5) is in the range of N(y) exactly if 

(4.7) YlY3 +Y2Y4O= 

As we saw, this is a necessary condition for the solvability of (4.6). Its validity, for 
any solution of (4.6), can also be deduced directly from the equations. Thus, instead 
of the four-dimensional manifold in R5 defined by (4.6a), we have to use the 
three-dimensional submanifold specified by (4.6a) and (4.7). Since this reduces also 
the tangent-manifolds, it means simply that we have to add the equation (4.7) to the 
system (4.6) and form the corresponding new matrix N(y). Once again, the fifth 
column of N(y) is zero, and the right side is in the range of N(y) exactly if 

(4.8) Y3 +Y4 +Y2 -Y50=? 

This relation is not as self-evident as (4.7), but it can also be deduced for all 
solutions of (4.6) by differentiation of (4.7) and application of (4.6b-e). As before, 
(4.8) has to be added to the system, and hence our final two-dimensional manifold AX 
in R5 is now defined by the three equations (4.6a), (4.7), and (4.8). Thus the 
expanded system has the form (4.2) with n = 5, ml = 3, m2 = 4. A simple calcula- 
tion shows that the corresponding matrix N(y) has rank 5 and that on all of A' the 
right side is in the range of N(y). Thus on %0 = AX, Theorem 8 applies to the 
augmented system and therefore also to the original system (4.6). Note that for the 
computation this result requires the initial point to satisfy all three equations (4.6a), 
(4.7), (4.8) and not only (4.6a). 

This example illustrates the general procedure. For a system (4.2)-(4.3) the 
condition 

(4.9) rank N(y) = rank 
F 

A(y) -G(Y)) 

specifies an algebraic relation in y which is a necessary condition for solvability. If 
(4.9) holds with rank N(y) = n on a nonempty, open subset of our manifold then 
Theorem 8 can be applied. Otherwise, the relation implied by (4.9) is added to the 
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DAE, provided it does not reduce the differentiability-class below C2. Since each 
augmentation represents a restriction to a lower-dimensional manifold, the proce- 
dure will stop at the latest after finitely many steps with a zero-dimensional 
manifold. In that case the system is unsolvable. It may also stop earlier, if, for 
instance, (4.9) applies on the entire manifold of the current system but with 
rank N(y) < n. Then there are multiple solutions. We call a differential-algebraic 
equation algebraically incomplete if Theorem 8 only applies after some augmenta- 
tion of the algebraic equations; that is, if we can establish existence and uniqueness 
of solutions only on a lower-dimensional submanifold of the manifold defined by 
the original algebraic part of the system. 

As discussed in [5], (4.6) is an example of a problem with so-called (global) index 
3. Moreover, as noted there, other problems described by Euler-Lagrange equations 
with holonomic constraints have a corresponding property. All such problems with 
index larger than one are algebraically incomplete. 

We illustrate this only for the simplest index 3 system 

(4.10) Yi = g(t), y =Y2I Y2 Y3, 

where g: R1 - RK is assumed to be of class C4 on R1. In order to bring (4.10) into 
autonomous form, the equation 

(4.11) t= 1 

is added. The condition (4.9) is equivalent with 

(4.12) Y2 = g'(t). 

After (4.12) is added to (4.10) the condition (4.9) for the augmented system turns out 
to require that 

(4.13) Y3 = g"(t). 

In other words, our final manifold 

(4.14) X= {(y, t) E R3 x RI;y1 = g(t),y2 = g'(t),y3 = g"(t)} 

is one-dimensional and, of course, represents by itself the unique solution of (4.10). 
The situation is analogous for the generic index n problems 

(4.15) Yi = g(t), y/ =Yi+1, i = 1,...,n - 1, 

for which n - 1 augmentations are needed and the final manifold again has 
dimension one. It should be mentioned also that the augmentation process, that is, 
the completion of an algebraically incomplete DAE, is conceptually related to the 
reduction-process discussed in [5]. 

Finally, we note that for the homogenized form (3.17) of (4.10) the set S1 of (3.15) 
is defined by 

(4.16) S1 = {(y, t) E R3>X Rl,y2 0 g'(t)}. 

Thus, Theorem 7 applies on 

(4.17) {= {(y, t) E R3X RI;y1 = g(t),y2 0 g'(t)} 
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and the unique solution through any (y?, to) E I is (yf, y2,' ((s), to)T s E R' 
with any Cl-function 4 on R1. This situation arises for any system (3.9) if at a given 
point (y?, to) the matrix L(y?, to) is singular but K(y?, to) has full rank. Then 
(3.17) possesses a unique solution through (y?, to) for which, necessarily, i(y?, to) = 

0. Hence, except possibly in a limiting sense, there is no solution of (3.9) through 
that point. 

5. Outlook. The theoretical results for DAE's developed in the previous sections 
suggest a new numerical approach for their solution. In fact, the definitions (3.7) and 
especially (3.16) of the vector fields on our manifolds correspond almost directly to 
the definition of the vector fields underlying the general continuation processes 
considered, for example, in [9], and [10]. Accordingly, in place of the application of 
ODE-solvers we are led to a study of the possible uses of appropriate modifications 
of these continuation processes for the solution of DAE's. 

In principle, a step of such a process would involve at least the following tasks: 
(1) Compute the field-vector v(y) at the current point y of the solution. 
(2) If the system is in the homogenized form (3.17), determine a new local 

parametrization of the solution near this point. 
(3) Determine a steplength and use it to compute a predicted point-usually not 

on the manifold-which approximates a desired point further along the solution. 
(4) Start a correction iteration from the predicted point to obtain a new approxi- 

mate point of the solution curve. 
A simple approach is to choose the predicted point on the tangent-line y + sv (y), 

and to use as corrector iteration the chord-Newton method applied to the system 
resulting from (3.17) when the derivative terms are replaced by appropriate BDF- 
formulas. A code using this approach has been developed as a modification of the 
continuation code PITCON, [10]. A description of this new DAE-solver, together 
with numerical results, will be given elsewhere. Preliminary results with the program 
have been excellent, especially, for problems where other DAE solvers, such as 
DASSL, [8], are running into difficulties. But further studies about the new con- 
tinuation approach to the solution of DAE's are still needed. In particular, effective 
steplength algorithms have to be investigated which combine the requirement of a 
continuation process, to allow the corrector to return to the manifold, with that of 
an ODE solver, to control the discretization error of the differential equations. 
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