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On the Asymptotic Behavior of Scaled 
Singular Value and QR Decompositions 

By G. W. Stewart* 

Abstract. Asymptotic expressions are derived for the singular value decompositon of a matrix 
some of whose columns approach zero. Expressions are also derived for the QR factorization 
of a matrix some of whose rows approach zero. The expressions give insight into the method 
of weights for approximating the solutions of constrained least squares problems. 

1. Introduction. It is well known that certain widely used matrix decompositions 
change in nontrivial ways when their rows or columns are multiplied by constants. 
For example, let the n x p matrix X be partitioned in the form 
(1.1) X = (XI X2), 

and for 1 >? t > 0 define** 
(1.2) Xt = (X1 tX2). 
Let 

(1.3) t= US1V 

be the singular value decomposition of Xt (see [4] for definitions). The columns of Ut 
and VK (the singular vectors of Xt) and the diagonal elements of St (the singular 
values) are nonlinear functions of t, and there is no simple way of obtaining, say, St 
from S,. 

One purpose of this paper is to derive expansions for the singular value decom- 
position of Xt as t approaches zero. An application of these expansions is the 
following. When t is small, the ratio of the largest to the smallest singular values of 
Xt will be large, and from this one might conclude that problems associated with Xt 
are ill-conditioned. In order to determine whether this apparent ill-conditioning is 
real, it is necessary to have precise information about the singular value decomposi- 
tion of Xt (see [3] for an example). 

A related problem concerns the QR factorization of a matrix. Partition X in the 
form 

(1.4) X= FxXI x12 1 
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where X1I is square, and write 

(1.5) X [X Ii X12] 

[note the different definitions of Xt in (1.2) and (1.5)]. Matrices such as (1.5) with 
small t arise in the numerical solution of constrained least squares problems [1, 
Chapter 22]. The approach is to down-weight the problem [represented by (X21 X22)] 
compared to the constraints [represented by (XI, X12)]. The best method for solving 
constrained problems in this way uses the QR factorization Xt = QtRt, in which Qt 
has orthonormal columns and Rt is upper triangular. In Section 3 we will derive 
asymptotic expressions for Qt and Rt. 

2. The Singular Value Decomposition. We begin by observing that null vectors of 
X behave in a simple manner under scaling. If Xv = 0 and 

is partitioned conformally with (1.1), then 

vt= ] 

is a null vector of Xt. Thus null vectors behave linearly under transformations of the 
form (1.2), and there is no need to treat them here. We shall therefore assume that X 
has no null vectors. 

The main result is summarized in the following theorem. 

THEOREM 2.1. Let the n x p matrix X have rank p, and let X be partitioned as in 
(1.1). Let Xt be defined by (1.2). Let 

(2.1) B = (XTX) X[TX2, 

and 

(2.2) X2= X2- X1B. 

To each singular value s, of X1 there is associated a unique singular value s(t) of Xt 
which satisfies 

(2.3) 5(t) = S + O(t2). 

If s1 is simple and its right singular vector is denoted by v1, then the corresponding right 
singular vector of Xt satisfies 

(2.4) VMt 
=[v1 + 0(t2)] 

[tBTv, + O(t3)] 

Moreover, if the left singular vector of s, is denoted by u1, then the corresponding left 
singular vector of Xt satisfies 

(2.5) uM = u1 + O(t2). 

To each singular value 5-2 of X2 there is associated a unique singular value 52t) of Xt 

which satisfies 

(2.6) S2t) = a + o(t3). 
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If 52 is simple and its right singular vector is denoted by V2, then the corresponding right 
singular vector of Xt satisfies 

(2.7) v(t) = [ tBu2 + O(t ) 

Moreover, if the left singular vector of 52 is denoted by U2, then the corresponding left 
singular vector of Xt satisfies 

(2.8) U2t) = U2 + 0 (t2). 

Proof. We shall use the fact that the right singular vectors of Xt are the 
eigenvectors of 

[A1 tAT 
A XTX t 

tA21 t2A22] 

and the singular values are the nonnegative square roots of the corresponding 
eigenvalues. The matrix Ao has two invariant subspaces corresponding to its parti- 
tioning. Specifically the columns of 

[o] 
span an invariant subspace whose eigenvalues are those of A1,, while the columns of 

[0] 

span an invariant subspace whose eigenvalues are zero. The idea of the proof is to 
use the perturbation theory in [2] to derive expressions for the corresponding 
invariant subspaces of At. Expressions for the individual singular values and singular 
vectors may then be obtained from the expressions for the invariant subspaces. 

Since X has full column rank, A1H is nonsingular. It follows [2] that for all 
sufficiently small t there is a matrix P satisfying 

(2.9) (-P I)A[j] = O 

and 
P= O(t) 

such that 

P 
spans an invariant subspace of At. If (2.9) is expanded and terms of order greater 
than t are dropped, the result is 

(2.10) P = tA21A-1 + 0(t3) = tBT + 0(t3). 

The eigenvectors of At in the invariant subspace have the form 

(2.11) I v, 

where v is an eigenvector of 

(2.12) (I?PTP)/2(IPT)A[I ](I + PTP)/= Al + 0(t). 
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If v1 is a singular vector of X1 with singular value s,, then it is an eigenvector of All 
with eigenvalue s'. The order t2 perturbation in (2.12) perturbs sl by terms of order 
t2, from which (2.3) follows. If s1 is simple, the order t2 perturbation in (2.12) 
induces an order t2 perturbation in v,. Thus we may take v = v1 + O(t2) in (2.11), 
and (2.4) follows from (2.10). Finally (2.5) follows from the relation u(t) = 

s (t) -Ixt V(t) 

In order to establish (2.6), (2.7), and (2.8), note that the orthogonal complement of 
the space spanned by the columns of (I PT)T iS the complementary invariant 
subspace of At. This subspace is spanned by 

[_pT] = [-tB + O(t3)] 

As above, the eigenvectors and eigenvalues of the invariant subspace are to be found 
from the matrix 

(I + PPT)-1/2 (-P I)A[ -PT(I + ppT)-1/2 

(2.13) = t2 (-BTA11B - BTA 1 -A12B + A22) + O(t4) 

= t2(X2 -XB)T(X2 - X1B) + o(t4) 

= t2Y2 Y2 + o(t4). 

The results now follow from (2.13) by reasoning as above. 
Theorem 2.1 divides the singular values of Xt into two classes. The first consists of 

the singular values of X1 perturbed by terms of O(t2). The initial components of the 
corresponding right singular vector approach the right singular vector v, of X1, while 
the last components approach zero linearly with t along the direction BTv1. The left 
singular vector is the left singular vector of X1 up to terms of order t2. 

Singular values of the second class approach zero linearly with t. However, they 
are to be sought in the matrix tX2, not tX2. From (2.1) and (2.2), it follows that 

X2 = I - X1 XITXI ) XIT X2 

From this it is seen that X2 is the projection of X2 onto the orthogonal complement 
of the column space of X1. Singular vectors of the second class behave like those of 
the first class, except that it is the first components of the right singular vectors that 
approach zero. 

A particularly satisfying feature of these expansions is that the error in any 
expression is O(t2) times the order of the expression itself. This suggests that one 
can expect the asymptotic behavior to set in very quickly. 

3. The QR Decomposition. In this section we shall derive expressions for the 
asymptotic form of the QR decomposition of the matrix Xt defined by (1.5). The 
results are summarized in the following theorem. 

THEOREM 3.1. Let X be of full column rank and be partitioned as in (1.4), where XI, 
is square. Let 
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be the Cholesky factorization of XIT, XI,. Let 

[ x, X12 1 [Qt) Q)(t1 [R(t) R 1 
tX21 tX22 J Q ][0 R(t)] t tx2l tX22 a L Q(t) Q (t) - 1 R2 22 22 

be the QR factorization of X. Let 

(3.1) X22= X22-X21Xfi'X12X 

and let 

X22 = Q22 R22 

be the QR factorization of X22. Then 

[ R(') R(t) R1 + 0(t2) R1JX12 + 0(t2) 

L 22 tL22+0(t3) ] 

Moreover, 

[Q(f) [ X11R- l + 0(t2) 

( Q(t[)] - tX21Rj-] + o(t3)] 

and 

[Q(t) [ 
TtX2 -TX 2 + 0(t3)] 

(34) [2w] = [(t I + O(t2) 
Proof. We use the fact that the R-factor of the QR factorization of a matrix X is 

the Cholesky factor of XTX. In particular, 

(3.5) Ri2TR~2 - [ 11 1[x11 1 T (3.5) RT RMl +[tX ] [tX2] = x 0(t2). 

Since the Cholesky decomposition of a nonsingular matrix is a differentiable 
function of its elements, it follows from (3.5) that R(t) = R11 + 0(t2). Since R(t) = 

R1t1-X we have R(t) = RjqX12 + 0(t2). This takes care of the first row of (3.2). 
We will return to the expression for R(t) later. The expression (3.3) is derived from 
the relation 

Q(t)] [tX2Y1] 

In order to derive (3.4) and an expression for R(t), we use the fact that 
[ Q(t)1 12 Rt 
Q(i) 22 

is the projection of (X tX222)T onto the orthogonal complement of the space 
spanned by (XI tX21)Th The projection matrix has the form I - P, where 

[ tX21] (x ?l t2X21 X21)( Xi tx21j) 

= [IJ](I+ t2CTC)l(I tCT), 
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where we have written C = X21 X1j1. After some manipulation it follows that 

[_t2C TX2 2 + O(t4)] 

(3.6) (I - P) ] = tX22 ? O(t3) ] 
Thus R(t)TR(t) = t2Y212i22 + 0(t4), from which it follows that R(') = tR22 + 0(t3). 
Equation (3.4) follows from (3.6) and the fact that 

[Qf'2)] = (I - P) [ Rt]R)- 1 

[Qt)J tX22 22 

Theorem 3.1 has some analogies with Theorem 2.1. In both theorems the decom- 
position is divided into two parts, one having a nonzero limit, and the other having a 
zero limit. In both theorems the first part is obtained from the constant part of the 
original matrix [e.g., (X1I X12)], while the vanishing part is obtained from a modifica- 
tion of the vanishing part of the original decomposition (e.g., from X22). In Theorem 
2.1 the row space of X is divided into two orthogonal subspaces which become 
uncoupled in the natural coordinate system of the partition [see (2.4) and (2.7)]. In 
Theorem 3.1 the same thing happens to the column space of X. 

The matrix X22 defined by (3.1) is a generalization of the Schur complement of X,, 
in X. For square matrices, the Schur complement is what is left over after Gaussian 
elimination has been performed on X,,. Its appearance here can be related to the 
solution by elimination of the constrained least squares problem 

(3.7) minimize y -(X21 X22) b2 

(3.8) subject to(X1I X12)[b] c. 

If (3.8) is solved for b1 and the result is substituted into (3.7), the result is the 
problem 

(3.9) minimize Y|- X21X111C) - X22b21. 
b2 

On the other hand, the solution may be approximated as in [1] by solving 

(3.10) minimize [t- X,b, 

for small t. From (3.2) and (3.4) the solution is seen to be 

(3 .11) _ b20 = R-2Q~2T2(y - X21XfjIc) + 0(t2). 

Since RT-IQ2T is the pseudo-inverse of X22, a comparison of (3.9) and (3.10) shows 
that b(t) differs from b2 by terms of 0(t2). Thus the solution by weighting is seen as 
an approximation to the solution by elimination. 

This relation throws light on an interesting piece of folklore: namely, that pivoting 
on column size must be used when solving weighted least squares problems of the 
form (3.10). The dicta is usually justified by an appeal to the numerical properties of 
the particular algorithm used to compute the QR decomposition. An alternative line 
of reasoning goes as follows. The method of elimination will not work if X,1 is 
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singular, and it can be expected to produce inaccurate results when Xll is nearly 
singular. Since the method of weights mimics the method of elimination, the 
columns X, should be interchanged to make XI, well-conditioned. Pivoting on 
column size during the computations of the QR decomposition is an adapative 
algorithm for doing just this. 
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