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Decay Rates for Inverses of Band Matrices 

By Stephen Demko*, William F. Moss and Philip W. Smith** 

Abstract. Spectral theory and classical approximation theory are used to give a new proof of 
the exponential decay of the entries of the inverse of band matrices. The rate of decay of A - 1 
can be bounded in terms of the (essential) spectrum of AA* for general A and in terms of the 
(essential) spectrum of A for positive definite A. In the positive definite case the bound can be 
attained. These results are used to establish the exponential decay for a class of generalized 
eigenvalue problems and to establish exponential decay for certain sparse but nonbanded 
matrices. We also establish decay rates for certain generalized inverses. 

1. Introduction. The exponential decay of the entries of inverse of band matrices 
has been of some use in establishing local rates of convergence of spline approxima- 
tions [12], [11], [6] and in bounding the LO-norm of the orthogonal projection onto 
spline spaces [4] and [15]. Kershaw proved a result of this nature for tridiagonal 
matrices and Descloux's paper [7] contains such a result for Grammian matrices 
arising in finite element approximations although exponential decay is not explicitly 
mentioned. For general banded invertible matrices the first proof appeared in [6]. A 
later proof in [3], [5] gave explicit estimates for the rate of decay. In this paper we 
use spectral theory and a result of Chebyshev on the best approximation of 
(x - a)f- by polynomials to give a new proof. The bounds on the rate of decay 
obtained from this proof appear to be sharper than those previously known and are 
actually attained in some cases. In addition, the method of proof easily extends to 
certain generalized inverses and certain nonbanded matrices. We show that the rate 
of decay for A1 given by our method depends on only the essential spectrum of 
AA* and is, thus, stable under banded compact perturbations. This fact is used to 
establish the exponential decay of the eigenvectors of certain generalized eigenvalue 
prqblems. 

There are two key ideas. First use spectral theory to write 

IIA p(A)||= max Ill/x-p(x)j 

for any positive definite operator A and any real polynomial p. Secondly, use 
approximation theory to estimate the best error. 
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2. Exponential Decay. We begin with a few preliminary remarks and definitions. 
Let H be a complex, separable, Hilbert space and let B(H) denote the Banach 
algebra of all bounded linear operators on H. If A E B(H) then we can represent A 
as a matrix with respect to any complete orthonormal set. Once a particular 
representation is chosen, we may regard A as an element of B(12(S)) where 
S = {1,... ,N}, Z', or Z. In this setting the usual matrix product defines the action 
of A. Throughout this paper we will assume that the above identifications have been 
made and will reserve the letter A for a matrix representing a bounded operator in 
B(12(S)). For such matrices A we will say that A is m-banded if there is an index I so 
that 

A(i, j) = 0 if j e [i - 1, i - I + m]. 

We will say that A is centered and m-banded if m is even and the I above may be 
chosen to be m/2. Thus, for a centered m-banded matrix one has 

A(i, j) = 0 if ji-jl > m/2. 

Notice that selfadjoint matrices are naturally centered and, for example, a tridiago- 
nal selfadjoint matrix is centered and 2-banded. 

As mentioned in the introduction we combine certain approximation theoretic 
results with the spectral theorem in order to obtain estimates for the exponential 
decay rate of A - 1. Let 7rn denote the polynomials of degree less than or equal to n. If 
K is a subset of the complex plane C and f is a fixed complex-valued function on K 
we define 

li 11 K:= SUp fI(z)j: z E K}, en(K):= inf{Ilf-PIIK: P E n 

We are now ready to state a proposition which is just a corollary of a result of 
Chebyshev [14, p. 33], but which is of fundamental importance to all that follows. 

PROPOSITION 2.1. Let f(x) = 1/x and let 0 < a < b. Set r = b/a and 

(2.1) q:= q(r):= (VT - 1)/(vr + 1). 
Then 

(2.2) en([a, b]) 2 ar q 

This exponential rate of approximation readily yields exponential decay of the 
inverse of a banded positive definite matrix as the next proposition shows. We will 
let a(A) denote the spectrum of the matrix A. 

PROPOSITION 2.2. Let A be a positive definite, m-banded, bounded and boundedly 
invertible matrix in 12(S). Let [a, b] be the smallest interval containing a(A). Set 
r = b/a, q = q(r) as in (2.1), and set CO = (1 + r"/2)2/(2ar) and A = q2/m. Then 
we have 

(2.3) |A -1(i, j) I < CXIi-jl 

where 

C:= C(a, r):= max{ a-1, CO} . 

Proof. Since A is positive definite and invertible we have 0 < a < b and we know 
that A is centered. Thus Ak is centered and km-banded for k 0,1, 2= .( Thus if 
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p E Tk then p(A) is km-banded and centered. From Proposition 2.1 we know there 
exists a sequence of polynomials pn E- ;, satisfying 

ffl/x - Pnff[ab] = C0qn 1. 

An application of the spectral theory [16] yields 

IIA 1 Pn(A)W| = ff1 X- Pnffa(A) < COqn+1 

Now writing Ii - jI = nm/2 + k for k = 1,... ,m/2 and i 4j, we see that 

Ii - j12/m < (n + 1) and hence 

IA -1(i, j)I = JA -1(i, j) - pn(A)(i, j)| < ||A -lPn(A) 1 < Cp(AW I 

In case i = j note that I/a = IIA ̀'lI, and (2.3) follows. This completes the proof of 
Proposition 2.2. 

The phenomenon of exponential decay is certainly not restricted to positive 
definite band matrices. In fact, we can use the preceding proposition to prove a more 
universal result. For any matrix A, we will say that A is quasi-centered if the central 
diagonal (i.e., (i, i)) is contained within the nontrivial bands. For example if 
S = {1, . . ,N} or Z+ then A E B(12(S)) is invertible only if A is quasi-centered. 
This is of course not true for A E 12(Z). 

PROPOSITION 2.3. Let A be m-banded, bounded and boundedly invertible on 12(S). 
Let [a, b] be the smallest interval containing a(AA*). Then setting r = b/a, q = q(r) 
as in (2.1), and A1 = ql/m, there is a constant C1 depending on A so that 

(2.4) lA 1(i, j)l < CfIX-JI 

If A is quasi-centered then we may choose C1 = (m + 1)IIA I IXAmC(a, r). 

This result follows immediately from Proposition 2.2, the observation that A1 = 

A*(AA*)-1 and the fact that IJAII = IIA*11. 
We collect these results in a theorem below which will allow us to compare them 

with earlier estimates. First let us note that if A is positive definite and invertible 
then IjAjj = max{s: s E a(A)}. We will set cond(A):= IjAjj IIA-111. Note that since 
B(12(S)) is a B*-algebra, then 

cond(AA*) = [cond(A )]2. 

THEOREM 2.4. Let A and A-1 be in B(12(S)). Then if A is positive definite and 
m-banded we have 

(2.5) lA-1(i, j)l < CXII-uI 

where 

(2.6) 
X cond(A) - 1 

/con d(A) + 1) 

and 

(2.7) C = |IA -'II max 1, (1 + /cond(A) )/(2 cond(A))). 
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If A fails to be positive definite but is still m-banded, quasi-centered, bounded, and 
boundedly invertible then 

(2.8) A (,j) < C,X'Jll 

where 

(cond(A) - 1 / 

(2.9) = cond(A) + 1) 

and 

(2.10) C1 = (m + 1) Xi mIIAl'II cond(A)max(1, [ 1 cond(A) /2 

We remind the reader that if S = Z+ or .1,...,N} then the quasi-centered 
hypothesis is redundant, and if S = Z, we may reindex A by a shift so that it is 
quasi-centered. 

3. Examples and Comparisons. In the previous section we derived several results 
concerning exponential decay of the inverse of band matrices, culminating in 
Theorem 2.4. In this section we will present some examples indicating the precision 
of the estimates in Theorem 2.4 as well as comparing this result with the earlier 
estimates of [5]. 

We first show that the exponential rate in (2.5) can indeed be attained. Let 
0 < s < 1 and consider the tridiagonal Toeplitz matrix A = trid(s, 1 + 52, s) in 
12(Z) with symbol 

A(z) = (z + s)(z-' + s). 

Now it is well known [9] that 

a(A) = { A(z): lzl = 1) = [(1 _ 5)2, (1 + S)2]. 

Thus from Proposition 2.2 or Theorem 2.4 (2.5) we have for i + j 

1A-1(i, j)j (1 2 iA 

On the other hand we can compute A1 directly using the Laurent expansion for 
1/A(z) which converges in a neighborhood of the unit circle yielding 

A-' (i5 j) = (I _ 2)-1(_S)1i-il. 

Thus we predict the precise exponential decay rate in this case but our constant is 
pessimistic. This should come as no surprise since there is clearly something lost in 
the inequality IA (i, j)I <, IIA -p,(A)II which is used in the proof of Proposi- 
tion 2.2. 

Next, consider the positive definite matrix A with symbol 

A(z) = (z + 1)(z-l + !)(z + 1)(z-1 + l) 

In this case one may verify that 

f ( A) = [9/64, 225/64]. 
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Thus Proposition 2.2 or Theorem 2.4 would predict an exponential decay rate of 
/3_ .82 whereas it follows from the Laurent series for l/A(z) that 

lA -'(i j)|I < C2 - V-A. 

In this case we see that a conservative estimate has been obtained. 
In the 12(S) setting [5] obtained the estimate 

( (cond(A ))2 - 1 1/2m 

(cond(A ))2 + 1 

for the decay rate of the inverse of an arbitrary m-banded matrix. We note that the 
Xi in (2.9) is smaller. However, de Boor also obtained results for all p. In particular, 
as Demko has pointed out [6], once it is known that a banded matrix A is bounded 
and boundedly invertible on some 1P(S) (1 < p < oc) then in fact it is bounded and 
boundedly invertible on all 1P(S). Thus setting 

condp(A) = IA |ip|iA -'ip 

de Boor showed [5] that the exponential decay rate for the inverse of an m-banded 
matrix is bounded by 

I'(condp (A))P -1i/pm 
(3.1) 

(condp (A)) P 1+ ) 

Thus, for instance, if A is totally positive Toeplitz then one can see [10, Theorem 6] 
by a result of de Boor that condp (A) is constant in p and hence the best choice for p 
in the above setting would be p = 1. Interestingly, this reduces precisely to our X1 in 
(2.9). If we had assumed in addition that A was symmetric then we would have had 
the better estimate X in (2.6). It is not easy to compare these results but we feel 
confident that Theorem 2.4 is superior if for no other reason than finding the best p 
in (3.1) seems to be a difficult task in general. 

4. Extensions and Eigenvectors. This section is devoted to certain refinements of 
Theorem 2.4. The results in this section were motivated by some eigenvalue compu- 
tations of the second and third authors which will be reported elsewhere. For the rest 
of this section we will assume that S is either Z or Z+. 

As mentioned earlier B:= B(12(S)) is a B*-algebra and the set %:= W(12(S)) of 
compact operators is a two-sided ideal in B(12(S)). Then the following facts are 
known [1] and [8]. The quotient space B/Iis a B*-algebra and the quotient map 

v: B -B/I 

satisfies 

a,(A):= a(v(A)) C a(A) 

where we use the symbol a, to denote the essential spectrum of A, that is, the 
spectrum of the element v(A) in B/K. The object B/I is known as the Calkin 
algebra. In addition the norm in the Calkin algebra is called the essential norm and 
will be denoted by 

IlAlle = |IV(A)II:= infIIA - K||: K E ' }l. 
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Of course, the essential condition number will be 

conde(A):= IIA lellAlle. 

Finally we remark that if A is selfadjoint and U is an open neighborhood of ae(A), 
then the complement of U contains at most finitely many points of a(A). 

Recall that in the proof of Proposition 2.2 we used the inequality 

||A - pn(A)I| = l1/x - Pnlla(A) < -IX Pnll[a,b] 

where a(A) C [a, b]. Now it is quite possible that the inequality above does not 
always yield sharp estimates. This is indeed the case as will be illustrated by the 
following theorem whose proof is quite similar to the proof of Theorem 2.4. 

THEOREM 4.1. Let A and A1 be in B(12(S)). Then if A is positive definite and 
m-banded set 

/r 'd(A I2/rn 
(4.1) cond,(A) - 1 

~c-on de(A) + 1, 

For any -y > X there is a constant C2 = C2(y, A) so that 

(4.2) lA -1(i, j) I < C2y II -il 

If A fails to be positive definite but is quasi-centered, m-banded, bounded and 
boundedly invertible set 

(cond e(A) - 1 1/rn 
(4.3) A cond (A) + I1 

For any -y > Xi there is a constant C3 = C3(y, A) so that 

(4.4) |A- (i, j) | < C3-yl'-JI. 

Proof. Of course, (4.4) follows from (4.2) by considering A - A*(AA*)1 just as 
in Proposition (2.3). In order to prove (4.2) we use an approximation lemma. 

LEMMA 4.2. Let D = [a, b] U { Xl. I. . Xk } be a subset of the positive real axis and 
let f (x) = 1/x. Then there is a constant R = R(xl,. . . Xk, a, b) so that 

en (D) < Rqnk?l 

where q = q(b/a) as in (2.1). 

Proof. Let r E 7Tk-l interpolate f at xl, ....xk and let A(x) = (x - xi) ... (x - 

xk). Note that 

(1 - x - 1*f[Xl,. *.,Xk]:= Fk. 

Now compute 

inf f - PIID < inf |f- (r + #P)IID < inf 11411[a,b] f 
r -P 

pE 7T PE7Tn-k PE7Tn-k / [a,b] 

=1h11[a,b]lFkj inf ||f - P1[a,b] = 11j11[a,b]lFklen-k([a, b]) < Rq nk+l) 

where the last inequality follows from Proposition 2.1. This completes the proof of 
the lemma. 
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Returning to the proof of (4.2), let -y > X be given, let [a, b] be the smallest 
interval containing ae(A), and choose E > 0 so that 0 < a - E and 

((b + e ) 2/m< 

Then there exists a number k and 0 < xl < ... < Xk so that 

u(A) c (a-E, b + e) U x u U xk =:D. 

Thus by Lemma 4.2 we can find polynomialsp, E 7T satisfying 

lf fPnJID < (Rq-k)qn?l 

The proof of Theorem 4.1 is now completed in the same manner as Proposition 2.2. 
Theorem 4.1 can yield significantly better estimates than Theorem 2.4. For 

example 

COROLLARY 4.3. Let A = I + K be banded where K is compact and I is the identity 
operator. Then if I + K is invertible we have for any -y> 0: there is a constant 
C = C(y, A) so that 

lA-1(i, j)| < Cyl'-.11 

We refer to such behavior as decay faster than any exponential. This corollary 
follows from Theorem 4.1 by noting that conde(A) = 1 and hence X, = 0 in (4.3). 

Exponential decay can also be observed in certain generalized eigenvalue prob- 
lems. 

COROLLARY 4.4. Let A be m-banded, bounded and boundedly invertible. Let K be 
compact so that A + K is m-banded. Suppose ,u # 0 and x E 12(S), x =# 0, satisfy 
(A - ,uK)x = 0. Then for any -y > X, (Xl as in (4.3)), there is a constant C= 

C(y, A, K) so that 

*0 i) < C-ylil - 

Proof. Define the projections PN by 

PN e =( ej 
if IjI < N, 

0 otherwise. 

Here e. are the standard unit vectors, ej(i) = Sij. Set KN = PNKPN and note that 
KN is m-banded and IK - KNII - 0 as N -x oo. It follows that for some N, 
A - ,u(K - KN) is boundedly invertible and hence 

x = ,u(A - A(K- KN)) 1(KNx). 

This yields the result since 

conde(A - L(K - KN)) = conde(A) 

and KNx is finitely supported so that x can be seen to be a finite linear combination 
of the columns of (A - L(K - KN))-' 

We close this section with a result on generalized inverses of band matrices which 
is valid in both finite and infinite dimensions. 

COROLLARY 4.5. Let A be an m-banded, bounded linear operator from 12(S1) onto 
12(S2) where S, and S2 are chosen from {1,. . ,N}, Z+ or Z and let At denote the 
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Moore-Penrose inverse. Let X1 be as in (4.3) if S2 is infinite dimensional or as in (2.9) 
otherwise. Then for any y > Xi there is a constant C = C(y, A) so that 

|At(i, j)l < C-yl'-jl. 

Proof. By the open mapping theorem AA* is boundedly invertible on 12(S2 ). Now 
At = A*(AA*)-1 and the result follows just as in Proposition 2.3. For more 
information on generalized inverses the reader may consult [2]. 

5. Remarks. It has been recognized for some time that exponential decay is 
manifested in the inverses of sparse (but not necessarily banded) matrices, see, for 
example, [3]. The technique of Section 2 (and its extensions in Section 4) yields such 
a result in a simple way. For any matrix A E 12(5) let us define the support sets 

n 

Sn(A):= U {(i, j): Ak(i, j) # O0 
k=O 

and the decay sets 

Dn(A):= (S x S)\Sn(A). 

PROPOSITION 5.1. Let A be positive definite bounded and boundedly invertible on 
12(S). Then 

(5.1) sup {|A -'(i, j)|1: (i,~ j) E- Dn (A)I <, Coq+, 
where CO and q are as in Proposition 2.2. 

The proof of this proposition follows the lines of Proposition 2.2 and we omit the 
details. The following examples illustrate the generality of Proposition 5.1. 

Example 1. Suppose A is positive definite and block banded where each block is 
itself banded. Then the sets Sn(A) and hence Dn(A) would give a much better idea 
of the decay of the entries of A -' than would the results of Section 2. 

Example 2. A is positive definite and tridiagonal with the exception that (1, n) and 
(n, 1) entries are nonzero. Then A-1 decays away from the maindiagonal and away 
from the corners (at least until Dn # 0). Such matrices arise in spline interpolation 
of periodic data. 

Example 3. If { fi lies is a local well-conditioned basis in L2, for a space of finite 
element approximations, then taking A = ((fi, fj)) where K , ) denotes the inner 
product in L2, we see that the biorthogonal functions 

i(x) =LA - l'(i, j)fj 
J 

satisfy 

and decay exponentially to 0 as x moves away from the support of fi, provided that 
the supports of the fi satisfy a global mesh ratio restriction. A precise formulation 
can be found in a paper of Descloux [7], in which the idea of exponential decay is 
already implicit. 

We conclude this paper with some remarks concerning the generality of Proposi- 
tions 2.1 and 2.2. There are two key ideas here. First use spectral theory to write 
(f(x) = 1/x) 

IIA- p(A)|| = lf - Plla(A) 
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and secondly use approximation theory to estimate the best error llf - pilo(A). In all 
our propositions we arranged it so that a(A) was a subset of the positive real axis 
(i.e., A (or AA*) positive definite). The spectral theory applies more generally to 
normal matrices and Bernstein's theorem (see [13, p. 114]) can be used in place of 
Proposition 2.1, but we were unable to see how to use this extra freedom quantita- 
tively. 
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