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Composite Hermite-Birkhoff Quadrature Formulas 
of Gaussian Type* 

By Nira Dyn 

Abstract. We show how to combine incidence matrices, which admit Hermite-Birkhoff 
quadrature formulas of Gaussian type for any positive measure, in such a way that the 
resulting matrix also admits Gaussian type quadratures for any positive measure. Moreover, 
the uniqueness property and the extremal property of the formulas corresponding to the 
submatrices are transferred to the formula admitted by the composed matrix. 

1. Introduction. Recently results concerning the existence of quadrature formulas 
of Gaussian type related to Hermite-Birkhoff interpolation problems have been 
obtained by several authors [4], [1], [2], [3]. 

Given the incidence matrix E = { e ' m=+ 1 '- with entries consisting of zeros and 
at most n ones, a Hermite-Birkhoff quadrature formula (HB-QF) is defined as a 
formula of the form 

(1.1) J~~~b pd( = L aijp U) (Xi) p E- I-n- P a e,=1 

The formula (1.1) is called Hermite-Birkhoff Gaussian quadrature formula (HB- 
GQF) [1], if the number of parameters in (1.1) equals the dimension of L1n-1 (the 
space of polynomials of degree < n - 1), namely if 

m+1 n-I 

(1.2) n = E, E eij + m. 
i=O j=O 

In (1.1) du is a nonnegative measure supported on more than m points in (a, b), 
(xo,. . ., +1) E Sm where 

Sm= {y= (yo,..ym+) Ia =yo <y < ... < Ym <Ym+l b} 

and 

n-I n-I 

E eij > O, 1 im, E eij >O, i= or m +1. 
j=O j=O 
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This notion of HB-GQF extends the classical notion of Gaussian quadrature 
formulas (GQF): 

m 

fI pdu= Eaip(x), PEL12m-Di 
a i=l 

where a < x1 < ... < xm < b and ai > O, i = 1,...,m, and also the notion of the 
multiple nodes GQF [8], [7]. 

The problem of characterizing incidence matnrces admitting HB-QF is posed in 
[4], and the following necessary condition on such matrices is proved: 

Result A. Let E = {ei }mi '7+JJ- admit a quadrature formula exact for Hn for 
some nonnegative measure do supported on more than m points in [a, b], and let r 
be the minimal number of ones which must be added to E to obtain a matrix 
E = { m 

} 
1 

O 
- 1 without odd sequences in rows 1,.. ,m. Then E is a Polya matrix 

(the number of ones in any first / columns exceeds 1 - 1), and 
m+1 n-I 

(1.3) n < E E eij + r. 
i=O j=O 

In [2] the existence of two classes of quadrature formulas satisfying (1.3) with 
equality, has been claimed. The first consists of HB-GQF related to incidence 
matrices with rows 1,...,m consisting of odd Hermite sequences and even non- 
Hermite sequences. The existence of this class of HB-GQF is proved in [1]. 

The present paper is concerned with the proof of the existence of the second class 
of composite HB-GQF, corresponding to incidence matrices which can be decom- 
posed vertically into several submatrices, each admitting a HB-GQF with equality in 
(1.3). It is also proved here that such a formula is unique and/or has an extremal 
property in case each of the HB-GQF corresponding to the submatrices is unique 
and/or has an extremal property of the following type: 

Definition 1. The HB-GQF (1.1) related to E = { eijm4 n-1J,112r0 with e = 0 
1 < i < m, has an extremal property, if for any f satisfyingf ()> 0 on [a, b]: 

(1.4) min [( 
W fb (f p) dj (_1) f f dor aijf (XJ)(xi) 

where i = En>-' em+ and 

P(E, f) = {pIp E lIn-D P(i)(yJ =f(I)(yi), =ij 1, YE Sm}, 

with E = { ij) the matrix of Result A obtained from E by addition of ones at the 
end of odd sequences. 

The existence of another interesting class of HB-GQF has been established in [3]. 
These formulas are related to incidence matrices of pyramidal type: 

(a) Each interior row, i, contains one sequence only which is of odd length li 
starting at column ki. 

(b) There exist 1 < I < J < m such that ki + 1, > k,_1 > ki, i = 2,...,I, k, = O, 
i= I, ...J, ki + li >_ kj+j _> kl, i = J,...,m - 1. 

(c) The two rows i = 0, i = m + 1 have nonzero entries in arbitrary positions 
k >? k1 and k > km respectively. 

The proof of the existence in [3] is based on the extremal property of Definition 1, 
characterizing several other classes of HB-GQF, in particular the classical GQF and 
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the multiple nodes GQF [8], [7]. This class of matrices, as well as the class in [1], can 
be used in constructing new composite HB-GQF of the type discussed in Section 2. 

2. Existence and Uniqueness. Given a regular incidence matrix E - { eiJ I m+1 on=- 1 

with n ones, and a set of points X E Stm, denote by p(E, X, f)(x) the interpolating 
polynomial from lln-I tof E Cn-1[a, b] at the data (E, X), 

(2.1) p(E, X, f )(j)(xi) = f (J)(x,), eij = 1. 

(E is regular if (2.1) is solvable for any X e Sm and data f W'(x,), e,j = 1.) The error 
in the interpolation prescribed by (E, X) is given in terms of the Peano kernel 
K(t, x) K(t, x E, X), by [5, Theorem 7.4]: 

(2.2) f(x) -p(E, X, f )(x) = f K(t, xIE, X)f(n)(t) dt. 

It is well known [5, Theorem 7.7] that if E is a Polya matrix such that all its 
non-Hermite sequences in the interior rows (rows 1,...,m) are even, then E is 
regular and the sign of K(t, x) is constant in t for any fixed x E [a, b]. For such 
matrices, with even Hermite sequences in the interior rows as well, the sign of 
K(t, x), as a function of x, can also be determined, in view of the following result. 

Result B [3, Lemma 2.2]. Let E be a Polya matrix with even sequences only in its 
interior rows, and let f = x /nl! Then 

n-I 

(2.3) ()"[f - P(E) X,f) on[a,b], = E em+l, > jO. 

I=o 

Insertingf = xn/n! into (2.2), we thus conclude: 

COROLLARY 1. Let E be a Polya matrix with even sequences only in its interior rows, 

and let A= En-' em+li. Then 

(2.4) (-1)AK(t, x I E, X) >- O, (t, x) E- [a, b]2. 

With this preliminary result, the existence of a composite HB-QF, corresponding 
to a vertically decomposable matrix, can be obtained. 

Definition 2. Let E = {e m} + lnn-JI be an incidence matrix which can be vertically 
decomposed into 1 submatrices, each consisting of n, columns and ml nonzero 
interior rows respectively, 

(2.5) E = E(n1) D E(n2) e ... D E(n), E ni =n, 

such that '=. Im = m (each interior row is a nonzero row of one submatrix only). 
For each 1 < i < 1, let y(i) denote the ordered subset of nodes of Y= 

(Yo. .. . Ym+i) corresponding to the nonzero rows of E(n1). 
A composite HB-QF (CHB-QF) related to E is defined as a quadrature formula of 

the form (1.1), with X = (xo,. . . ,xm+?) E 2m, where 

(2.6) 2 { = (yO . *m+l ES 1 Y i ) l } . 

A CHB-QF is Gaussian (CHB-GQF), if it satisfies (1.2). 
Remark 1. Let m* denote the number of distinct nodes of a CHB-GQF. If 

m* < m then n > Em+1 Ejn-I eij + m*. Thus the number of monomials for which 
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the CHB-GQF is exact exceeds the number of parameters in the quadrature formula 
(coefficients and nodes), in case of equality between nodes corresponding to nonzero 
interior rows of different submatrices. 

The existence of CHB-GQF and their properties are stated and proved for the 
case 1 = 2. The extension to the case 1 > 2 is straightforward, as will become clear 
from the proofs. 

THEOREM 1. Let E satisfy the conditions of Definition 2 with 1 = 2. If each E(n,), 
i = 1, 2, admits a HB-QF exact for I7nJ -Ifor any positive measure, and satisfies Result 
A with equality in (1.3), then E admits a CHB-QF exact for Hln-I for any positive 
measure. 

If, moreover, the HB-QF admitted by E(ni), i = 1, 2, are Gaussian (satisfy (1.2)), 
then E admits a CHB-GQF (satisfying (1.2)). 

Proof. Let E = E(n1) E E(n2) where E(ni) is related to E(n,) by Result A. Let 
Y e Stm be the nodes of the HB-QF for E(n1) and the measure da, and let Z E SM2 

be the nodes of the HB-QF for E(n2) and the measure wo(t) dt with 

(2.7) @(t) = b du(x)K(t, x I E(nl), Y). 

That w(t) is of constant sign follows from Corollary 1. 
Consider now the set of fundamental polynomials for interpolation at (E, X) with 

X E 2m, X(l) = y X(2) = Z 

(2.8) qf(xv)= -iva ekjk 
1 . 

Then 

(2.9) p(t, X, f )(x) = f (j)(xi) q,j(x) 

and for anyp E-n-I 

(2.10) p(x) = E p(j)(x1)q,j(x), 
lj= 1 

(2.11) J p(x) du (x) = E p(j)(xi)J qij(x) duo(x). 
a e=1a 

Now { qij = 1, j < n1 } are the fundamental polynomials for 'L _n1 since their 
n1th derivatives all equal to p(E(n2), Z,0) -. Using the HB-QF with nodes 
Y E Sm, and coefficients {alj eij = 1, j < n1} admitted by E(nj), which is exact 
for Hnl I, we obtain 

(2.12) b 
ql(x) dU(x) = E akqfrqJ(Yk) 

a evk,=l 

v<nl 

= 0 if eij= 0and e,j = 1,0 j < n1. 

Consider next the set { qij I eij = 1, n1 < j < n }, consisting of n2 polynomials in 
.n-I vanishing on (E(nj), Y). By (2.2), each of these polynomials can be repre- 

sented as 

(2.13) q11(x) = fb q(nj)(t)K(t, x I t(nl), Y) dt. (2.13) qij (x) ij~~ 
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Hence 

(2.14) f qi1(x) do(x) 
b 

dtq?(nl)(t)fb K(t, x t(nl), Y) da(x) 

= fb q?')(t)o(t) dt. 

But qf,7') E 1-1 for ei1 = 1, n1 < j < n, and therefore the application of the 
HB-QF admitted by E(n2) for the measure w(t) dt, with nodes Z E S12 and 
coefficients { bij I e1 j+n, = 1, 0 < j < n2 } yields 

(2.15) 
b ql (A)(t) dt E bk ,vnlqi()(Zk) = 0 

a ek,=1 
nl< v < fl 

if el = O and ei, =l, n < j < n. 

Combining (2.11), (2.12), (2.14) and (2.15) we conclude that 

(2.16) fbd j qlj(x) da[(x) p(x)(xl), p E lnn1* 
a e,j= J a 

Now if both HB-QF admitted by E(n1), i = 1, 2, are Gaussian then 
m+I nl-1 m+1 nj+n2-1 

n, = E E e1j + ml, n2= E E eij + m2 
i=O j=O 1=O j=nl 

These together with the assumptions on E: n = nI + n2, m = mI + Mi2, yield 
m+1 n-I 

n = L eij +m. 
i=O j=O 

Using the same arguments it is easy to show that 

THEOREM 2. Under the conditions of Theorem 1, E admits a CHB-QF at X E 2m for 
the positive measure du, if and only if each E(ni), i = 1, 2, admits a HB-QF at 
X(i) E Sm for the positive measure dui, where 

(217, i)= 1, 

(2.17) dai |@W2(t) dt-fb K(t, x lt(n1), X(1)) da(x) dt, i = 2. 

Remark 2. In Theorem 2, E(n1) is not necessarily uniquely determined. Neverthe- 
less, it follows from the proof of Theorem 1 that if E admits a CHB-QF at X E Sm 
for the positive measure da, then for any measure c2(t) dt of the form (2.17), 
independently of the choice of E(n1), E(n2) admits a HB-QF with X(2) as its set of 
nodes. 

A direct conclusion from this remark and Theorems 1, 2 is 

COROLLARY 2. Under the conditions of Theorem 1, the CHB-GQF admitted by E at 
X E O2m for the positive measure do is unique, if and only if E(nj) admits a unique 
HB-GQF at X(1) E Sml for da, and E(n2) admits a unique HB-GQF for at least one 
measure da2 of the form (2.17). 

Remark 3. The uniqueness result in Corollary 2 and the extremal property in 
Section 3 are formulated and proved for CHB-GQF. The proofs are based on the 
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same results valid for the HB-GQF admitted by the submatrices, and are indepen- 
dent of property (1.2). Therefore similar results hold for CHB-QF, but in fact are 
empty, since the uniqueness and extremal property are only valid for certain types of 
HB-GQF; cf. [7], [8], [6], [3]. 

3. The Extremal Property of a CHB-GQF. A property of the HB-GQF admitted 
by E(n1), i = 1, 2, which is transferred to the CHB-GQF admitted by E(n1) ED E(n2) 
is the extremal property of Definition 1. Note that (1.4) can be formulated also as 

min [(-1)tI (f-p)dal =(1)b [f-p(E, X,f)] da. 
peP(E, f) a ]a 

THEOREM 3. Let E satisfy the conditions of Theorem 1, and let each E(n1), i = 1,2, 
admit a HB-GQF with the extremal property of Definition 1 for any positive measure. 
Then for any positive measure, E admits a CHB-GQF with the extremal property of 
Definition 1 but with E and Sm in the definition of P(E, f ) replaced by E = E(n,) (E 
E(n2) and 2', respectively, where E(ni) is related to E(n1) as in Definition 1. 

Proof. Given , 0 on [a, b] and arbitrary U E 2m, define g1 = f - p(E, U, f). 
Since g(nl) is the error in the interpolation of f(ni) at (E(n2), U(2)), relation (2.2) and 
Corollary 1 imply that 

gfni)(x) - fb g(nl+n2)(t)K(t, x E(n2), U(2)) dt 

= (-1)/L2 bf(n)(t) K(t, x I(n2), U(2)) dt, 

with 12 = 
Enj<jn 

em + 1, j Therefore 

(3.1) (-1)12g n _)(x) > 0, x E [a, b]. 

Now 0 E P(E(n1), (-1)/2g1), and hence by the extremal property of the HB-GQF 
admitted by E(n1) with nodes Y, for the positive measure do: 

(3.2) (-1)l1f (-1)y2gida > (-1),f" (b1)y2[gl - ql] da, 

with -' - EW'5 em+l y and q, = p(E(n1), Y, gl) E lnl_l In view of the definition 
of g, and q,, (3.2) becomes 

(3.3) (_1) b [f-p(E,U, f )] da >- 1)as| [f-p(E,V,f)] do, 

with V ( - Y, V(2) = U(2) and p = p + A2. To complete the proof we use 
again Corollary 1 and conclude that 

(-by [f f-p (E, V, f )] (x) da(x) 
a 

(3.4) = (b1) fbf [if- p(E, V, f )] (t') (K(t, x I E (n ), Y) dt da (x) 

= (-1)/Lfb w(t)[f-p(t,V, f)](nl)(t) dt, 

where co(t) is defined by (2.7), and satisfies (- 1) 1(t) > 0 on [a, b]. Applying the 
extremal property of the HB-GQF, admitted by E(n2) for (- 1)/I"co(t) dt at the 
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nodes Z, we obtain for g2 - f(nl), p -p(nl)(t, V, f), satisfying g(n2) -f (n) > o0 

P2 e= P(E(2), g2), the inequality 

1 l 
2 

2b [ (-_ ) AW( t )] [f t nl) _-p(nl) ( t, V, f )] dt 
(3.5) b 

> (-1) 
2J [(-1) AW(t)] [ f (n1 - q2] (t) dt, 

a 

where q2 = p(E(n2), Z,f(ni)) e fn2_ 1. Now for Xe (l X() - Y, X=2) - 

[f - p(E, X, f)](ni) = f(nl) - q2, and we finally derive from (3.3), (3.4), and (3.5) 
that 

(-1)A 
b 

[f-p(E,U,lf)] dia > (1)/2Jb [f-p(, X, f)](nl)(1)Al wdt 

= (-1)Afb [ f-p(t, X, f)] do, 

indicating the optimal property of the HB-GQF admitted by E at X. 
The following two matrices are examples of matrices which admit HB-GQF in 

view of Theorem 1 and the results in [1] and [3]: 

1 1 00 00 1 0 1 0 0 0 
1 0 1 1 0 0 O O O O O O 

E1= 0 0 0 0 0 1 0 0 1 1 0 
0 00 0 0 0 00 00 00] 

0 1 0 0 0 0 00 0 1 0 0 0 
0 1 1 1 0 0 0 0 O O O O O 

E2=0 0 0 0 0 0 0 1 1 1 0 0. 

1 0 0 0 0 0 0 0 O O O O O 

O 0 1 0 0 0 0 0 O O O O O) 

The matrix E2 admits a HB-GQF with the extremal property of Theorem 3, in view 
of the results in [31, [61 concerning the two submatrices of E2. 
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