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Gauss Quadratures and Jacobi Matrices for 
Weight Functions Not of One Sign 

By J. Kautsky and S. Elhay 

Abstract. Construction of Gauss quadratures with prescribed knots via Jacobi matrices is 
extended to the case where not all orthogonal polynomials exist due to the weight function 
changing sign. An algorithm is described and is demonstrated by calculating the knots of 
Kronrod schemes and other Gauss quadratures with prescribed knots. 

1. Introduction. Let w be a real-valued function on some (finite, semi-infinite or 
infinite) real interval (a, b) such that I(f) f abf(t)w(t) dt exists for any poly- 
nomial f. The quadrature formula 

n ni m mi 

(1.1) Q(f):= ? E Cjiff('1)(xi) + ? E Djif '-l'(vj) 
j=1 i=1 j=1 1=1 

using the fixed (or prescribed) knots vl, v2,... , Vm of multiplicities ml, m2,... .,mm is 
said to be Gaussian if the weights (Cji and Dji) and the free (or Gauss) knots 
x1, x2,. ,xn, of multiplicities n1, n2,. ... ,nn, are chosen so that I(f ) = Q(f) for all 
f a polynomial of order N + n or less. Here N : '=2 I n1 + EY I m1 is the number of 
weights in the quadrature. The following characterization and sufficient condition 
for the existence of the Gauss knots are well known (see, e.g., Turan [11]). 

THEOREM 1. Let qF(t):= 1Lm 1(t - vj)mj and qG(t) H>n1(t - xj)'1. The knots 
X1, X25 .. . Xn are Gauss knots if and only if 

b 
tkqG(t)qF(t)W(t) dt = 0 

fork = O,1,...,n - 1. 

THEOREM 2. If w > 0 on (a, b), if the multiplicities nj of the Gauss knots are odd, 
and if the multiplicities mj of the fixed knots vj E (a, b) are even, then there exist real 
and distinct Gauss knots Xj E (a, b), j = 1, 2, ... ,n. 

In [2] Golub and Kautsky present a method which stably and efficiently de- 
termines the Gauss knots of a quadrature satisfying the condition in Theorem 2. 
Their method hinges on the fact that associated with every w > 0 there exists a 
(tridiagonal) Jacobi matrix the elements of which are the coefficients in the three-term 
recurrence satisfied by the polynomials orthogonal on (a, b) with respect to w. The 
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eigenvalues of the principal submatrices of this matrix are the zeros of the polynomi- 
als and so they are the knots of the Gauss quadratures. In particular, knowing the 
Jacobi matrix J for a given w > 0, they show how to find the Jacobi matrix J for 
w(t):= a(t - v)Sw(t), s = 1,2 (where a is a constant chosen to achieve w > 0 on 
[a, b]) and then find the Jacobi matrix for the weight function 

(1.2) ~~~~w := qF(t)W(t) 

where qF(t) is a product of such factors, by repeating the process. The required 
Gauss knots are then easily found from J. 

In this paper we aim to extend results of [2] to the case of simple knots prescribed 
inside the interval (a, b). In [6] Kronrod computed, for the case of the constant 
weight function, the quadratures using 2n + 1 simple knots of which n are the zeros 
of the nth degree Legendre polynomial and the other n + 1 are Gaussian (n < 40). 
Patterson [9] later extended these quadratures by adding free knots to quadratures 
which have the Kronrod knots prescribed. In both [6] and [9] the quadratures were 
computed by determining the required polynomials from the moments of the weight 
function and then solving for their roots. Patterson improved Kronrod's method of 
determining the polynomials by expressing them as linear combinations of Legendre 
polynomials. Piessens and Branders [10] used Chebyshev rather than Legendre 
polynomials to further stabilize the process. A recent survey of theoretical and 
numerical results concerning such quadratures appears in [8]. 

When simple knots are prescribed inside the interval, the assumptions of Theorem 
2 are no longer satisfied. The existence and the properties of the required quadra- 
tures depend on polynomials orthogonal with respect to a weight function which 
changes sign inside the interval. For some degrees such polynomials may not exist or 
may have zeros which are multiple, outside (a, b) or even complex. Consequently, 
the corresponding quadratures may not exist or may have knots and weights which 
render them useless. 

To apply the techniques of [2] to such quadratures we generalize the concept of 
Jacobi matrices for nonnegative weight functions-when orthogonal polynomials of 
all degrees exist-to the situation where only some orthogonal polynomials may 
exist. For this purpose, to replace the Jacobi matrix, we introduce in Section 2 a pair 
of matrices-a recurrence matrix of the polynomials and the Gram matrix which 
measures their orthogonality. In Section 3, we show the relation between such pairs 
of matrices for two different weight functions, particularly those differing by a linear 
factor. This is the basis for a numerical procedure described and tested in Sections 4 
and 5. 

2. Generalizing Jacobi Matrices for Arbitrary Weight Functions. In this section we 
introduce the recurrence and Gram matrices for a given weight function and 
establish some basic relations. We will deal with real functions of a real variable 
only. Let k > 1 be an integer and let p:= [po(t), p1(t),.. . ,pk-l(t)]T and pk(t) be a 
set of monic (leading coefficient equal unity) polynomials, so that pj(t) has exact 
degreej. There exists a unique lower Hessenberg matrix K, with all elements in the 
super-diagonal equal unity, such that 

(2.1) tp(t) = Kp(t) +pk(t)ek. 
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Here, as later, ek is the k th column of an identity matrix with appropriate 
dimension. We shall call K the recurrence matrix for the polynomials pi(t) because 
its elements define a recurrence relation by which pj(t) can be found from its 
predecessors. 

Since po(t) = 1, we have p(t) # 0 for any.t and thus, from (2.1), any zero v of 
Pk(t) is an eigenvalue of K. 

Let w be a weight function defined on (a, b). We will denote by M the symmetric 
Gram matrix 

(2.2) M:= fpb w dt. 

A simple calculation with (2.1) shows that 

(2.3) KM=f tppTwdt - ekbT, 

where 

(2.4) b:= f dt. 

Clearly KM is a symmetric matrix plus a rank-one correction to its last row. We may 
note here that the vector b is therefore determined by the matrices K and M up to its 
last element and we have 

(2.5) b - bTekek = (KM- MKT)ek. 

The polynomial Pk is orthogonal to POI P1,, Pk-1 with respect to w iff b = 0; 
furthermore, when the polynomials Po, .P... Pk are all orthogonal with respect to 
w, then, in addition, M is diagonal and since KM is lower Hessenberg and 
symmetric, K is tridiagonal. Its elements are the coefficients in the well-known 
three-term recurrence for orthogonal polynomials. If the orthogonal polynomials are 
normalized, then M is the identity and K is called the Jacobi matrix for w. 

As we are interested in the case where orthogonal polynomials of all orders need 
not exist, the matrix M may no longer be diagonal. However, we observe that a 
particular polynomial pj (t) is orthogonal, with respect to w, to all polynomials of 
lesser degree if and only if the last row and column of the j x j principal submatrix 
of M can have a nonzero element only on the diagonal. For convenience, we will call 
such a matrix (M:= [mrsl with mrj = MiJr= , r = 1, 2,..., j- 1) j-diagonal. The 
eigenvalues of the corresponding (j - 1) x (j - 1) principal submatrix of K will be 
the zeros of pj-l(t). 

Thus the association between a sequence of polynomials orthogonal with respect 
to a nonnegative weight function and the Jacobi matrix can be generalized to an 
association between any sequence of monic polynomials, an arbitrary (suitably 
integrable) weight function and a pair of matrices K, M. 

3. Modifying Generalized Jacobi Matrices. Let v be a real scalar that may or may 
not lie in (a, b). We show in the next section how to determine the matrices K and 
M for the weight function wl(t):= (t - v)w(t) from the matrices K and M. Re- 
peated application of the process will give the K corresponding to the weight 
function iw of the type (1.2) for qF a product of such factors. Algorithms of this type 
have been implemented in [1] and [2] for the case of prescribed knots preserving the 
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nonnegativity of the weight function. We note that from (2.3) it follows that the 
left-hand side of 

(3.1) (K- vI)M = b (t - v)ppTwdt - ekbT 

is again a symmetric matrix plus a rank-one correction to its last row. This leads to 
the following result. 

THEOREM 3. Let the monic polynomials po, PII ... Pk have recurrence matrix K, let 
L be a unit lower triangular matrix, and c be some vector. Then the polynomials 

Po' P1', *Pk defined by 

(3.2) p= L-1p, 

(3.3) Pk:= Pk - CTp 

are monic and their recurrence matrix K satisfies 

(3.4) K = L-1KL + ekcT. 

If, in addition, v is any scalar, wi(t):= (t - v)w(t), M is as in (2.2) and we similarly 
define M by 

(3.5) M:= f h TW dt, 

then 

(3.6) (K- vI)M = LMLT ekbT, 

with b as in (2.4), and, if M is nonsingular, then we also have 

(3.7) K = vI + MLTM-lL - ek(bTM- L-cT). 

Proof. Relation (3.4) follows immediately by substituting (3.2) and (3.3) into (2.1) 
and noting that Lek = ek; similarly (3.6) is obtained from (3.1) and (3.2). Now from 
(3.4) it follows, if M is nonsingular, that 

K - vI = L-1(K - vI)MM-'L + ekcT= L-1(LMLT - ekbT)M- L + ekcT 

from which we have (3.7). 0 
The first part of Theorem 3 gives in (3.4) the relation between recurrence matrices 

of any two (monic) polynomial bases-the weight functions are not involved here. 
Given K, M (representing the polynomial base p and w) and v there are many pairs 
K, M representing some other base A and wI; the second part of the theorem gives 
relations (3.6) and (3.7) (or (3.4)) which every such pair must satisfy. Any choice of 
L and M satisfying (3.6) determines the pair K, M uniquely. We show in the next 
section how to construct a unit lower triangular L and all but the last diagonal 
element of M in (3.6), without using b. This in tum uniquely determines all but the 
last row of K. Furthermore, by (3.4) the matrix K - ekeT, which differs from K only 
in its last row, is similar to K and has the property that, although all its eigenvalues 
are those of K, the eigenvalues of its principal j x j submatrix (each j < k) are the 
zeros of p1. Consequently a K matrix of dimension n can be found by constructing K 
of dimension k:= n + 1 and then discarding the last row and column. 

Thus the important so-called de-escalation property, which was already observed 
in [2] for the construction of modified Jacobi matrices and which avoids the explicit 
determination of vectors c and b, is preserved. 
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Finally, we observe that Theorem 3 is a straightforward generalization of Theorem 
3 of [2] to the case where M and M need no longer be diagonal. In particular, the 
" symmetric LR transformation with shift v" of [2] is here replaced by relations (3.6) 
and either (3.4) or (3.7) which now include the Gram matrices M and M. 

4. Derivation of the Algorithm. Here we derive an explicit procedure which, given 
matrices K and M for some weight function w, and a scalar v will produce the 
matrices K and M for the weight function wl(t):= (t - v)w(t). As pointed out 
earlier, such a pair is not unique and this fact is reflected by the nonuniqueness of 
the factoring (3.6) in Theorem 3 where we use in (n + 1) - 1 elements from the 
left-hand side to determine n2 elements on the right-hand side. Blocking the matrices 
in (3.6) as shown in Figure 1 with a similar blocking for M, we have 

(4.1) Yj = LMj LT, 

(4.2) Li(M' M yi, 
and 
(4.3) ame+ ikbk = + 2mij) + dj. 

Thus the matrices L and M can be built up one row and column at a time provided 
we choose {j and 'mh satisfying (4.2). Our aim is to construct an M which is i-diagonal 
for as many i = 1, 2,. . ., k as feasible. Consequently we must set mj = 0 in (4.2) if 
possible. This can always be done when Mj is nonsingular and ej will then be the 
solution of 
(4.4) Mi = z1 = L; 1'y 

For singular Mj we propose the following two schemes (any ej, miii satisfying (4.2) 
would, of course, do): 

Scheme (a). Set ?j:= 0 and 1mj = z;. 
Scheme (b). Choose any least squares solution ej of (4.4) and set M', to the residual 

mi:= z - MJt$. 

We note that Scheme (a) chooses p := pj (and L (j + 1)-diagonal) while Scheme (b) 
aims to reduce the sum of squares of the off-diagonal elements of the Gram matrix 
M. Furthermore, the Scheme (b) can be used regardless of the singularity of MA-it 
will always produce a solution of (4.4) if one exists. From the relations (4.1)-(4.3) it 

(K-vI)M ekbT 

yTa + ? .. * 

[ *. ? 4 * bT: 
L M LT 

Lj ? 0 MV LjT {X 1 

L j Lj d- j L? 
FIGURE 1 

Blocking of Eq. (3.6). Matrices 1> L1 and M1 have order j 
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is obvious that we can determine the whole of L and all but the element dk of M 
from Yk (i.e., from K, M and v). This is important because mk = 0 indicates the 
orthogonality of Pk - 1 the zeros of which are the eigenvalues of the de-escalated K. 

We have implemented an algorithm performing a sequence of such steps corre- 
sponding to fixed knots v:= vj, j = 1, 2,... repeated according to their multiplici- 
ties. The algorithm begins with matrices of sufficient size and de-escalates them by 
discarding one row and column at a time after modifying them by each linear factor. 
We use the column pivoted QR decomposition of Mj to determine its singularity in 
Scheme (a) or to find the least squares solution in Scheme (b). In the latter case this 
will provide ej with at least as many zeros as is the rank deficiency of Mj. 

The new recurrence matrices are computed by (3.4) although no essential dif- 
ference has been observed when (3.7) was used instead. The detailed algorithm can 
be found in [4]. 

* scheme (a) 
o scheme (b) 
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FIGURE 2 
Error E in calculating the knots of Kronrod quadratures 

by ( + ) scheme (a) and (O)-scheme (b). 
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FIGURE 3 

Error E in calculating N/2 free knots where the N/2 are alternate (o) or 
negative ( X) zeros of the Legendre polynomial of degree N. For this test 
schemes (a) and (b) give identical results. 

5. Numerical Tests. In this section we present the results of numerical experiments 
which serve to demonstrate the methods of the previous section. 

Firstly, we have recomputed the knots of some of the Kronrod quadratures in [6]. 
Here the zeros of the Legendre polynomial of degree n are prescribed and n + 1 free 
knots are calculated. The maximum (absolute) difference between the results of 
Kronrod's calculations and those obtained by our Schemes (a) and (b) are shown in 
Figure 2 (on negative loganrthmic scale) as a function of the number of knots 
computed. 

Secondly, we have designed the following test. We compute the zeros of the 
N-degree Legendre polynomials as the eigenvalues of the corresponding Jacobi 
matrix. We then select k < N of these as fixed knots, calculate N - k free knots by 
our methods, and compare them with the remaining zeros. In Figure 3, we show the 
results for the cases where we prescribe k - [N/2] zeros either interlacing the free 
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knots to be found or those in (-1, 0). While the former choice of prescribed knots 
resembles the Kronrod scheme, the latter by its unbalanced nature appears to 
provide a severe test for the methods. 

All results were computed using the MATLAB package [7] on a VAX 11/750 
under the VMS operating system in double (56-bit mantissa) precision. 

We should emphasize that these tests were designed only to demonstrate the 
viability of the methods of the previous section and no serious attempt was made to 
exploit the special structure of the matrices involved in the process. We believe that 
taking advantage of this special structure will lead to an efficient numerical proce- 
dure based on this approach. 
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