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Approximations for the Bessel and Struve Functions 

By J. N. Newman 

Abstract. Polynomials and rational-fraction approximations with minimax accuracy are pre- 
sented for the Bessel functions of the first and second kind of orders zero and one, and for the 
Struve functions of the same order. The accuracy of these approximations is consistent with 
typical single-precision computations. The results for the Bessel functions improve upon those 
in Abramowitz and Stegun [1]. 

1. Introduction. In three-dimensional theories of water wave interactions with 
floating or submerged bodies, the oscillatory wave-like portion of the relevant Green 
function can be expressed in terms of Bessel and Struve functions with real 
arguments. Since problems in this field are solved frequently by boundary-integral 
methods where the kernel of the resulting integral equation must be evaluated 106 to 
108 times for a given body, efficient approximations are required for these special 
functions. 

Single-precision accuracy is generally sufficient in the above context, with a fixed 
absolute error. Segmented polynomial approximations, derived originally by Allen 
[2], are given for the Bessel functions Jo, J1, Yo, and Y1 in Section 9.4 of [1]. For the 
segment 0 < x < 3, polynomials of sixth degree in the variable (x/3)2 are used. 
These correspond in form to the truncated ascending power series for each function. 

For the complementary segment x > 3, Allen's approximations for the modulus 
and phase of the Hankel function J,, + iY,, are polynomials of sixth degree in the 
inverse variable (3/x). This form is surprising, since only even powers of the inverse 
variable occur in the asymptotic expansion for the modulus, and odd powers for the 
phase. The disparate magnitude of Allen's polynomial coefficients is further evi- 
dence that the form assumed is not optimum; for example, the first odd coefficient 
in the approximation for each modulus is four orders of magnitude smaller than the 
next even coefficient. 

The present work was limited initially to providing suitable approximations for 
the Struve functions Ho and H1 to be used in conjunction with the Bessel function 
approximations in [1]. New approximations also have been derived for the Bessel 
functions, after observing that the polynomials in [1] could be improved for both 
subdomains of x. 

High-accuracy Chebyshev expansions are given by Luke [3] for the Bessel and 
Struve functions. For the Bessel functions, similar results are given by Clenshaw [4] 
and minimax rational-fraction approximations are tabulated by Hart et al. [5]. 
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However, the lower segment extends from x = 0 to 8 in all of these approximations, 
with the consequence that polynomials of relatively high degree are required for 
single-precision accuracy. Thus, optimum polynomial approximations must be rede- 
rived in more appropriate subintervals for single-precision use. 

The present results have been developed using an IBM PC microcomputer with 
double-precision internal accuracy of 17S. 

2. Polynomial Approximations for 0 < x < 3. It is straightforward to derive 
Chebyshev expansions from the ascending power series for J,, and the regular part of 
Y1. The coefficients in Table 1 follow by truncation of these expansions and 
conversion to ordinary polynomials. The forms adopted here for Jo, J1, and Y0 are 
identical to Allen's approximations [1, Section 9.4, Eqs. 1, 2, 4] but differences may 
be noted in the coefficients, typically in the fifth or sixth decimal place. The form 
adopted here for Y1 is modified to correspond with the ascending series in odd 
powers of the argument. In all cases the maximum error is significantly less than that 
reported in [1]. 

Analogous polynomials with one less term are listed in Table 2. Similar approxi- 
mations for the Struve functions Ho(x) and H1(x) are given in Table 3. 

TABLE 1 
Polynomial approximations for 0 < x < 3 

Jo(x) = 0.999999999 J1(x)/x = 0.500000000 
-2.249999879 (x/3)2 -0.562499992 (x/3)2 
+ 1.265623060 (x/3)4 + 0.210937377 (x/3)4 
-0.316394552 (x/3)6 -0.039550040 (x/3)6 
+ 0.044460948 (x/3)8 + 0.004447331 (x/3)8 
-0.003954479 (x/3)10 -0.000330547 (x/3)10 
+ 0.000212950 (x/3)12 + 0.000015525 (x/3)12 

+ e(x) + e(x) 

IeI < 1.9E-09 IeI < 1.2E-09 

YO(x)= (2/7f)ln(x/2)JO(x) Y1(x)= (2/,r)(ln(x/2)Jl(x) - l/x) 
+ 0.367466907 + 0.073735531 (x/3) 
+ 0.605593797 (x/3)2 + 0.722769344 (x/3)3 
-0.743505078 (x/3)4 -0.438896337 (x/3)5 
+ 0.253005481 (x/3)6 + 0.104320251 (x/3)7 
-0.042619616 (x/3)8 -0.013637596 (x/3)9 
+ 0.004285691 (x/3)10 + 0.001125970 (x/3)11 
-0.000250716 (x/3)12 -0.000056455 (x/3)13 
+< (x) +0 (x) 
jej < 3.3E -09 lel < 7.1E -10 
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TABLE 2 

Simplifiedpolynomial approximations for 0 < x < 3 

J0(X)= 0.99999990 J1(x)/x = 0.49999999 
-2.24999239 (x/3)2 -0.56249945 (x/3)2 
+ 1.26553572 (x/3)4 + 0.21093101 (x/3)4 
-0.31602189 (x/3)6 -0.03952287 (x/3)6 
+ 0.04374224 (x/3)8 + 0.00439494 (x/3)8 
-0.00331563 (x/3)10 -0.00028397 (x/3)10 
+ E(X) + E(X) 
Iel < 1.1E- 07 IEI < 1.1E- 08 

Y0(x) = (2/7r)ln(x/2)Jo(x) Y1(x)= (2/7T)(Qn(x/2)J1(x) - 1/x) 
+ 0.36746703 + 0.07373571 (x/3) 
+ 0.60558498 (x/3)2 + 0.72276433 (x/3)3 
-0.74340225 (x/3)4 -0.43885620 (x/3)5 
+ 0.25256673 (x/3)6 + 0.10418264 (x/3)7 
-0.04177345 (x/3)8 -0.01340825 (x/3)9 
+ 0.00353354 (x/3)10 + 0.00094249 (x?3)1 
+ E(X) + E(X) 

II< 2.9E - 07 II< 1.6E- 08 

TABLE 3 

Struve function approximations for 0 < x < 3 

H0(x) = 1.909859164 (x/3) H1(x) = 1.909859286 (x/3)2 
-1.909855001 (x/3)3 -1.145914713 (x/3)4 
+ 0.687514637 (x/3)5 + 0.294656958 (x/3)6 
-0.126164557 (x/3)7 -0.042070508 (x/3)8 
+ 0.013828813 (x/3)9 + 0.003785727 (x/3)10 
-0.000876918 (x/3)11 -0.000207183 (x/3)12 
+ E(X) + E(X) 
IeI< 1.2E-08 IEI< 2.5E- 09 

3. Polynomial Approximations for x > 3. Following the notation of [1], the 
modulus and phase of the Hankel function are defined by 

(1) Jn(x) + iY,,(x) = x-1/2f exp(i iO). 

Guided by the corresponding asymptotic approximations for large (positive) x, the 
Chebyshev expansions for the modulus and phase can be combined in the form 

00 

(2) fn(Ixl) + sgn(x)[On(Ixl) - lxl + (2n + 1) s/4] = E CnmTm (3/x) 
m=O 
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in the extended range -1 < (3/x) < 1, with m even or odd for the respective 
separate expansions. Here T7(z) is the Chebyshev polynomial, and the primed 
summation indicates that the term m = 0 is multiplied by 1/2. 

The numerical procedure used to determine the coefficients Cnm is based on 
Miller's backward recursion for the Bessel functions, and evaluation of the Chebyshev 
coefficients by Clenshaw's algorithm [6]. The resulting sequence of Chebyshev 
coefficients is monotonic in magnitude, and can be truncated effectively to yield the 
ordinary polynomials in Table 4. Here the errors are essentially the same as those of 
Allen, but one less term is required as a consequence of using the more efficient even 
or odd power series for the modulus and phase, respectively. These polynomial 
approximations result in absolute errors less than 3E - 08 for each of the four 
Bessel functions, throughout the range x > 3. 

TABLE 4 
Polynomial approximations of Bessel functions for x > 3 

fo = 0.79788454 00 = x - ?T14 
-0.00553897 (3/x)2 -0.04166592 (3/x) 
+ 0.00099336 (3/x)4 + 0.00239399 (3/x)3 
-0.00044346 (3/x)6 -0.00073984 (3/x)5 
+ 0.00020445 (3/x)8 + 0.00031099 (3/x)7 
-0.00004959 (3/x)10 -0.00007605 (3/x)9 
+ e(x) + 6(x) 
lel < 1.8E- 08 lei < 5.1E- 08 

f= 0.79788459 01 = x - 3 1/4 
+ 0.01662008 (3/x)2 + 0.12499895 (3/x) 
-0.00187002 (3/x)4 -0.00605240 (3/x)3 
+ 0.00068519 (3/x)6 + 0.00135825 (3/x)5 
-0.00029440 (3/x)8 -0.00049616 (3/x)7 
+ 0.00006952 (3/x)10 + 0.00011531 (3/x)9 
+ E(X) + E(x) 

lel < 2.5E-08 lel < 7.3E-08 

A similar procedure may be followed for the Struve functions, with evaluation 
from running sums of Jn during the backward recursion and combining of the 
odd/even Chebyshev expansions for the respective functions Ho(x) - YO(x) and 
Hl(x) - Y?(x) based on the respective asymptotic expansions. However 20 terms 
are required for an accuracy of 4E - 08, corresponding to polynomials for each 
Struve function with 10 or 11 terms. In view of their complexity these results have 
been deleted in favor of the more efficient rational-fraction approximations to 
follow. 

4. Rational-Fraction Approximations for x > 3. A variant of Maehly's algorithm 
[7] has been used to derive minimax rational-fraction approximations for x > 3, with 
the error curves leveled to 3S. Three terms in each numerator and denominator yield 
ultimate maximum errors in the Bessel functions less than 2E - 08. The coefficients 
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are listed in Table 5, where the function identified by the column heading is 
approximated in accordance with the rational fractions 

(3) f (x) = (ao + a1/x2 + a2/x4)/(1 + b1/x2 + b2/x4) + _(x), 

(4) O,1(x) - x + (2n + 1) 7T/4 

- (aO + al/x2 + a2/x4)/(x + bl/x + b2/x3) + e(x). 

TABLE 5 
Coefficients of the rational fractions (3)-(4) 

fo 00 - x + 7T/4 f1 o1 - x + 37f/4 

ao 0.79788454 -0.12499967 0.79788459 0.37499947 
a1 5.46272781 -1.07437411 4.76650390 2.77870488 
a2 3.02562477 -0.75853664 2.58896576 1.39381402 

b1 6.90899779 9.11511321 5.78645312 7.84700458 
b2 4.12217805 9.19906287 2.35033517 6.19124657 

lel < 2.1E - 08 8.1E- 09 3.5E -08 1.3E - 08 

For the Struve functions another term is required to achieve the desired accuracy, 
and the results take the form 

(5) Ho(X) - YO(x) 2(ao + al(3/x)2 + a2 (3/ 2 )4 +3 (3x)6) + e(x) (5) H0(x) - Y0(x) 
x(I + b, (3/x )2 + b2 (3/x )4 + b3 (3/x)6) 

+cx 

and 

(6) H (x) , (x) 2(ao + al(3/x )2 + a 2(3/x )4 + a3 (3/x)6)_ () (6) H1(X) - Y1(X) = f(I + bl(3/x)2 + b2(3/x)4 + b3 (3/ )6) + e(x), 

where the coefficients and errors are listed in Table 6. 

TABLE 6 
Coefficients of the rationalfractions (5)-(6) 

Ho(x) - YO(x) H1(x) - Y1(x) 

ao 0.99999906 1.00000004 
a1 4.77228920 3.92205313 
a2 3.85542044 2.64893033 
a3 0.32303607 0.27450895 

b, 4.88331068 3.81095112 
b2 4.28957333 2.26216956 
b3 0.52120508 0.10885141 

lel < 8.2E-09 2.5E-08 
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