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Products and Sums of Powers of Binomial 
Coefficients mod p and Solutions of Certain 

Quaternary Diophantine Systems 

By Richard H. Hudson* 

Abstract. In this paper we prove that certain products and sums of powers of binomial 
coefficients modulo p = qf + 1, q = a2 + b2, are determined by the parameters x occurring 
in distinct solutions of the quaternary quadratic partition 

16pa = X2 + 2qU2 + 2qtv2 + qwo2, (X, u, v, w, p) = 1, 

xw = av2 - 2buu - aU2 X 4 (mod q), a > 1. 

The number of distinct solutions of this partition depends heavily on the class number of the 
imaginary cyclic quartic field 

K= Q(i 2q+2af), 

as well as on the number of roots of unity in K and on the way that p splits into prime ideals 
in the ring of integers of the field Q(e2v'P/q). 

Let the four cosets of the subgroup A of quartic residues be given by c1 = 2JA,/j = 0, 1, 2, 3, 
and let 

Si t, j = 0, 1, 2, 3. 
q t c- c 

Let Sm and sn denote the smallest and next smallest of the sj respectively. We give new, and 
unexpectedly simple determinations of HkG, kf ! and HkG, +2 kf !, in terms of the parame- 
ters x in the above partition of 16pa, in the complicated case that arises when the class 
number of Kis > 1 and sM ;1 s, 

1. Introduction and Summary. Throughout, p will denote a prime = qf + 1 with 
q = a2 + b2 5 (mod 8) prime, a 1 (mod 2), b > 0. Quaternary quadratic repre- 
sentations of pa or 16pa, a > 1, such as 

(1.1) 16p = x2 + 2qu2 + 2qv2 + qw2, (x, u, v,w,p) = 1, 
xw = av2 - 2buv - au2, x 4 (mod q), 

have been studied by, e.g., Dickson [2], Whiteman [15], Lehmer [9], Hasse [5], 
Giudici, Muskat, and Robinson [4], Muskat and Zee [12], and Hudson, Williams, 
and Buell [7]. Determination of the number of solutions (if any) of (1.1) for an 
arbitrary exponent a is a deep and complex problem as it depends on the class 
number of the imaginary cyclic quartic field 

(1.2) K = Q(i F2q + 2a q), 
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604 RICHARD H. HUDSON 

on the number of roots of unity in K, and on the way that p splits into prime ideals 
in the ring of integers of the cyclotomic field Q(e2,lP/q). 

For q = 5, the only roots of unity in K are + 1 (see, e.g., [6, p. 4]). However, for 
q = 5, there are 10 roots of unity in K and (as a consequence discussed in Section 3 
of [1]) the appropriate system to consider in this case is the system given first by 
Dickson [2], namely, 

(1.3) 16pa = x2 + 50u2 + 502 + 125w2, (x, u, v, w, p) = 1, 

xw= v - 2uv- u, x 1 (mod5). 

Determination of binomial coefficients of the type (f ) modulo p = qf + 1, 
1 < r < s < q - 1, in terms of parameters in quadratic forms has been a topic of 
interest since the late 1820's when Gauss [3] determined (2jf) modulo p = 4f + 1 in 
terms of the parameter a in the quadratic form p = a2 + b2. For a survey of known 
results see [8]. 

In [10] Emma Lehmer showed that forp = 5f + 1 and (x, u, v, w) any of the four 
solutions of (1.3) with a = 1 one has 

(2f~ x (x2 _ 125 W2)W(md=5 1) 
(1.4) (f__x+ (x 15 )(mod p = 5f + 1), 

(1.4) ~f) 2 +8(xw + 50uv) 
and 

f3f\ x _ x2 _ 125 W2)W (1.5) ( 3f) 2 _(x + SOuv) (mod p = 5f + 1). 

For p = 13f + 1 and (x, u, v, w) any of the four solutions of (1.1) when a = 1, 
Hudson and Williams [8, Theorem 16.1] proved that 

(1.6) (~4j) - 3(x -2 13W2) W 
(1.6) (4f) _ x + 8(x w + ) (mod p = 13f+ 1), 

and 

(1.7) (7f_ x 3(x2 - 13w2)w (mod p = 13f + 1). 
~2fj2 8(xw+l13uv) 

Results analogous to (1.4)-(1.7) have recently been obtained for all q > 13; see [7, 
Section 6]. The starting point for these results was Matthews' [11] explicit evaluation 
of the quartic Gauss sum and a congruence for factorials modulo p derived from the 
Davenport-Hasse relation in a form given by Yamamoto [16]. Using these tools and 
Stickelberger's theorem [14], Hudson and Williams explicitly determined H kf! 
modulo p = qf + 1 for all q > 5, where k runs over any of the four cosets which may 
be formed with respect to the subgroup of quartic residues modulo q, in terms of 
parameters in systems of the type (1.1). 

We begin this paper by proving that certain products and sums of powers of 
products of factorials modulo p = qf + 1 determine (and conversely are determined 
by) the parameters x occurring in distinct solutions of (1.1) when a > 1. For 
example we show that 

(1.8) (4j) +(2) x31(mod p = 13f+ 1), 
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(1.9) ( (( 2 
X3,2 (mod p = 13f + 1) 

(1.10) ( t ) ( 2 - X3,3 (mod p = 13f + 1), 

where the Xk,1, 1 < i < k, denote from this point on the solution(s) of (1.1) when 
a > 1. (The subscripts will be dropped when there is no ambiguity (as when, e.g., 
a = 1).) 

Let the four cosets of the subgroup A of quartic residues be given by c1 = 2JA, 
j= 0,1,2,3,andlet 

(l.ll) SJ= 1 L~~I t, j-=0, 1,2, 3. 
qt E c 

Define h to be the odd positive integer given by 

(1.12) h = max(IsO - S21, Is1 - S31). 

When (1.1) is solvable for a = 1, exactly four of the solutions (X3,1, U3,1, V3,1, W3,1) for 
each a satisfy 32, - qw,i 0 0 (mod p) and it is convenient to let this value of i be 1. 
Using Stickelberger's theorem [14], Hudson and Williams [7] have shown that (1.1) is 
always solvable for a = h. If ao denotes the exponent such that (1.1) is solvable for 
ao but not for a < a0, we would expect to find 4a/aO solutions to (1.1) for each a a 
multiple of ao and no solutions for a not a multiple of a0. This appears to be the 
case whenever ISO - S21 = IS1 - S31 and so, certainly, for all q < 101 (as then the 
class number of K is 1-see [6], [13]). Moreover, this is the case for all numerical 
examples which may be computed by direct search techniques. A major point in this 
paper appears in Section 4 where we show that the unexpected does occur (and 
frequently). Indeed, whenever ISO - S21 = Is1 - s31 (which will always be the case 
when the class number is not a perfect square) and 0o = h, we show that there are 
only 4ao solutions to (1.1) when a = 2ao. More significantly and surprisingly, the 
"missing" 4ao solutions (these fail to be genuine solutions as they do not satisfy 

(X22, U2,2 V22, W2,2 p) = 1) turn out, upon division by a certain power of p to be 
solutions of (1.1) for a not a multiple of ao. 

Henceforth, Sm denotes the smallest and sn the next smallest of the s,. In the 
closing section of this paper, Section 5, we give new, simple, and unexpected 
determinations of Hk Ec kf ! and Hkec +2 kf ! modulo p in the most complicated case 
treated in [7], namely, the case that Sm = Sn. 

2. Explicit Binomial Coefficient Theorems When a = 2h and s,,, = Sn. Let Pr be a 
prime ideal divisor of p in the ring of integers of Q(e27lP/q). It follows from (5.33) 
and (5.59) of [7] that 

(2.1) H kf! (1)sf+2(2 + 2w ) (mod Pr), r E c2-(,,+ 
k E=-C~ 

and 

(2.2) H kf! (-1) s(2 + -wv/ ) (mod Pr), r E C9 (r7+2). 
kEc,2 

2 2 
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However, we have assumed Sm = Sn in this section so we have that (having interpre- 
ted V/-j as a rational expression (mod p) and finding that / differs by a sign in 
(2.1), (2.2) -see (5.3), (5.4) of [7]), 

(2.3) (k! kf!) +( r kf!) -2 q (modp). 
k E-cm +2 k Ec-n +22 2 

Using Theorem 4.1 of [1] we now prove the following theorem. 

THEOREM 2.1. There exist four solutions of (1.1) with 

a = h = max( sO - S21 ISI - S31) 

namely (Xh,1, Uh,1, Vh,l, Wh,1), (Xh,1, -Uh,1, -Vh,l Wh,1), (Xh,1, Vh,1, Uh,1, Wh,l), 

(Xh,1, -Vh,1, Uh,1, -Wh,1) such that p + (Xh1 - qwh,1), p t (bXhilWh,1 + qUh,lVh,1) pro- 
vided sm = sn. Let a = 2h. Then 

(2.4) (H kf) + (H kf!) -X2h (modP) 
k E- cs7l + 2 k E- cn +2 

for four solutions of (1.1) which satisfyp + (x2h1 - qw21) and 

(2.5) (k? kf!)(H kf!) -x2h2(modp) 
k E=cm,+ 2 k E=cn +2 

for four solutions of (1.1) which satisfy p2(Sn-Sm) 11 (X2h2 -qW22h 

Proof. For brevity let (xh,1, uh,1, Vh1, wh,l) = (x, u, v, w). Then by Theorem 4.1 of 
[1] we have 

(2.6) X2hX1 = k(X2 - 2qu2 - 2qv2 - qw2). 

Clearly, 

x2 + qw2 -2qu2 - 2qv2 (mod p) 
so that 

(2.7) X2h,1 
2 q (mod p) 

and (2.4) follows immediately from (2.3). Applying the transformation u v, 
v -- -u, w -f -w, and then using (2.6) we obtain 

(2.8) X2h2= x2-2quv + 2quv-qw2 x2 -qw2 
4 4 

Now (2.5) follows at once as 

(2+2 )(2 4X) 2 

After easy simplifications we have 

(2.9) w2h = xw and w2h 2 = -2(bv2 + 2auv - bu2). 

Appealing to (1.1) with a = h (see (5.42) of [7]) we note that 

(x2 - qw2)2 = 256p2h - 64qph(u2 + v2) + 4q(bv2 + 2auv - bu2)2 

and it follows that (see (5.40) of [7]) 
(2.10) p2(sn-Sm) 11 (X2,2 - qW2h,2) 
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Moreover, we have 

(x 2 +w)w - q(xw)2 = (x2- qw2 )2 

from which it follows that 

p + (X2h,1 - qw2hl) 

as pStiSm 11 by2 + 2auv - bu2 and by assumption sn = Sm. Note that in [7] the signs 
of a and b are fixed to allow for a positive or negative choice of sign for b in contrast 
to [1]. The different notations will in some cases imply a switching of roles of u and v 
in applying formulae from [7] but will not otherwise present a problem here. 

Example 1. Let q = 13 so that Sm = Sn = 1. Then 

H kf! 4f!0f!12f! j f) (modp) 
kec2 

and 

H kf! = 7f!8f!11f! (2f) (mod p). 
k E=-C 

Letp =53 =4q + 1. Then 

(164) + (288)_ 182 + 262 6 + 40 46 (mod 53), 

(16 )(28) 9 (mod 53). 

It is easily checked from (2.6) and (2.8) that X2h1 = -113 46 (mod 53) and 
X2h,2 = 9 9 (mod 53). 

Example 2. Let q = 149 so that the class number of K is 9 and Sm = Sn = 17 (see 
[6], [7]). A solution of (1.1) with a = h = 3 is (-2380, 2744, 8824, -3392). Direct 
computation yields forp = 1193 = 1499 8 + 1, 

(2.11) Hl kf! 509(1193), Hl kf! 690 (mod 1193). 
kec2 kec3 

From (2.6) and (2.8) we have 

x61 = -5931740060 293 (mod 1193), X6,2 = -427169884 486 (mod 1193) 

and it is easily checked that 

(509)2 + (690)2 293 (mod 1193), (509)(690) 486 (mod 1193). 

Finally, 

p 2(13-12)= 11932 = 14232491(4271698842 149 *5211585922). 
3. Explicit Binomial Coefficient Theorems When a = 3 and Sm = Sn. 

THEOREM 3.1. Let Sm = Sn and let a = 3h in (1.1). Then four solutions of (1.1) satisfy 

(3.1) kf +( fl kf X3hl(modp) 
k E=- cm + 2 k 6 cn + 2 

four more satisfy 

(3.2) (frl kf!)(1 kf!) I X3h2(modp) 
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and the remaining four solutions all have 

(3.3) (kT , kf!) (H 1 ki!) X3h,3 (mod p). 
k E= cm,+ 2 k E=- cn 2 

Proof. We first establish (3.1). By the binomial theorem we have 

(3.4) 2 + 
w 

4) + ( 2 - 2 
3 

+ 3qxW2 

Next for (x, u, v, w) a solution of (1.1) when a = h we have from [11 that 

X3h1 = [ (X2 - 2qu2 - 2qv2 + q2) - 2qu(2xu + 2bvw + 2auw) 

- 4 (2xv + 2buw - 2avw) + qw(xw)] 

x3 qxu2 qxv2 qxw2 qxu2 qbuvw qau2w 

16 8 16 16 4 4 4 

qxv2 qbuvw + qav2w + qxw2 
4 4 4 4 

as W21= 4(2xw - 2au2 + 2av2 - 4buv) = xw by (1.1). 
However, we clearly have 

3qxu2 3qxv2 = 3x2 + 3qxw2 _ 16ph 
8 8 16~ 16 

and 

qav2w qbuvw_ qau2w qxw2 

4 2 4 4 

Thus, the above equation simplifies to 

x3 + 5qxw2 qxw 3x3 3qxw2 16 h 
X3h,1y+ 16 + 16 + 16 

that is, 

(3.5) 1= + 3qxw2 16p 

The result (3.1) is now immediate from (2.1), (2.2), (3.4) (as again we note that '/V 
differs by a sign in (2.1) and (2.2) when interpreted as a rational expression mod p). 

Next applying the same formulae, but after first performing the transformation 
u -) v, v -- -u, w -- -w, we obtain 

X(X2 - qw2) _ qxu2 qbuvw + qbu2w qau2w qauvw 

X3h,2 16 8 8 8 8 8 

qxuv + qxuv qbv2w qbuvw _ qauvw qav2w qxv2 

8 8 8 8 8 8 8 

+ qbu2w _ qauvw _ qbv2w 

8 4 8 
But by (1.1) we have 

(3.6) qxw2 qav2w + 2qbuvw qau2w 
8 8 8 8 
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Moreover, by (5.53) of [7] we have 

(3.7) qbu2w _ qauvw _ qbV2_ W x2w + qw3 (mod p) 
4 2 4 8-8 

with the sign ambiguity resulting from the two possible sign choices for /'. 
Corresponding to the plus and minus choices of sign we have from (3.6) and (3.7) 
that 

x 3 qxw x2 w qw_ 
(3.8) X3h,2 8- - - 8 _ (modp) 

and 

(39) X3h3 
qxw 2 

+ q qw3 q (mod p). 
X33= 8 8 8 

(Verification of (3.9) using Theorem 4.1 is straightforward and left to the reader.) 
The rest of the theorem now follows at once from (2.1), (2.2), upon noting that 

(2 2 2 )2 2 2 )2 - 2 ) 

x3 _ x2wq qxw2 +qw 2 

8+ 8 8 - 8 

COROLLARY. 

(3.10) X3h 2 - X3h,3 = 4qw(bu - 2auv - bv ). 

Proof. The expressions for X3h,2 and X3h,3 differ precisely by a change of sign in 
the expression on the left-hand side of (3.7). 

Example 3. Let q = 149 so that a = 7, b = 10, sm = sn = 17, and a solution of 
(1.1) with a = h = 3 is (-2380, 2744, 8824, -3392). Then 

(-2380)3 + 3(149)(-2380)(3392)2 

- (509)3 + (690)3 = 143 (and 1193), 

in agreement with Theorem 3.1 in view of (2.11). Moreover, appealing to (3.7), (3.8), 

(3.9), we have 

(-2380)3 _ 149(-2380)(3392)2 + 149(10)(2744)2(-3392) 
X 9,2 8 8 4 

_ (149)(7)(2744)(8824)(-3392) 149(10)(8824)2(-3392) 
2 4 

= 27 + 184 - 228 - 671 + 151 = 805 (509)(509)(690) (modI193). 

Finally, by (3.10) we have 

X9,3 -805 - 4(149)(-3392)(10)(2744)2 -(2)(7)(2744)(8824) - J 

805 + 981(358 - 185 - 415) 810 (690)(690)(509) (r 

4. The Number of Solutions of (1.1) When a = 2h and Sm 0 Sn . 

difficult to obtain numerical data giving solutions of (1.1) with a = 
smallest value of q with Sm 0 Sn is q = 101 and the smallest prilr 
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607. A direct search for solutions of 

(4.1) 16(607) = x2 + 202U2 + 202V2 + 101w2, 

xw = v - 20uv - u2, x 4 (modlO1), (x, u, v,w, p) = 1, 

is already very time consuming for a = h = 3 and appears to be hopeless for a > 3. 
Making use of theorems in [1] and [7], Buell and Hudson showed that 

(8185, -966, 1971, 5013) 

is a solution of (4.1) when a = 3 (there are no solutions when a = 1 or 2). Applying 
Theorem 4.1 of [1] one finds the solution 

(4.2) (407976475, 43028481, -21086784, 41031405) 

for a = 6 and we note that 

(4.3) ( H kf!) (294)2 242 407976475 (mod607). 
k e- , 

However, when one applies Theorem 4.1 of [1] after applying the transformation 
u -* v, v -u -u, w -w -w (or any of the other possible transformations) one does not 
obtain a solution to (1.1). Indeed in general, it follows from (2.8), (2.9) and (5.39), 
(5.40) of [7] that pSn-Sm 11 X2h,2 and pSn-Sm 1r W2h 2. But 

p2(n-S (x2h qw2h2) p(2sn-Sm) (u2h2 + V22) 

and 

pSnS 
- 

s-I 
(bX2h,2W2h,2 + 2qU2h,2V2h,2) 

by (5.40) of [7]. Together these clearly imply that 

Ps"s I (X2h,2X U2h,2a V2h,2 W2h,2) 

so that (x2h2, U2h,2, V2h,2, W2h,2, p) s/ 1 if Sn > Sm (that is the four-tuple obtained is 
not a solution of (1.1) when a = 6 in view of the restriction in (1.1) that a solution 
be relatively prime to p). Nonetheless, it is clear that the difficulty arises precisely 
because the parameters in the four-tuple have precisely Sn - sm too many p's as 
factors. From 

p2(sn-St) (xh2 + 2qU2h2 + 2qV2h2 + qW2h,2) 

we see at once that 
1 

pSn-Sn (X2h,2, U2h,2a V2h,2, W2h,2) 

is a solution of (1.1) for a = 2h - 2(sn - Sm). By (2.4) of [7] we have 2(sn - sm) < h. 
Thus we have established that for sn ii Sm the system (1.1) is not only solvable for 
a = h [7, Section 4], but also for a value of a that is not a multiple of h, namely 
a = 2h - 2(sn - Sm). 

Example 4. For q = 101, p = 607, we have Sm = 11, Sn = 12 and in contrast to the 
case Sm = sn there appears to be only one solution to (1.1) when a = 6, namely the 
solution given by (4.2). However, the four-tuple 

(X2h,2, U2h,2, V2h,2, W2h,2) 

= (-617788211, 6857886, -44077305, -12854439) 
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satisfies all the conditions of (1.1) except that each parameter is divisible by 
p? Sm = p = 607. Consequently, the four-tuple 

(1017773, -11298, 72615, 21177) 

is a solution of (1.1) when a = 2h - 2(sn - Sm) = 6 - 2 = 4. 

5. A New Determination of Certain Products of Factorials mod p = qf + 1. 
Extending work of Cauchy and Jacobi (who treated the quadratic case), Hudson and 
Williams determined in [7] the four products of factorials modulo p = qf + 1, q 5 
(mod 8) > 5 (a fixed 1 (mod 4) and b -(q - 1)/2!a (mod q)), given by Hk kf! 
where k runs through the four cosets which may be formed with respect to the 
subgroup of quartic residues modulo q. In particular, they showed that for Sm = Sn 
(Case B in [71) there are four solutions of (1.1) when a = h such that (with signs of 
a, b fixed as above, and x -4 (mod q)) one has 

(5.1) H kf!- J (mod p), 
kecet X 

(5.2) e [ (Ik)(b-2(m-n))/4abw(x2- qw2) ( P) 

b2xw + 2lblquv 

(5.3) 1 kf! (-l1)s1 x (mod p), 
k e Cm + 2 

(5.4) H kf 4p(1S)" (2x + -1)( ( abw(x qw (mod p). 

Obviously, the congruences (5.2) and (5.4) are rather unwieldy. As an easy 
consequence of the arguments in Section 2 and Section 4 of this paper we have 

(krI kf!)( kf!)psn s - x2h2(modp) 
k E- enl kfE c,,+ 2 

for four solutions of (1.1) with a = 2h and this yields alternative determinations 
which are much neater as exhibited in the following theorem. 

THEOREM 5.1. There are four solutions of (1.1) when a = h, any one of which we 
denote by (x, u, v, w), and four solutions with a = 2h - 2(Sn - Sm) which we denote 
by (x', u', v', w') such that for any of these 8 solutions we have 

(5.5) kf ! - (modp), 
k E= 

cnti 

(5.6) H kf! () (modp), 
kec, X md ) 

(5.7) H kf! (-I)s +lx (mod p), 
kecm+2 

(5.8) H kf - x (mod p). 
kEc,2 X 
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Example 5. Let q = 101, p = 607 so that 

(x, u, v, w) = (8185, -966, 1971, 5013) (294, 248, 150, 157) (mod p) 

and 
(x', u', v', w') = (-1017773, 11298, 72615, 21177) 

(166, 372, 382, 539) (mod 607). 

From Example 7.1 of [7] we have 

(-1)se+1 H kf! 294 (mod 607) 
k 6ecm2 

and 

(-1)s'+1 H kf! 302 (mod 607). 
k e -,t+ 2 

These congruences are clearly in agreement with (5.6) and (5.8) as (-1)1" +166/294 
302 (mod 607) and (5.6) follows as a consequence of (5.59) of [7]. 

Example 6. Let q = 157, p = 1571. Among the 12 solutions of (1.1) with a = h = 3 
we have 

(23868, 3254, 8570, 14948) (303, 112, 715, 809) (mod 1571). 

Now ((23868)2 -157(14948)2)/4psnsm = 360 (mod 1571) as so = 19, s1 = 18, s2 = 

20, s3 = 21 (see [7, Example 2]). Moreover, 

H kf! -303 (mod 1571) and H kf! 1090 (mod 1571). 
k E C+, +2 kE cn+2 

By Theorem 5.1 we should have 

H kf (-1)19360=1 
fe kf! -303 - 1090 (mod1571), 

and this is easily verified. 
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