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Abstract. We consider numerical approximations to solutions of systems of hyperbolic 
conservation laws of the form au/at + af(u)/ax = 0, u E R' andf: R - R' smooth. We 
show that conservative three-point second-order accurate methods cannot satisfy a local 
entropy inequality. 

1. Introduction. We consider numerical approximations to solutions of systems of 
hyperbolic conservation laws of the form 

(1.1) a u + a- f(u) = 0, 

where u E R' and f: Rn -* R' is smooth. It is well-known that, even with smooth 
initial data, globally defined classical solutions do not exist, due to the development 
of shock waves. In the enlarged class of discontinuous solutions, uniqueness is lost in 
general, and one is faced with the problem of choosing the unique physically 
relevant solution. The traditional criterion for admissibility for solutions is based on 
entropy dissipation and requires that 

(1.2) a t(u) + a q(u) < 0, 

where q, q is a generalized convex entropy pair in the sense of Lax [2]. In order to 
establish convergence of numerical methods of classical finite-difference schemes it 
is necessary to satisfy the entropy condition above. One obvious attack is to derive a 
discrete entropy inequality of the form 

(1.3) Dt7q + Dxq < 0. 

This can be achieved for a class of first-order methods and provides a convenient 
way of verifying the entropy condition (1.2). It was shown by Lax [2] that if the 
system of conservation laws (1.1) admits a strictly convex entropy, then all weak 
solutions of (1.1) which are limits of the Lax-Friedrichs scheme will satisfy the 
discrete entropy inequality (1.3), provided the Courant-Friedrichs-Lewy constant is 
small enough. It is natural to ask if this result can be extended to second-order 
accurate methods. In this paper we provide a negative answer to this question. 
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Specifically, for conservative three-point second-order accurate methods we show 
that an inequality of the form 

q(u) - '(z) + Q(w, z) - Q(z, v) < 
At Ax 

cannot hold for any convex entropy q. Here u = u(x, t + At), v = u(x - Ax, t), 
w = u(x + Ax, t), z = u(x, t) and the numerical flux Q satisfies the standard 
consistency condition 

Q(u, u) = q(u). 

Thus the analysis of the entropy production for second-order accurate methods is 
not a purely local problem. In [4], Majda and Osher construct a simple modification 
of the Lax-Wendroff scheme which retains the features of conservation form, 
three-point scheme, and second-order accuracy. The scheme is obtained by adding a 
nonlinear viscosity term to the classical Lax-Wendroff operator. They show that if 
the solutions to this scheme converge boundedly a.e. to a function u, then there is a 
weak solution of (1.1) which satisfies the entropy condition (1.2) with ' (u)= 2 

and q(u) = Jo sf'(s) ds. Finally, we would like to mention that basic L2 stability 
estimates for conservative second-order accurate schemes have been established by 
Engquist and Osher [1] and by Majda and Osher [4]. These estimates provide a 
starting point on the attack of the convergence problem using the theory of 
compensated compactness [5], [6], [7]. 

2. The Entropy Inequality for Second-Order Schemes. We consider numerical 
appoximations to weak solutions of strictly hyperbolic systems of conservation laws 
of the form 

(2.1) ut + f(u)X = . 

Here u E R' andf: Rn -* Rn is a smooth nonlinear mapping. The condition of strict 
hyperbolicity requires the Jacobian Df = af '/au3 to have n linearly independent 
eigenvectors. The conservation laws under consideration admit a strictly convex 
entropy function q(u). We recall that a pair of functions q(u), q(u) is called a 
generalized entropy, entropy flux pair for (2.1) if 

(2.2) q(u)t + q(u)x = 0 

holds identically for any smooth vector field u(x, t) which satisfies (2.1). We note 
that (2.2) is equivalent to the compatibility condition 

(2.3) Vq(u)Vf(u) = vq(u). 

This condition follows carrying out the differentiation in (2.3) and multiplying Eq. 
(2.1) by Vq, i.e., 

V'qut + VqVfux = 0, Vqut + vqux = 0. 

As is well-known, the initial value problem (2.1) does not have, in general, global 
classical solutions and one has to look for weak solutions (bounded measurable 
functions which satisfy (2.1) in the sense of distributions). In this setting, uniqueness 
is lost. In the class of genuine nonlinear hyperbolic conservation laws which admit a 
strictly convex entropy, the physical relevant solution is selected by the following 
criterion. 
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Entropy admissibility criterion: Let q(u) be a strictly convex entropy for (2.1) 
with entropy flux q(u). A weak solution u(x, t) of (2.1) is called admissible if it 
satisfies 

(2.4) q(u)t + q(u)x < 0 

in the sense of distributions. 
We will show that a discrete version of (2.4) for conservative three-point second- 

order accurate schemes cannot be achieved for any strictly convex entropy 'q. 
Specifically, we consider explicit three-point conservation schemes [3]: 

(2.5) A\t Ax 

Here Au is the forward time difference 

Au = u(x, t + At) - u(x, t), 

g is a vector-valued function of two vector arguments which reduces to f when its 
arguments are equal 

(2.6) g(u, u) =f(u) 

and A/g is the symmetric space difference 

Ag = g(u(x + Ax), u(x, t)) -g(u(x, t), u(x - Ax, t)). 

We recall that condition (2.6) ensures the consistency of the scheme (2.5) with the 
system (2.1) in the following sense. Let v(x, t) be a solution of the difference scheme 
(2.5) (define for the sake of convenience v(x, t) = v(x, t'), when t is a noninteger 
multiple of ASt, where t' = At[t/At]). If v(x, t) converges boundedly a.e. to some 
function u(x, t) as Ax and At tend to zero then u(x, t) is a weak solution of (2.1) [3]. 

We recall that in [2], Lax shows under the appropriate restrictions for the 
Courant-Friedrichs-Lewy number, that the Lax-Friedrichs scheme for systems satis- 
fies the entropy inequality (2.4). The method used is to show that the discrete 
entropy inequality 

Dt,q + Dxq < 0 

holds. Here Dt and Dx are the difference operators corresponding to the Lax- 
Friedrichs scheme, i.e., 

D = 1T(At) S(Ax) +S(-Ax) x S(Ax) - S(-Ax) D 
At Az~2 2Ax 

where T(h) is translation in t by the amount h and S(k) is translation in x by the 
amount k. We will show that the method used for the L-F scheme will not extend to 
three-point conservative second-order accurate schemes. Specifically, we show that a 
discrete entropy inequality of the form 

(2.7) (u) - (z) + Q(w, z) - Q(z, v) < 0 
At Ax 

cannot hold for any strictly convex entropy . Here, the numerical flux is supposed 
to satisfy the standard consistency condition 

Q(u, u) = q(u) 

and u = u(x, t + At), v = u(x - Ax, t), w = u(x + Ax, t), z = u(x, t). 
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System (2.1) was assumed hyperbolic, that is, vf has n linearly independent 
eigenvectors rj(u) satisfying 

(2.8) Vf (u) ri (u) = Xi(u) r1(u), 

where Xj(u) are the eigenvalues of vf. 

THEOREM 2.1. Let X, q: Rn-* R be an entropy, entropy flux pair corresponding to 
(2.1) with q Ee C2. Let g: (Rn)2 -* R satisfy the consistency property g(u, u) = f(u). 
Define Fr,,q(R n)3 x R +- R by 

(2.9) r'F,q(Z' v,w, X) = q(u) - q(z) + X[Q(w, z) - Q(v, z)], 

where Q: (Rn)2 -* R reduces on the diagonal to q, i.e., 

Q(u, u) = q(u), 

and u is defined by 

u = z - X[g(w, z) -g(z,v)]. 

Then for all strictly convex q(u) the following inequality does not hold 

F71,q(Z, V, WI X) < 0. 

Proof. For notational convenience we let 

E,,,q(z, v, w, X) = F(z, v, w). 

We note that with -the choice of v = u(x - Ax, t), w = u(x + Ax, t), z = u(x, t) 
and X = At/Ax, the theorem states that the discrete entropy inequality (2.7) does 
not hold. We will show that for any fixed z there exist points v and w near z such 
that 

r(v,w) = r(z, v, w) > o. 

We choose v and w so that they are connected by a j-simple wave through the point 
z. Such points always exist since j-waves are integral curves of ordinary differential 
equations. For completeness, we recall the definition of aj-simple wave. 

Definition. Aj-simple wave curve through uo is a solution u(E, uO) of 

d U(E, uO) = rj(u(e, uO)), U(O, UO) = UO 

where rj is thejth right eigenvector of vf, i.e., it satisfies (2.8). 
Since v and w are connected through z by aj-simple wave we can express them as 

V = V(E) = V(0) + V(O)E + O(E2), W = W(8) = W(O) + WV(O)8 + 0(82), 

where v(0) = w(0) = z and v(0) = wv(O) = rj. Hence F(v, w) can be considered as a 
function of the parameters E and 8, i.e., 

r(e,8) = r(v(e),w(8)). 

To prove the theorem it suffices to show that F(e, 8) does not attain a maximum at 
(0, 0). Expanding F(8, 8) in a Taylor series around the origin yields 

(2.10) r(E, 8) = r(o,o) + r'(o,o)e + Fr(o,o)8 + O(E2 82) 

= F(0,0)E + rF(0,0)8 + 0(E2, 82), 
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where the last equality follows since r(o, 0) = r(z, z) = 0. If either re(0, 0) or 
rF(0, 0) is nonzero, then (2.10) will imply that r(e, 8) changes of sign for E and 8 near 
zero and r(0, 0) = 0 cannot be a maximum. Hence, we impose conditions which 
ensure that r,(O, 0) = rF(0, 0) = 0. More precisely, we show that a necessary and 
sufficient condition for rF(0, 0) = rF(0, 0) = 0 is that V r(0, 0) = 0. The sufficiency 
is obvious since 

rF(0, 0) = Vvr(o 0)rj and r(0, 0) = Vwr(o o)rj, 
where vvr = (r,... . rV n), vwr = (rwl,...,rwT,). We note that we are free to 
choose v, w and z on any of the n j-waves going through z. Hence, if rF and rF are to 
be zero at the origin, then vvr(o, O)rj = 0 and Vwr(o,O)rj= 0 for j= l,...,n. 
Recalling that the rj are n linearly independent vectors, it follows that vr(0, 0) = 0. 
Hence, we assume that rv (0, 0) = rw(0, 0) = 0, i = 1,... ,n, or equivalently by 
(2.10), 

rVF(0,0) = v'quV, - XQV, = x[vqgv - Q,] = 0 
and 

rW(0,0) = v'quW + XQW, = -X[Vgw - QW] = 0, 
where all the terms on the right-hand side are evaluated at z. Therefore, if rP and rF 
vanish at the origin, the following conditions hold on the diagonal 

(2.11) Vq (z)gv(z, Z) = QV,(Z Z), 

(2.12) vq (z)gw,(z, z) = Qwi(Z, z) 

Under these conditions, we show that 

(2.13) rF,(0, 0) + rF(0, 0) > 0 

and hence, r(0, 0) is not a local maximum. A straightforward computation yields 

ree = Vv2 rF2 + vvrF, rF = VF2rV2 + vwrFi. 
Since b(0) = wv (0) = rj and rv(0, 0) = rw(0, 0) = 0, we have 

(2.14) rI,(0,0) + rF,(0,0) = [V,2r(0,O) + V2r(0,0)]r 2 = Ar12. 

Hence, (2.13) is equivalent to showing that A is positive definite. We note that the 
entries of A are of the form rv v (0, 0) + rw w (0, 0). Taking the pertinent derivatives 
in (2.9), it follows that 

rv (w, v) = V?q(u)UV, - QV,(Z, v) = [vq(u)gv(z, v) - QV,(Z, v)], 

rI(w, z) = Vq(u)uw, + Qw, (W,z)X = -X[Vq(u)gw(w,, z) - Q(w, Z)]; 
hence 

(2.15) rv'tv(0,0) = 2V2'qggvjg + [ - Qv v 

rww2g(0,) = x2rgg, - -Vgw W Qww 
where all the terms on the right-hand side are evaluated at z. Differentiating Eq. 
(2.11) with respect to zi and Eq. (2.12) with respect to zj yields 

a 

+ V'qg,, + v'qg, = QV + Q 
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Multiplying the last equations by X and subtracting gives 

(2.16) X [Q WIw - Q - X [vxgw w g - 

= az (v)g - azj 

where all the terms are evaluated at z. Combining (2.15) with (2.16) yields 

(2.17) rv,J (0,0) + rw, O) = X2v2'q(gvgU + gw,g,) 

_ 

aw 
a(Vq)g - azj = I + II. 

It is shown in [3] that a conservative scheme which approximates (2.1) is second-order 
accurate if and only if the leading term of the numerical flux is of the form 

G(w, z) = f (z) ? f(w) +(X/2)A(w - z), 
2 

where the quantity A is taken to be (Vf(w)2 + Vf(z)2)/2 for the sake of symme- 
try. Any other choice would make a difference that is quadratic in w - z. Hence, for 
conservative second-order schemes, the numerical flux can be expressed as 

g(w, z) = G(w, z) + O(IW - Z12). 

It follows that 

v,(z, 
v) = ?f (v) + XAv (z - v) - 4XAef + ?(Iz - vl), 

g'(w, 
z) = lfu(w) + !XAw(w - z) - 'XAef + ?(jz - wl), 

where ef is the transpose of the ith vector in the canonical basis of R', e.g., 
et = (O,1,O,...,O)t. From here on, all functions will be evaluated at z; thus, to 

simplify the notation the argument z will be omitted. From the last equalities it 
follows that for i = 1, ..., 

= If X(vf)2ef = B(B- 2)ef, 

f u 
+ X(vf )2eet = 4(B + XB )et, 

where B = vf(z). The equalities on the right-hand side follow since 

fu = Beft, i = 1,.. .,n. 

The term I in (2.17) can be rewritten as 

I = *Xej[(Bt - X(B2)t)V2,q(B - XB2) 

+(Bt + X(B2)t) V2'q(B + XB2)]et 

= 2Xej [BtV 2B + A2(B2) tV 2qB2] e t 

Thus I is the (i, j)th entry of the matrix 

(2.18) M = X2[BtV2B + X2(B2)tV2qB 2]. 
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To rewrite II in (2.17), we note that 

Va q V=ejV2 , j=l..n 

Therefore, 

(2.19) II = ?X(eiA2?(B + XB2)eJ - ej V2'i(B - XB2)et] 

= jXei[ v21(B + XB2) -(Bt - X(B2) t)ev2t]et 

Hence II is the (i, j)th entry of the matrix 

(2.20) M = lx [( v2qB-BtV2qt) + X ( V 2B2 + (B 2) V2qt. 

Combining (2.17), (2.18) and (2.20) yields 

(2.21) [vFr(o,o) + vwPr(o,0)Ir2 = [M1 + M2 j, 

where M1 and M2 are defined by (2.18) and (2.20). We recall that rj is the right jth 
eigenvector of vf, i.e., 

vfrj= Brj= Xjrj, 

and hence rjt is thejth left eigenvector of Bt, i.e., 

rjtB = (Brj) 
t = rjtX. 

Hence, 

Mrj2 = 2r2 

where a = X (X2j + Xj). Noting that the symmetry of V 2,q implies that 

( V 2'B-B'v 2't)r2 = Xj( v2'- 2v27t)r2 = 0, 

it follows that 

2 = ,B(V271 + 2 t)r2 

where 1, = 2XJ. Plugging these expressions of M1 and M2 into (2.20) yields 

(2.22) [vP2r(o,o) + rw2(o, 0)] rj2 = [(a + ,B)V 27 + #Vv2?1t rj2. 

The strict convexity of the entropy q implies that the matrices V2 q and V2 t are 
positive definite. Since a and ,B are positive, it follows from (2.14) and (2.22) that 

?ee(O,O) + I8(O,O) = [(a + /)V2,q + /V27,t]r2> 0 

Thus, either ree(O, 0) is positive or rP(O, 0) is positive, ruling out any maxima for r 
at the origin. 
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