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Least Squares Methods for Elliptic Systems* 

By A. K. Aziz, R. B. Kellogg and A. B. Stephens 

Abstract. A weighted least squares method is given for the numerical solution of elliptic partial 
differential equations of Agmon-Douglis-Nirenberg type and an error analysis is provided. 
Some examples are given. 

1. Introduction. The use of least squares methods for the approximate solution of 
equations dates back at least to Gauss. The modern theory of least squares methods 
in the numerical solution of elliptic boundary value problems starts, in 1970, with 
the papers of Bramble and Schatz [5], [6]. This work uses a finite-dimensional space 
S of approximating functions, similar to the spaces used in finite-element methods. 
The approximate solution is defined to be the minimizer of a least squares functional 
that is a weighted sum of the least squares residual in the differential equation and 
the least squares residual in the boundary condition. The paper [5] has an historical 
importance for the following reason. It appeared during the time when numerical 
analysts were shifting attention from finite-difference methods to finite-element 
methods, and it provided, for the first time, a family of approximation methods for 
the solution of the Dirichlet problem whose order of accuracy could be made 
arbitrarily large. The paper [6] provided an extension to an elliptic equation of order 
2m, and [3] gave important simplifications in the analysis. The principal advantages 
of the method are that one need not satisfy exactly the Dirichlet boundary condi- 
tions, and that the mathematical analysis dictates, in a natural way, the relative 
weights that are given to the boundary and interior terms in the least squares 
functional. Also, the method provides, in a quasioptimal sense, as good a solution as 
can be expected from the space S. On the other hand, the method requires that S 
consist of functions which are smooth enough to lie in the domain of the elliptic 
operator. Also, the method seems to produce matrices with large condition number. 

For various reasons, it is of interest to extend the theory of least squares methods 
to include elliptic systems. First, if a second-order elliptic equation is written as a 
first-order system, it would seem (and this is borne out by our analysis) that the 
smoothness requirements for the spaces of approximating functions would be 
reduced, thus eliminating one of the disadvantages of the method. A second 
motivation for extending the least squares method to elliptic systems is that elliptic 
systems occur frequently in applications. An example of an elliptic system is the 
system of equations for Stokes flow. For this system, the least squares method does 
not require the space of approximating vector fields to be incompressible. Instead, 
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the incompressibility condition is considered as one of the equations in the system, 
and the analysis provides, in a natural way, weights to put on the residual in the 
incompressibility equation. The difficulties associated with finding approximating 
spaces of incompressible vector fields are well-known; the least squares method 
provides an alternate way of treating these difficulties. Finally, it is desirable to 
extend the least squares method to elliptic systems to close the gap in the theory of 
the method. 

Some work in least squares methods for elliptic systems has appeared in the 
literature. In [9], [11], a least squares method is formulated for the first-order system 
in three unknowns that is associated with a single second-order elliptic equation in 
the plane. The system is discussed more in Section 5. A theory of least squares 
methods for elliptic systems of Petrovsky type is developed in [15], and quasioptimal 
error estimates are obtained for the approximate solution. Petrovsky systems are an 
important subclass of the class of elliptic systems, in which the different equations 
and unknowns appearing in the system have taken the same "differentiability 
order". In the least squares method, for these systems developed in [15], the residual 
for each of the differential equations in the elliptic system receives the same weight 
in the least squares functional. Finally, least squares methods have recently been 
applied to fluid flow problems of mixed type, and to problems whose solutions 
contain singularities [10]. 

In this paper there is developed a least squares method for the approximate 
solution of elliptic boundary value problems of Agmon-Douglis-Nirenberg type 
(ADN). The method involves the minimization of a least squares functional that 
consists of a weighted sum of the residuals occurring in the equations and the 
boundary conditions of the system. The weights occurring in the least squares 
functional are determined by the indices that enter into the definition of an ADN 
boundary value problem. A quasioptimal error estimate is obtained for the ap- 
proximate solution generated by the method. The method reduces to the method of 
[5], if the system is a single equation and to the method of [15] if the system is an 
elliptic system of Petrovsky type. Our error analysis assumes that the boundary value 
problem is uniquely solvable, and that the usual a priori estimate for the solution in 
terms of the data holds over a range of negative regularity indices (see (2.7)). The 
verification of this assumption for solvable elliptic boundary value problems seems 
to involve technical difficulties concerning the ellipticity of the adjoint boundary 
value problem (see, e.g., [13]). Therefore, we have made the required inequality a 
hypothesis of our theorem, and we have verified this inequality in a number of 
examples of particular interest. 

Section 2 sets the notation and presents the salient facts concerning ADN systems. 
Section 3 formulates the least squares method, and Section 4 gives the error analysis 
of the method. Section 5 shows how the method applies to several elliptic systems 
occurring in practice. This section concludes with a "nonconforming" version of the 
method. The error analysis for this version has not been done. Finally, Section 6 
contains an estimate for the condition number of the matrix associated with a least 
squares method. 

2. The Boundary Value Problem. Let ?2 c R' be a bounded domain with a smooth 
boundary F. We are concerned with elliptic systems of Agmon-Douglis-Nirenberg 
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(ADN) type. These are linear systems of N partial differential equations in N 
unknowns, which we write 

N 

(2.1) E Lij(x, D)uj(x) = fi(x), x E 9, 1 < i < N. 
j=1 

Here Lij(x, D) is a polynomial in D = (D. ...,D), Di = a/axi, with coefficients 
which depend smoothly on x. We shall suppose that there are integers si, the 
"equation indices", and tj, the " unknown indices", such that 

(Lij(x, D)- 0 if si + tj < 0, 

(2.2) 
X ij-deg Lij(x, D) si+ t 

|Si < ?, (Si + tj) = 2m > O. 

Together with the system (2.1), we consider m boundary conditions which we 
write 

N 

(2.3) E Bkj(x, D)uj(x) = gk(X), X E F, 1 < k < m, 
j=1 

where Bkj(x, D) is a polynomial in D. We shall suppose that there are integers rk the 
"boundary condition indices", such that 

(2.4) Bkj(x, D) O if rk + tj < O, 

1kj = deg Bkj(x, D) < rk + tj. 

In addition to (2.2), (2.4) we require that the operators appearing in (2.1), (2.3) 
satisfy the ellipticity condition, the supplementary condition, and the complemen- 
tary boundary condition, as specified in [1]. We shall not state these conditions here 
as they are somewhat complicated and are not explicitly needed in the sequel. What 
we shall need in the sequel, and will state explicitly in Theorem 2.1, are the a priori 
estimates associated with these operators. These a priori estimates follow from the 
above three conditions, and in fact, are known to be equivalent to them [1]. 

We require some Hilbert-Sobolev spaces on 2 and F. We let C1(2) denote the 
functions on S2 which are restrictions of functions on Rn all of whose derivatives 
exist, and we recall that C'(2) is dense in Hs(2). For s E R, let HS(2) denote the 
usual Sobolev space of functions on 2, with norm Ilull, and inner product (u, v),. 
For s > 0 an integer, IIuII2 = EIaIvs alID auI. For s > 0 not an integer, Hs(2) is 
defined by interpolation. For s > 0 we define 

Ilull s= sup (u, V)o 
veC?(D) ljVjjs 

and we define Hs(Q) to be the closure of functions in C'(2) with respect to this 
norm. The spaces Hs(F), s E R, with norm IulI and inner product <u, v >s, are 
defined in a similar way. If s = 0 we drop the subscripts. We recall that the families 
Hs(2) and Hs(F), - X < s < oo, each form an interpolating family of Hilbert 
spaces. The two families are connected by the trace inequality: if s > 2 and 
u E Hs(2), then the restriction of u to F has a meaning and this restriction, which 



56 A. K. AZIZ, R. B. KELLOGG AND A. B. STEPHENS 

we also denote by u, satisfies 

(2.5) jUls-112 K, CIIuII,. 

With these spaces we now state 

THEOREM 2.1. If the problem (2.1), (2.3) satisfies the ellipticity, supplementary, and 
covering conditions, and if 1 > 0, there is a c > 0 such that if uj E H' --(t2), 1 < j < N, 
then 

N N N N 

(2.6) E Iuljllltj < CL [lfilll-s, + CL lgkl-rk-1/2 + CL IlUjll 
1 1 1 1 

The proof of Theorem 2.1 is contained in [1]. We shall require some additional 
hypotheses concerning the problem (2.1), (2.3). The first condition is that the 
problem has a unique solution for all smooth data fi and gk. This condition enables 
the L2-norms of uj on the right side of (2.6) to be eliminated. The second condition 
is that the modified form of (2.6) be valid for 1 < 0. The verification of this 
condition for general ADN systems seems to involve technical difficulties concerning 
the existence of an adjoint elliptic boundary value problem [13]. We will verify the 
modified inequality in a number of examples of particular interest. Summarizing our 
additional hypotheses, in addition to the unique solvability of (2.1), (2.3), we shall 
assume that for each real 1 there is a c > 0 such that if { uj } are a collection of 
smooth functions on 2, and if { fi , and { gk } are defined by (2.1) and (2.3), then 

(2.7) ? IlUjlll,+t < c?, lIIA1-S, + C, lgkl-rk-1/2. 
j i k 

We give some examples of elliptic systems in R2 to illustrate the ideas. First, let 
N = 1, m = 1, and consider the single elliptic equation 
(2.8a) Liu -Au + u =f inS2 

with the single boundary condition 

(2.8b) B 1u-u = g on F. 
We define indices 

(2.8c) All = 2, fll = 0, t1 = 2, s, = 0, r, = -2. 

With this choice of indices, (2.2) is satisfied. It is known that the problem (2.8a,b) 
has a unique solution u for each f E H1(2), g E H1+3/2(F), 1 > 0, and that u 
satisfies 

(2.9) IUIl?1+2 < cllf I1 + cIgl?+3/2. 

We now verify this fact for 1 < 0. Let a < 0, and let u E C'(Q). Since Cc(Q) is 
dense in Ha(2), there is an h E C?(Q2) such that 

lUlla = sup (u,4) 2 (uh) 

Let p be the solution of the problem L1. = h in 2 with Bll = 0 on F. Then from 
Green's second identity, 

( u, h ) = (Llu, t) (u, an 

< IILu11|Pll -,+2 + IULa-1/2 an la-2-a?2 ~~~an -a?1/2' 
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Using (2.5), and (2.8) with u replaced by h, we get 

(u, h) < CjjLjiua1-2jjhjj_. + cjjBllujjal/2jjh -a. 

Hence, we obtain (2.9) with 1 = a - 2 < -2. From (2.9) we see that the map T: 
{ f, g} -> u is a bounded operator from H'(&) x H1+3/2(r) -* H+2(&), for 1 > 0, 
and for / < -2. By interpolation, we find that T is a bounded operator in the 
intermediate range of 1, so (2.9) holds for each / E (- so, so). 

For the next example we set N = 3, m = 1, and we consider in R2 the first-order 
system 

(Liu Ul,X-U2 =1f 

(2.10a) (L2uul,y-u3 f2 in n, 
(L3u -U1 + U2,x + u3,y = 3 

with the single boundary condition 

(2.10b) B1u-u1=g on r. 

We define the indices of the problem by the equations 

I 0 0 
(2.10c) [xAJ [1 0o [i = [0,0,0], 

[Si]= [1, -1,0], t9 [2, 1,1],r = 2. 

With this choice of indices, (2.2) is satisfied. It is known that (2.10a, b) satisfies all 
the conditions of an ADN elliptic boundary value problem. Note that (2.10a) gives 
- AU1 + U1 =f3 + f1,x + f2,y- The problem (2.10) is, basically, the problem (2.8), 
written as a first-order system. Also, from (2.9) we obtain, if Uj E CO"( ),j = 1, 2, 3, 

IIu1II1+2 < cEIjfi11-sl + cgj19+3/2. 

From the first two equations of (2.10a) we then obtain 

11uj111+1 < CE 114111-S, + C1g91+372, j = 2, 3, 

so (2.7) has been verified in this case. Alternately, it is possible to assume (2.7) for 
/ > 0 and prove (2.7) for / < - 2, by using Green's identities and by introducing an 
auxiliary boundary value problem to estimate the negative norms. 

For our third example, we set N = 3, m = 2, and consider the Stokes system in 
DR2 

{Liu- -Au1 + u3x =1f 

(2.11a) 4 L2U- -AU2+u3=f2 in Q= 

L3u Ulx + U2y =Af 

with the boundary conditions 

(2.11b) By U_ 21 onr 
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The variables (ul, u2) represent a velocity field, and U3 represents pressure. If f3 = 0, 

(2.11a) are the equations of motion of a steady-state incompressible flow, in which 
the inertial terms have been neglected. The indices of the problem are 

(2.11c) [xjj] [ 2 1 [skj] [ O 0 

[Si] = [0,0, -1], [tj] = [2,2,1], [rk] = [-2, -2]. 

It is known [14] that if { fi } and {gk} are smooth functions which satisfy the 

compatibility condition 

(2.12) fn * gdr =f f3dxdy, 

then the problem (2.11) has a unique solution { uj } which satisfies 

(2.13) Ju3dxdy=0. 

Furthermore, this solution satisfies the a priori inequality, for 1 > 0, 

(2.14) jju1j1112 
+ lIu2111+2 

+ 
lIu3111+1 

< C { llf1 IlI + jf21II + IIf311?+ + 1911+3/2 + 19211+3/2} 

The inequality (2.14) is the same as the inequality (2.7) for the problem (2.11). 
For the Stokes problem, it is convenient to use Sobolev spaces of functions with 

mean 0. Let X(+O) = (,O, 1). For s a nonnegative integer, IX(4)) < c IIl , and by 
interpolation, this inequality holds for all s > 0. Since 1(0, 1)j < II1 4I I - s the 
inequality also holds for s < 0. Hence X(4+) is a bounded linear functional on Hs(Q) 
for all real s. Let 

ks(g) = +EHs(Q): A(+) = O}. 

Then Hs(Q) is a closed subspace of Hs(Q) of codimension one, the colection of 
Hilbert spaces { Hs(g)} forms an interpolating family, and for s < 0 and 4) E s(2), 

(2.15) I|I4)s = sup{ 1,141 'P H (Q))- 

(See [12].) 
We now prove the inequality (2.14) for 1 < 0. Let a < 0, and let ul, u2, U3 E 

C?(K!), with (u3, 1) = O. Pick hl, h E C)(K), with (h3,1) = 0, and let 4 = 
= 1' 2'~~ h33 )=0 n e 

(401 02' - 43) be the unique solution of the Stokes problem 

Lio = hi, i = 1,2, 3, 

(03,1) = 0, 
Bk4)=O, k=1,2. 

Setting I = (ul, hl) + (u2, h2) - (U3, h3), a computation gives 
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We apply (2.14) with 1 = - a, and with { uj } replaced by { pj }, to obtain 
2 

I< E ljl211,oll a+ 2 + lf11A Ile-111f311 -a+l 
1 

+CE [Igjla -1211I -a+2 +IgjIa-1/211311 -a+1] 

< lif1a12 +IIf311a l + ?IIgIlal/2] 

* [?IIhj|IIa + IIh31- a+1]. 

To use this inequality, we set h 2 =3 = 0, and we obtain 

IlUl la < 2(1 h1) < C [?El~itla - 2 + 2If3IIi]. iul" <2lihilCl1fa1-+1f11 
Let h1 be chosen so that 

llulll < 2 (ul, hi) 

11h,111 
The inequality then gives 

liC[ fill,I2 + If3IIa l + E 19ila-1/2J 

Dividing both sides by llhillj_ gives an inequality for llullL. Inequalities for llU2lla 
and llU3llIn are obtained in the same way. This proves (2.14) with / = a - 2 < -2. 
The inequality for 1 e [-2, 0] then follows by interpolation. 

3. The Least Squares Method. In this section we define our least squares method, 
and we discuss some requirements that are needed by our subspaces. We consider an 
elliptic boundary value problem, (2.1), (2.3), with the associated collections of 
indices. We define 

,i = max si, rk + 2: 1 < i < N, 1 < k < m } 

IL = min{si, rk + ?: 1 < iN,91 < k < m } 

aj = smallestinteger> {ij, j9kj + 2, 1 < i < N, 1 < k mi. 

We will use finite-dimensional subspaces Sh of functions to approximate our 
solution. The parameter h, which represents a mesh spacing, is used to indicate the 
approximation property of Sh. Let a and /3 be integers with a < /3. We say that Sh 

approximates optimally with respect to (/B, a) if Sh C H'(0), and if, for each 
u E H0(g), there is a v E Sh such that 

a 
(3.1) E h'Ilu - vlli < ch||1ull|, 

i=s 

Here, s is an integer (positive or negative) which is < a - 1. From a theorem of 
Bramble and Scott [7], s may be chosen as small as desired, if the boundary F is 
smooth enough. 
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Since we are dealing with systems, we must consider collections of subspaces. Let 

Shj c H'j(Q), and let Sh = Shl X ... X ShN. Let y = (yj), z = (z1), with yj, zj E 

HaJ(2). We define the bilinear form 
N N N 

(3.2) (Y' Z)A = Eh2s, Lijyj, E Lijzj 
i=1 J=1 j=1 

m N N 

+ E h2rk+l E BkIjY, E Bk Z) 
k=1 \j=1 j=1 / 

and we let IIYIIA denote the corresponding norm. If u = (uj), uj E Hcr(2), is the 
solution of (2.1), (2.3), we define the least squares approximation to be the function 
Uh E Sh which satisfies 

(3.3) IIu - UhIlA < IIU - WIIA, V E Sh. 
An equivalent formulation of the least squares problem is: Uh is that function in Sh 

which minimizes the expression, for v E Sh, 

N 2 m 2 

(3.4) E h2s, EL jv1 - fi + E h2rk -EBkjVj gk 
i=1 jk=1 kc 

The expression (3.4) is a weighted L2-norm of the residual. As we will see, the 
weights have come from the theory of ADN systems outlined in Section 2. The 
calculation of Uh requires the solution of a symmetric, positive definite linear system 
of equations. The coefficients of the linear system involve the bilinear form (3.2) 
applied to basis elements of Sh. The right-hand side of the linear system involves the 
right-hand sides, fi, gk of the system (2.1), (2.3). 

It is easily seen that if e = u- Uh is the error in the least squares solution, then e 
satisfies the orthogonality property 

(3.5) (e, W)A = O? W E Sh. 

This formula, which will be used in our error estimates, serves to characterize the 
least squares approximation. 

4. Error Estimates. In this section we state and prove our main result, an optimal 
error estimate for our least squares approximation. Throughout the section, we 
suppose that the elliptic boundary value problem is uniquely solvable, for smooth 
right-hand sides, and that (2.7) holds for all real s. The functions { uj } solve (2.1), 
(2.3) and, for some ,uL> ii, uj E HA +( 2), j = 1,. . . ,N. We first prove two lemmas. 

LEMMA 4.1. Suppose Shj approximates optimally with respect to (IL + tj, aj), j = 

1,..,N. Then 
N 

11dI|A < ch y E IIuVIISI,+ 
j=1 

Proof. For any v E? Sh it follows that 

IkIIIA = IIU - UhIIA < IIU - VIIA 
N N m N 

< E hs E Lij(uj - vj) + E hrk+l/2 E Bkj(u} - v1) 
i=1 j=1 k=1 j=1 
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so 

(4.1) IICIIA < cfhsIIui v-|j, + cyhrk+1/2 D"(uj - vj)I 
i,j k,j 1f1h?fikJ 

Using the approximation properties of Sh1, and using the fact that xij < si +tJ we 
choose the v; so that 

(4.2) Iu1 - v11AX, < chs-sI"u1II?+t. 

Using the inequality Izl < c(eIlzIll + 6-111zll), (see [8], [12]) with - h 1/2, and recal- 
ling that k < rk + tj, we get 

(4.3) E |DI(uj-vj)I < ch1/211UJ - Vj1Ik1 + ch-1/211U1- VJIoki 
1#13< f3kj 

, h1/21u-VII??+ ch1"211U1 _ VII? <1 C h il ||ui - vjll,|+ +l1 + ch | U V1llrk + 'j 

.< c h A-rk- 1/2 
1u11" ' 11 

where, in the last step, we have again used the approximation property of v.. Using 
(4.2) and (4.3), we obtain the result. 

LEMMA 4.2. Assume ,u' > ,u, and assume that Shj approximates optimally with 
respect to (,' + t1, aj). Then 

N 

EL,jej <1 ch 2s'jIejll, i= 1,...,N, 

and 

N 

E Bkjej c ch 2rk-1IlellA, k 1,... ,m. 
j=1 rk+l/2-A' 

Proof. We consider the elliptic boundary value problem 

?Lijvj =f in Q, EBk,jVj = gk on F, 
I I 

with f E C??(K2), g e C?c(F) the space of infinitely differentiable functions on Q, 
and r, respectively. Let v = (vj) denote the unique solution to the above problem 
and let Vh be the corresponding least squares approximation to v. Then using (3.5), 
Lemma 4.1 and (2.7), we have 

(e, V)A = h 2s(Lijej, i) + h 2rk (Bk.ej 9k) 

= (e, V - VJA < kICIIAIkV - VhIIA 

< ch llellA [ 11filI-'s, + ,u -rk-112 
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Then for a given io, we choosegk = , k = 1,...,m,andf = 0, 1 # io, so that 

(EjLi.jej, fio) 
LiOjej = sup 

h h-2so sup 
A 

) 6 ch t lls ||A- 
flo eC(Q*0) lifioli,u /+St 

In a similar manner we obtain the estimate for IYEBkjejlrk+1/2 . This completes the 
proof. 

We now state and prove our main result. 

THEOREM 4.1. Let sa be a bounded domain with smooth boundary P. We consider the 
elliptic system (2.1) with covering boundary conditions (2.3) and assume that this 
boundary value problem has a unique solution u which satisfies (2.7) for all smooth f, 
and gk. Let ,u > ,u, v 6 , and 8 > max(2u - v, IL). Assume that the subspaces ap- 
proximate optimally with respect to (3 + tj, aj); then 

N N 

(4.4) F, lluj - UjhllV+ t, 6 ChA -2 llu1ll+ t, . 
j=1 j=1 

Proof. We have by (2.7) 

(4.5) E llell?+ t, < cE >ELijej + cE |Bkjej 
I 1 J v~~~~~-S, k j v-rk-112 

Let wi = E2Lij ej, and recall that si - 8 v - si 0. If si - 8 < 0, interpolation of 
the identity operator gives 

11willp_S, '1-C11willos,-6lwill' , # i-sv 3 

If Si = 8, then v = si and the inequality holds with 0 = 0, for example. From (3.2), 
Iwill S ch-sII1ellA, and from Lemma 4.2, 

Ilwill,_ Ch8-2 IIlcl. 

Hence, using Lemma 4.1, 

(4.6) llwillp-s, 6 chv-PlellA 6 ch" v?llUjiy+ t, 

The boundary terms are treated in a similar fashion. Let Yk = Y2Bkjej, and recall 
that rk - 8 + 2 < V - rk- 2 6 O. If 8 > rk + 2 

1-0 -rk + v 
lYklv-rk-1/2 < CIYk/lr8 +1/2IYkI, 1 rk-8+11 ~ 3 -rk - 2" 

If 8 = rk + ', then v = rk + ' and the inequality holds with 0 = O. From (3.2), 

lYkl I6 ch -rk -1/2IICIIA, 

and from Lemma 4.2, 

Yklrk-8+1/2 v cha 2rk-llellA. 
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Hence, using Lemma 4.1, 

(4.7) lYkiv-rk-112 < ch-v||e||A < ChA-l E lUj11,U+t,- 
i 

Using the estimates (4.6) and (4.7) in (4.5) finishes the proof. 
With additional hypotheses on the subspace Shj, we obtain error estimates in 

higher norms. Specifically, we assume that Shj satisfies the "inverse" assumption 

(4.8) IIvjIIq < chv+tj-q11Vj11V+ for any vj E Shj where v + tj < q < aJ. 

Then we have the following corollary to Theorem 4.1. 

COROLLARY 4.1. Suppose, in addition to the hypotheses of Theorem 4.1, that each 

Shj satisfies (4.8). Then for /L < yj < aj -tj, 

iiu - UhjIIy?+t, < chu-7'yIu1il,u?t. 

Proof. We have for Vjh E , 

Iluj - UjhIly?+t < luj - 
Vjhlyj+ti + IlUjh - 

Vjhlyj+tj 

Using the approximation property (3.1), we have 

lUj - Vjhlly?+tJ < chA-7'IIIjll1+,,, 

and from (4.8), 

IlUjh - VjhIly?+t < ch vyjlUjh 
- Vjhlv+?t. 

Now 

IlUjh 
- 

Vjhlv+t, < IlUj - 
Vjhlv+?t + I1Uj - Vjhlv+?t < chAvIIuj1I,I+t 

by Theorem 4.1 and (3.1). This completes the proof. 
Theorem 4.1 provides a quasi-optimal error estimate, in the sense that the 

approximate solution for each component function, uj, has accuracy of order 
O(h-v), and no greater order of accuracy could be expected, considering that (i) 
the error in Uj is measured in H`tj(a), and (ii), the solution component, uj, is 
assumed to lie in HA+ L(2). The regularity requirements for the solution fit naturally 
into the theory of ADN systems. The particular powers of h that appear in the 
minimizing functional, IIU - UhIIA, are critical for the success of the method. It is 
important to obtain results of the type of Theorem 4.1 with spaces Shj that are as 
simple as possible. If we impose a, perhaps strange, inverse assumption on the Shj, 

we can obtain the same conclusion, with reduced approximation hypotheses required 
of the Shj. The inverse assumption that we need is that there is a c > 0 such that for 
each z E Sh 

(4.9) |,Bkjzj| < ch-' ,BkjZj| 0 < 1 < min {aj - kj - 2} I < k < M . 
1 I 1 1 

The reduced approximation hypothesis is expressed in terms of a larger possible 
value for v. The result is as follows. 
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THEOREM 4.2. Let 2 be a bounded domain with smooth boundary F. Suppose that the 
problem (2.1), (2.3) has, for any smooth fi and gk, a unique solution u which satisfies 
(2.7). Let ,u > ,i, v < min{si, aj -tj, i, j=1,.. .,N}, 8 > max(2 -v, - ). Assume 
that the subspaces approximate optimally with respect to (8 + t1, aj), and that (4.9) 
holds for each z E Sh. Then the error estimate (4.4) holds. 

Proof. Proceeding as in the proof of Theorem 4.1, we arrive at (4.5). The estimates 
of the terms on the right side of (4.5) are exactly the same, except for the boundary 
norm in the case v - rk - 2 > 0. Suppose that v - rk - 2 > 0, pick a good ap- 
proximation v E? Sh to u, and write ej = u;- vj + Vj - Uhj. Using the triangle 
inequality, 

ZBkjej < 3Bk (u1 - v1) + Z:Bkj(vj - 
Uhj) 

j v-rk -1/2 i v-rk-1/2 i v-rk-1/2 

-I + II. 

Since fk1 < rk + t0, 0 < V - rk - 4 + /kj < v + t1 - 4. Hence, we may use the 
trace inequality and the approximation property to obtain 

I < cE Z ID6(u. - vj)lv-rk-1/2 

j,k J 

< ch-" >Z|uj|,|+t?. 

i 

To bound II, since v E uh E Sh' there is the possibility of using (4.9). Since 
v oj ,V - rk< 2at - trk- 2 j-fk- 2. Hence we may apply 
(4.9) to obtain 

II < ch-+rk+1/2 EBkj(Vj - Uhj) < ch 11v - UhIlA 

< ch (11U - VIIA + IIU - UhlIA) < ch ||u - UhlIA. 

From Lemma 4.1, we get the desired bound for II, and the proof is finished. 

5. Examples. In this section, we apply the least squares method to the elliptic 
boundary value problems discussed in Section 2. In each case, we list the hypotheses 
on the subspaces that are required for our theorems, and state the error estimates 
provided by the theorems. 

The first example concerns the problem (2.8). From (2.8c) we find that , = 0, 

= - 23 a1 = 2. Hence, we require that Shl c H2(2). If >? 0, v < -2, and 
8 > max{ t, - v }, and if Shl approximates optimally with respect to (8 + 2, 2), then 
the error el in the least squares method satisfies 

(5 .1) ||el11v+2 < ch1-"1ul11,u+2. 

If Shj also satisfies the inverse assumption (4.4), we obtain in addition the estimate 

(5.2) ||el11y+2 < ch'-YIul11,+2, v < y <, 
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In particular, if we choose v = -2, y = 2, then our requirement is that Shl 

approximate optimally with respect to (4,2), and (5.1) is Ilello < ch4IIeII4. This can 
be achieved, for example, by letting Shl be a space of bicubic splines on a uniform 
mesh. These results are identical with the results obtained in [5], [3]. 

The second example concerns the boundary value problem (2.10). From (2.10c), 
we find that jL = 0, y = - 2, [aj] = [1, 1, 1]. Hence we require that Shj C H'(2), 
j = 1, 2, 3. This regularity requirement on the subspaces is less stringent than the 
requirement of the first example, and is a reason for preferring the reformulation of 
(2.8) as the first-order system, (2.10), when using a least squares method. If y > 0, 
v < -2, and 8 > max{0, -v}, and if Shj approximates optimally with respect to 
(tj + 8, 1), j = 1, 2, 3, then the error ej in the least squares method satisfies 

(5.3) ? lejll,+t < chl-E||uj|| + 
J J 

If Sh also satisfies the inverse assumption (4.4), we obtain in addition the estimate 

(5 .4) E Ilejll,+tj < ch[I-YE |lujll,+t, p <, IL< 

j 

In particular, if we choose v =-2, y = 2, then 8 = 2 and our requirement is that 

Shj approximates optimally with respect to (tj + 2, 1), and (5.3) implies that 

(5.5a) ||elll < ch 4(lUl114 + lIU2113 + lIu3113) 

With suitable inverse assumptions, we also obtain, from (5.4), 

(5.5b) ||elljl < ch 3 (Ul114 + lIU2113 + lIU3113) 

These can be achieved, for example, by letting Shl be a space of continuous, 
piecewise bicubic polynomials on a uniform mesh, and by letting Sh2 and Sh3 be 
collections of continuous, piecewise biquadratic polynomials on the same mesh. 

It is of interest to apply Theorem 4.2 to this example. In this case, the inverse 
assumption becomes 

(5.6) lzll < ch-lzl, 0 < / 1 2, Z E Shl. 

Suppose that Shl satisfies (5.6). We may then use Theorem 4.2 with v < -1. 
Choosing v = -1, y = 0, so 8 = 1, and assuming that Shl approximates optimally 
with respect to (3, 1), and Sh2 and Sh3 approximate optimally with respect to (2,1), 
we obtain the error estimate 

I|ell|l + Ije211 + jje31j < ch [ lIU 112 + lIU2111 + lIU31] - 

This can be achieved, for example, by letting Shi be a space of continuous, piecewise 
biquadratic polynomials on a uniform mesh, and by letting Sh2 and Sh3 be continu- 
ous, piecewise bilinear polynomials on the same mesh. 

A problem similar to (2.10) has been treated by Jesperson [11] using a least 
squares method that only contains a weight on the boundary integral. In Jesperson's 
problem, f1 = f2 = 0, and the term - ul is removed from L3u. These changes do not 
affect the ellipticity indices, or our analysis of the problem. The method of Jesperson 
consists in minimizing, for v E Sh' the expression 

(5.8) 11U1 -U211 + IUJy-U311 + 1U2x + U3y-f311 + h- lu_-g12. 
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The proof of Lemma 4.3 in [11] is incorrect, but this lemma is a special case of the 
inequality (2.7) for the problem (2.10). In contrast, for this problem, the functional 
(3.4) becomes 

(5.9) h2 _u XU21 + h - 
U311 + 1U2,X + U3,y - f3A + h3 _1 - g-2. 

To describe some typical results that are obtained in [11], let iu E ?Sh be the 
approximate solution that is obtained by minimizing (5.8), and let e = u-uh be the 
resulting error. Suppose first that Shj, j = 1, 2, 3, is a space of continuous piecewise 
bilinear functions on a uniform mesh of size h. If ul E H2(2), one has 11j,11 < 

chIIu1II2. If ul E H3(2), one has 11j,11 < ch211u1113, and, if the subspaces also satisfy 
(5.6), it is shown that 11j,111 < chlIu1II3. Next, suppose that Shl is a space of 
continuous, piecewise biquadratic functions on a uniform mesh, while Sh2 and Sh3 

are piecewise bilinear functions on the same mesh. In this case, if ul E H2(2), the 
resultllelll < ch211u1113 is obtained, and, if the subspaces satisfy (5.6), IIe1II < chIIu1II3. 
If ul E H4(2), then one has the estimates 11j,11 < ch311u1114, and 11j,111 < ch211u1114, 
where the latter inequality also assumes (5.6). Comparing the error estimates (5.5) 
and (5.7) with these estimates, it seems difficult to draw general conclusions. 
However, it seems that the functional (5.9) provides error estimates that utilize more 
fully the regularity of the solution, while the functional (5.8) allows the use of 
simpler spaces of test functions. Perhaps further analysis, as well as numerical 
studies, would be needed to decide the relative merits of the two least squares 
methods. 

The final example concerns the Stokes problem, (2.11). From (2.11c) we find that 
= 0, , = -1, [a1] = [2, 2, 1]. Hence, we require that Shj C H2(2), j = 1, 2, and 

Sh3 H1(2). The A-norm in this case is defined by 

A = 11 -/AU1 + U3,xII + 11 -Au2 + U3yll + h2uX +2y 

+ h -3 [ Ul2 + IU212I 

The analysis of the method is complicated by the compatibility condition (2.12) that 
is needed for the solvability of the problem. To handle this difficulty we follow the 
approach of Wendland [15] and modify the system of equations. For this, let z be a 
smooth function defined on 2 and such that (z, 1). = 0. The function z(x) 1 will 
suffice. We consider, instead of (2.11a), the system 

(-Au1 + u3,x =fi 

(5.10) -A U2 + U3,y = f2' 

U1,X + U2,y + az =f3 

The modified problem (5.10), (2.11b) is to be solved for the unknown function u and 
the unknown number a. If f and g are smooth functions, the problem (5.10), (2.1lb) 
has a solution { u, a). The function U3 iS specified up to an additive constant. If U3 iS 

chosen so that (U3, 1) = 0, the solution { u, a) satisfies, for all real 1, the inequality 

(5.11) Iui1L+2 + IIu711+2 + lIu31+1 + lal 
< c[IiflIIl + I f2 Il + I f3IIl+1 + 1g911+3/2 + 1g211+3/2]- 
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To see this, define a = [(f3, 1) -n g, 1>]/(z, 1) and replace f3 by f3- az. The 
new problem then becomes the Stokes equations (2.11b) with a modified right-hand 
side. The new right-hand side satisfies the compatibility condition (2.12), so from the 
theory of the Stokes problem (2.11), there is a solution u which satisfies (U3, 1) = O, 

and which also satisfies (2.14) for all real 1. The estimate 

lal < C[11f3111+1 + Igl1+3/2 + 19211+3/2], 

and the estimate (5.11), follows from this. 
To formulate and analyze a least squares method for the system (5.10), we define a 

bilinear form on pairs of triples { _, a ) and { v, , ) by the expression 

|{u, a}, {v, 3}|IIA =(-Au, + U3, x AV1 + V3,X) 

+(-AU2 + U3y -AV2 + V3y) 

+h -2(ulX + U2,y + az, vl,x + V2,y + A3z) 

+h-3{(ui,vi) + (U2, V2)}- 

We remark that the corresponding quadratic form, which we write 1{u, a}) 1, 
defines a seminorm, since if u3- 1, and u=u2 -0,a=0, then II{u, a}II2=0. 
The corresponding least squares approximation, {Uh5 ah}, is not unique, since an 
arbitrary constant can be added to the third component of Uh. Nevertheless, virtually 
the same argument that is used to prove Theorem 4.1 leads to a proof of the 
following theorem 

THEOREM. Let ,u > 0, v < -1, 8 > max(- v, M) and let Shj approximate optimally 
with respect to (8 + tj, aj). Let { u, a) be a solution with (U3, 1) = (uh3, 1). Then 

la - ahl + E lUj- Ujhll?+.j < ch E Ilujll+tj 
i J 

As a final illustration of the least squares methodology, we formulate a nonconfor- 
ming least squares methods. Since we prove nothing about the method and give no 
numerical results, its value is a matter of conjecture. 

Nonconforming finite element methods have been used to avoid the regularity 
requirements on the subspaces, especially for higher-order problems (see, e.g., [2]). 
We formulate a nonconforming least squares method for the problem (2.8). To 
motivate our method, let Jo be a smooth closed curve in S, dividing 2 into two 
subdomains S1 and 22. The boundary of 21 is Po, the boundary of i2 iS PO U r. 
Using these subdomains, the problem (2.8) may be given a different formulation as 
follows. We seek functions ul and u2, defined in &1 and &2, such that 

(5.12a) -AuK + uK =f in2K, K =1,2, 

(5.12b) u1(x) - u2(x) = 0, x E Fo 

(5.12c) au( au2 x) = 0, x E Po, 

(5.12d) u2(x) = g(x), x e PO. 

In these equations, n denotes the unit normal on Po, pointing from 21 into 022 It 
may be shown that there is a unique solution pair, ul, u2, of (5.12), and the solution 
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is uK = u restricted to &iK, K = 1, 2, where u is the solution of (2.8). The equations 
(5.12b, c) serve as boundary conditions for the problem, with indices r = -2 and 
r = - 1,respectively. (5.12) is a problem of "interface" or "transmission" type, and 
the theory of elliptic boundary value problems may be extended to include this type 
of problem. 

We shall use (5.12) to motivate our nonconforming method; however, we shall 
consider a situation in which the curves Po are not smooth. For this, let there be 
given a uniform mesh of size h on 2. The mesh divides 2 into a number of 
subdomains t2K; each i2K is either a mesh rectangle or the intersection of a mesh 
rectangle with the domain 2. The mesh lines consist of a collection of line segments 

PKx. Each line segment, PKx, is the common boundary of two subdomains 2 and t2. 
We choose a unit normal nK on each line segment PK,, and if x e PKx, we let 

u(x ?) = limu(x ? CnKX). 
e-O 

Let Sh be a collection of piecewise polynomials on the mesh; no continuity 
conditions are required for the functions in Sh. Our nonconforming least squares 
method is to minimize, for v E Sh, the quantity 

>1f [AVf ]2 
K 

+ h !-3[v(x +) - v(x _)I2 + h-rav(x +) - a )]2 
K,X Px a8na 

+v -3 [V _ g]2. 

The weights appearing in the integral over TKx, are dictated by the values of r 
associated with the boundary conditions (5.21b, c). It would be of interest to give an 
error analysis for this method. 

6. Condition Number. If the Dirichlet problem (2.8) is solved numerically using 
Galerkin's method with typical finite-element matrices on a uniform mesh of size h, 
the resulting stiffness matrix has condition number O(h -2). If the same problem is 
solved using the weighted least squares method of [5], the condition number of the 
associated matrix is O(h-4). This results in extra difficulties in obtaining an 
accurate solution of the linear system. These considerations led Bramble and Nitsche 
[4] to formulate a modified least squares method with a reduced condition number. 
The least squares method in [11] also has a reduced condition number. Here, we give 
an upper bound for the condition number of our linear system. 

For the condition number bounds, we require some assumptions on the subspaces 

Shj. First, we suppose that there is a set of basis functions, 4j, of Shj, such that 

(6.1) eh aK < ||EaK j| , Ehn, ?a2 
K K K 

The positive constants e and E are independent of h. This inequality enables us to 
estimate the L2-norm of a function vj E Shj in terms of the coefficients in the 
expansion vj = E a KCK. Secondly, we require the inverse assumption 

(6.2) llvjll, < Dh'- jvjjj, vj E Sh j, 0 / < aj, 
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where the constant D is independent of h. Notice that if (6.2) and the upper 
inequality of (6.1) are combined, we obtain for any numbers aK the inequality 

(6.3) a ?aax(Da ,>K Dao>j) < D 2Eh2n21 ?a2 
|| K ,Aj K 

1,01</ K,X K 

The matrix problem arising from our least squares method depends on the basis 
functions chosen for the subspace Sh. If Shj has dimension dj, then Sh has dimension 
d = E dc. To describe d linearly independent functions in Sh, let / and X be given 
with 1 < / < N, 1 < X < dl. Let 4/,) be defined in terms of its component 
functions 5 by 4('" x) - + for] = 1, and 4/i )-O, for j = 1. The d functions 
4" X) form a basis for Sh. The least squares method for the problem (2.1), (2.3), 
consists in minimizing the expression (3.4) over all v E Sh. The solution of this 
problem is given by the solution of an associated linear system of equations. The 
matrix A of the linear system is of order d; a typical matrix entry is provided by the 
quantity (4,(k,K),/ l1X) ) 

The condition number of A is defined to be cond A = I AAII IA 111, where the 
norm is any matrix norm. Choosing the matrix norm arising from the Eucidean 
vector norm, we find that cond A = Xmnax/X in where X and Xmin are the largest 
and smallest eigenvalues of A. Since A is positive definite, these eigenvalues are 
positive and may be estimated by the Rayleigh quotient Q = aTAa/aTa, where 
a = (a1x) E Rd. For this, if a is given, let v = E a,x(lx) E Sh. Then aTAa = (v, V)A, 

so 

(6.4) Q = (v, V)A/ a2ax. 

We require upper and lower estimates for the numerator. For the upper estimate, we 
use (3.2), (6.3), and the inequality Iz12 < c(hIIzI12 + h-111z112) to obtain 

A< C E h jll X' + CZ Z h 2rk+ 1'D Av | 
i,j k ,i 1,8 < 

Bkj 

c E h n+2 2X*Ja2 + c E{ h 2 jrk?2|I V ?1 + h 2rkliVj11} 

< chn max[h 2s -2Xu,j h2rk-2#kj} IEa2 

Let y = max[2Xij - 2si,/ 2kj - 2rk]. Since Xij < si + tj, fkj< rk + tj, and since 
equality holds for some of these indices, we have y = 2 max tj. The above inequali- 
ties then give 

(6.5) IlIA " Chn YEaix 

For the lower estimate, we require a further inverse assumption. We suppose that 

(6 .6) ||Lij vj| < ch S,| L,j vj| 

(6.7) E Bkj il chk12 Z BkjVj 

To understand these assumptions, recall that si < 0, rk + 2 0. If the differential 
operators Lij and Bkj all have constant coefficients, then the quantities EYLijvj and 
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E Bkjvj are piecewise polynomials, and the inequalities (6.6) and (6.7) are not 
unreasonable. With these inequalities, (3.2), and (2.7) with / = 0, we have 

2 2 

IIVIIA > C ELijv1 + c>: B1 > c11 jIj > I II2. 
I -S k j - rk-l1/2 I 

Using (6.1), we then obtain 

(6.8) IIII Chn Ea 2 

The inequalities (6.5) and (6.8) give upper and lower bounds for X m,a and X i. 

Using these bounds, we obtain 

(6.9) cond A < ch. 

In the case of the model problem (2.10), we find that y = 4, so cond A < ch. 
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