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Analysis of Some Finite Elements
for the Stokes Problem

By Christine Bernardi and Geneviéve Raugel

Abstract. We study some finite elements which are used in the approximation of the Stokes
problem, so as to obtain error estimates of optimal order.

Résumé. Nous étudions deux éléments finis utilisés pour 'approximation du probléeme de
Stokes et obtenons des estimations d’erreur d’ordre optimal.

1. Introduction. Let € be a bounded polyhedral domain in R?, d = 2 or 3. We
consider the standard variational formulation of the stationary Stokes equations: for
f given in H1(Q)4, find (u, p) in Hj(2)¢ X L3(2) such that

(11) vv € HX(Q)“, »(gradu,gradv) —(p,divv) = (f,v),
' Vg € L3(2), (gq,divu) =0,

where we denote by (-, -) the inner product of L3%(Q) (or L*(R)4 or L¥(2)%).

Hereafter L2(R) is the space { g € L%(R); [, g dx = 0}. Now let h be a real positive

parameter tending to zero. We introduce two finite-dimensional subspaces X, and

M, of H}(Q)“ and L3(R) respectively, satisfying the usual condition: for any g, in

M,, g, # 0, there exists v, in X, such that (g,,divv,) # 0. We consider the

discretized problem: find (u,, p,) in X, X M, such that

12 W, € X,, v(gradu,,gradv,) —(p,,divy,) = (f,v,),

(12) {thth, (g,,divu,) = 0.

We recall that problem (I1.1) (respectively problem (1.2)) has a unique solution (u, p)

in H)}(Q)? X L3(Q) (respectively (u,, p,) in X, X M,). Moreover, when (u, p)

belongs to the space H™ ()4 x H™(Q), it is well-known (see [7]) that the error

estimate

(1.3) Il = willig +lp = Pallog < Ch™(lullmsr.0 +Plm,0)
holds whenever the following additional hypotheses are satisfied:

(H1) for any g in H™(Q) N L3(2), one has

Inf |lg = gullog < Ch™qllm, 05
GEM,

(H2) there exists a linear operator IT, from H™*}(Q)? N H}(2)?into X, such that
Vg, € M,, (gq,,div(v—1II,y)) =0,
we Hm Q) n X @)Y, | T (4 N )
v - Hh""l,sz < Ch™||V|m+1,2;
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(H3) for each g, in M,, there exists a function v, in X}, such that

(divv,, q,) > B||‘Ih”o,9”vh"1,sz»

where 8 > 0 is a constant independent of 4.

Our aim is to give some examples of finite-element spaces such that hypotheses
(H1), (H2) and (H3) are satisfied. To this end, we introduce a family (7,), of
triangulations of @, where .7}, is made of d-simplices with diameters bounded by .

For any integer k, P,(K) denotes the space of polynomials of degree < k on K.
We set

M™ = {‘Ih € L§(Q); VK € 7, 9k € Pm—l(K)}'
Then hypothesis (H1) is satisfied (see [2] for instance). Finally, we set
X, = {v,€ (@) 0 H}(Q); VK € 7, v, x € Py );

hereafter we study some examples of spaces Py introduced by Fortin [6] such that
hypotheses (H2) and (H3) are satisfied.

More precisely, we give in Section II an example of a simplicial element of order
m = 1 and, in Section III, an example of a three-dimensional tetrahedral element of
order m = 2.

From now on we denote by || - ||, o and | - | ,, o the usual norm and seminorm on
the Sobolev space H™({).

II. A Simplicial Element of Order 1 (d = 2 or 3). Let us consider a d-simplex K
with vertices a,,... and a,, . For 1 <i <d + 1, we denote by A, the barycentric
coordinate associated with a;, by F; the face which does not contain a;, and by n, the
unit outward normal to F;, and we set

Then, we consider
(I1.1) P.=P,(K)*® Span{p,, 1 <i<d+1)}.

(Note that dim Py = (d + 1)2) As far as the degrees of freedom are concerned, we
can choose the values at the vertices a;, 1 < i< d + 1, and the flux through the
faces F;,,1 <i<d+ 1

LeMMA I1.1. For any v in €°(K)?, there exists a unique T1 v in Py such that
Mv(a,) = v(a,),

(I1.2) /(v —IIgxv) -n;do =0,
F,

l<i<d+ 1.

Moreover, 11 v, depends only on v,p, 1 <i<d+ 1

Proof. Let us denote by I v the classical Lagrange interpolate of v in P;(K)?
ie.,
d+1

Mev= Y v(a)A,.

i=1
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Then, as the p,’s are equal to 0 at any vertex, one has
d+1

IMgv = ﬁKV + Z ap,,
=1

(11.3) di1

with a; = (/(v~ IIv) - ndo)// [T A, do.

F j=1,j+#i
Moreover, on F,,
d+1
HKv/F; = Z v(aj)A/ + op;s
Jj=1, j#1

so that ITv, - depends only on v(a;),j # i, and on [V - n,do.

Now, for each &, we consider a triangulation .7, of & made of d-simplices with
diameters bounded by /# and we assume that the family (.7,,),, is regular, i.e., (see [2])
there exists a constant o such that

(11.4) Vh,VK €7,, hg< opg,
where £ is the diameter of K, and py the diameter of the sphere inscribed in K.
With each K in .7, we associate the space Py defined by (II.1); then Lemma II.1
allows us to define an operator II, from €°(2)? N H}(2)? into X, by
(11.5) VK €T, I,v,=1Iv.
LemMA 11.2. The operator 11, satisfies (H2) for m = 1.

Proof. Clearly, one has
d+1

fdiv(v—HKv)dx= by /(v—IIKv)~n,.do=0
i=1"F

so that Vg, € M, (g,,, div(v — II,v)) = 0
Moreover, we know that (see [2], for instance), for k = 0 and 1,
v — Kvlk x < Ch* M|k
Let us compute IT v — IT,v = X% ! a,p,. We consider an affine invertible mapping
FK %+ x = Bg& + by which maps the d-simplex K = {* € R% Vi, 1 <i<d,
>0 and %, %, <1} onto K, and use the notations x = Fx (%), v = U°FK1.

Clearly, one has
2

d+1
Ipzlk K= ( ) dx
Jj=1, j+#i
d+1
<C f D"( IT A, ) ||BK1|| Idet B|d% < Cldet Byl |B] "
K =1, =*i
so that, by the regularity of the family (7,),,
(1L.6) [Pl x < Ch2 7.
But, since
d+1 d+1
A do =|det B )\ dé,
'/;:,j=l,j$z I K/Fle 1, j#i
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we obtain by (IL.3)
-1 ~ 2
jo| < Cldet By/z|” [ Iv = Tgvldo < cf =
F E
therefore, as P;(K)? is invariant under I1,
-1/2
o] < Clolzk < Cldet Bl “IBl hx < ChE IVl k.
The previous inequalities yield, for k = 0 and 1,
v — Kvlk x < Chy k|v|2 K>
so that
v - KV"1 o < Chlvlyq.
We recall the proof of the following inequality only for the reader’s convenience.

LeMMA I1.3. For any v in HY(K), we have
12, _
(11.7) llollo,, < Clmes F} th/z{ lollo.x + hK|U|1,K} .

Proof. As the trace mapping is continuous from H'(K) into L*(E),
ooz, =det B/ f, 0% d < Cldet B (ol + 1o 1)

< Clmes F| b {”0"0 x+ hi |U|1 K}
Let us now study the hypothesis (H3). We know (see [7, Chapter I, Lemma 3.2])
that, for each g, in M®, there exists v in H}(2)“ such that
(I1.8) divv =g, and ”V"ln < C”‘Ih”o,9~
Hence, the hypothesis (H3) is an immediate consequence of the following

LeMMA 11.4. For any v in Hg(ﬂ)d, there exists v, in X, such that

(gn,div(v —v,)) =0

(11.9) Vg, € M(l)
and ”vh”l Qs C"""l Q.

Proof. Let us denote by w, the interpolate of v in the space
(u, € €°(8) N HY(Q); VK € T, u, 5 € P(K)}

defined by local regularization as in [4] (see [1] for an explicit generalization to the
case d = 3). By the regularity of the family (7,),, we know that the following local
interpolation error holds

(II~10) v — Wh”o kth |Wh|1 KS ChK"""l Axs

where Ay is the union of all X’ in J, such that K N K’ # @; moreover, each
element of J, is contained in at most M subsets A,, where M is an integer
independent of 4.

Then, we consider the element v, in V), defined by

vi(a,) =w,(a,),

f(v—vh)-n,.do=0 l<i<d+l,
F,



FINITE ELEMENTS FOR THE STOKES PROBLEM 75

or, in other words, equal on K to
d+1

Vi,k = W, t Z a;p;
i=1
d+1

witha,.=(f(v—w,,) ndo)/ [T Ado.
F j=1, j+i
Clearly, one has Vg, € M®, (g, div(v — v,)) = 0. Moreover, by (IL.6),
d+1 d+1

Vally & <lIWallyx + 2 ledlipdl & < lIwilly x + CREZTH X o]
i=1 i=1

But, we also have
-1 -1,2
o] < C|det By | fF(v —w,)-n;do < Clmes F| "“[|v—wor.

Lemma II.3 implies
(I1.11) le;| < Chkd/z{”" = Wyllo.x + Axlv — whll,K}'
Finally, we obtain

[vally ¢ <lwally & + h_l{”" = Wyllo.x + hglv — whll,K}’
which, together with (I1.10), yields |v,|l; o < C|IVll; -

As assumptions (H1) to (H3) are satisfied with m = 1, this element can be used to
solve the Stokes problem with an O(4)-error estimate.

Remark 11.1. In the two-dimensional case, we can also consider a triangulation 7,
of Q made of triangles and convex quadrilaterals. Then, if K is a triangle, the space
Py is defined by (IL1). If K is a convex quadrilateral with vertices a,,... and a,,
there exists an invertible mapping F in 0? which maps the unit square K =10,1)2
onto K (Q, is the space of polynomials spanned by %, %,, ¥; =1 — %; and
%,=1-1%,); for 1 <i < 4, we denote by F, the edge with vertices a;_, and a; (of
course, a, = a,) and by n, the unit outward normal to F;, and we set

4
p=n(aeF), 4= I %,
J=1,j#i

Then, we consider
(11.12) Py = 0,(K)* @ Span{p,, 1 < i < 4},
where Q,(K)= {poF¢', p € Ql}. (Note that dim P, = 12.) The degrees of free-
dom can be chosen as previously. If the family (.7,), is regular (see [3] for instance),
the previous results are still valid.

III. A Tetrahedral Element of Order 2 (d = 3). Let us consider a tetrahedron K
with vertices a,,... and a,. We use the same notations as in Section II, in particular,
we set

we also introduce the points a;; = a(a, + a;), 1 <i <j < 4. Then, we consider

(II1.1) Py =P,(K)’® Span{p,, 1 <i < 4} ®(Span{ A, \,A50,}) .
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(Note that dim P, = 37.) Let us remark that this space generalizes in the three-di-
mensional case the space studied in [5] for d = 2. As far as the degrees of freedom
are concerned, we choose the values at the vertices a;, 1 <i <4, and at the
midpoints a;;, 1 <i<j<4, the flux through the faces F,, 1 <i < 4, and the
moments [ x,div(-)dx,1 <1< 3.

LeMMa I11.1. For any v in €°(K)> N HY(K)?, there exists a unique I1 v in Py such
that

M v(a,) = v(a,), 1<i<4,
HKv(aij) = v(aij)’ 1<i<j<4,
(I11.2) J-Tw)ndo=0, 1<i<4,
F,
[xidiv(v — Ty dx =0, 1<I<3,
K

Moreover, HKV/F‘ depends only on Ve, 1<IS 4.

Proof. Let us denote by IT v the classical Lagrange interpolate of v in P,(K)3,
ie.,

4
M= Y v(a)AQN -1+ ¥ v(a,)4\A,.
i=1

1<i<j<4

Then, as the p,’s and A;A,A ;A are equal to 0 on any edge, I1 ;v can be written

4
(111.3) Mev=TI,v+ Y ap, + BAAAA,.
i=1

Since A;A,A ;A is equal to 0 on 9K, we have

4
(I11.4) o, = (f(v—fIKv)m,.da)/ IT Ade, 1<i<4
F,

Fj=1,j#i
Then, setting
4
(I11.5) Mev=1w+ Y ap,
i=1

and using the Green’s formula, we obtain
(IIL6) B, = —(jx,div(v —T,v) dx)/f}\l)\z}\3)\4dx, 1<I<3.
K K

Moreover, on F,, one has
HKV/FI = ﬂKv/F, + a,p;,
so that I xv,» depends only on v .
Now, for each h, we consider a triangulation J, of € made of tetrahedra with
diameters bounded by /4 and we assume that the family (7,), is regular.
With each K in .7, we associate the space P, defined by (IIL.1); then Lemma III.1
allows us to define an operator IT, from €°(Q)> N Hy(2)? into X, by (IL.5).

LeMMA II1. 2. The operator 11, satisfies (H2) for m = 2.
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Proof. Clearly, one has
f div(v - Tzv) dx = [ x,div(v - Tv) dx =0, 1<I/<3,
K K

so that Vg, € M®, (g,,div(v — II,y)) = 0
Moreover, we know that (see [2]), for k = 0 and 1,

v — Kvlk x < Chi vl k.
Let us compute I v — 1 v = £*_, a;p,. As in Section II,
la,| < Cfﬁ o — 119|ds;
therefore, as P,(K ) is invariant under 11z,
la < Clls x < Ch3/2|"|3 K-
The previous inequalities, together with (I1.6), yield
v = Tgv|i x < Ch *vls k-

Finally, we compute II v — IT v = BA,;A,A;A,. Clearly, one has

R 5 2k 1/2
(IL7)  AAAA,x < (j’nuk AN 1Bl et 5 a
h3/2 k

and, by (I1L.6),

18] < Cldet B|™ fx,div(v — T v) dx|.
K

We use Green’s formula

-1
mmdmwa{

f(v - ﬁkv),dx +
K

)

< C{|det BK|—1/2HV — vl ¢ +|det Bkl_l’f x,(v—Tgv) -ndo
0K

f x,(v - ﬁ,(v) -ndo
K

But we remark that, since x = BgX + by,

faKx,(v —IIv) -ndo -—f (Bgx) ( Kv) fi|det By o] d6

+b,<,faf((v — TLv) - fidet By oz d6.

Therefore,

f x,(v - ﬁKv)-ndo
d

. <|IBll fa v =T do

f (v—TIgv) -ndo|.
oK

+ byl

77
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Since the last term is equal to 0, we obtain

1B < C{ldet BKI—m”V — gvfo x

4
et 5,0 18,0 X fmes £y = T,
i=1

so that, by Lemma I1.3,
IB] < {h;(B/Zh;( + hilhh}? } Ivls x < Ch?|vls k-
The previous inequalities yield, for k = 0 and 1,
|v - HKv|k,K < ChB—k|v|3,K~
By (11.8), the hypothesis (H3) is an immediate consequence of
LemMa I11.3. For any v in Hy(Q)?, there exists v, in X, such that

(g, div(v — v,)) = 0

(II1.8) v%ew“{
and “"hul,sz < C”"”1,sz-

Proof. Let us denote by w, the interpolate of v in the space
{u, € €°(Q) N HYQ); VK € T, u, x € P(K)),
defined by local regularization as in [1], so that (I1.10) is still satisfied.
Then, we consider the element v, in ¥}, equal on X to

4
Vi =W+ 2o+ BAAAGA,
i=1
with

@ = (fF(v - w,,)-n,.do)/fF 1i[ A, do,

X ,j=1,j*i
4
B, = ~fx,div(v - W, — Z aipi) dx/fklkz}\3}\4dx.
K i=1 K

Clearly, one has Vg, € M®, (g, div(v — v,)) = 0. Moreover, by (11.6) and (II1.7),

4

ol <l + Chl,(ﬂ( 5l + 18]
i=1

The a,’s still satisfy (I1.11). We also have

MdewJ%

4
f(v_wh_ Zaipi) dx
K i=1 !

+

4
f x,(v —w,— ) aipi) ‘ndo
oK i=1

|
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By the same way as in the proof of Lemma II1.2,

-1/2 -1
|8/ < C|l|det By] +|det By| || Bkl

0,K

4
vow = Y ap
i=1

4 4 4
X Y |mes F,.|h;<3/2< VoW, = Yap|  +hv—w,— X ap,
i=1 i=1 i=1

0,K 1,K

4
< c{h;:ﬂnv Wl + RN = w4 |a,»|}.
i=1

Finally, we obtain

IVally & < lwally ¢ + Chkl{”" = Wyllo.x + hglv — whll,K}’

which, together with (I1.10), yields ||v,]|; o < ClIv]l; -
Consequently, this element can be used to solve the Stokes problem in the
three-dimensional case with an O(h?)-error estimate.

C.N.R.S. et Université P. et M. Curie
Analyse Numérique

4, place Jussieu

75230 Paris Cédex 05, France

C.N.R.S. et Université de Rennes

U.E.R. de Mathématiques et Informatique
Rennes Beaulieu

35042 Rennes Cédex, France

1. C. BERNARDI, “Optimal finite element interpolation on curved domains.” (To appear).
2. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

3. P. G. CIARLET & P.-A. RAVIART, “The combined effect of curved boundaries and numerical
integration in isoparametric finite element methods,” in The Mathematical Foundations of the Finite
Element Method with Application to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New
York, 1972.

4. P. CLEMENT, “Approximation by finite element functions using local regularization,” RAIRO Anal.
Numeér.,v.9,1975, pp. 77-84.

5. M. CROUZEIX & P.- A. RaviART, “Conforming and nonconforming finite element methods for
solving the stationary Stokes equations,” RAIRO Anal. Numér.,v. 7, 1973, pp. 33-76.

6. M. FORTIN, “Old and new elements for incompressible flows,” Internat. J. Numer. Methods Fluids, v.
1, 1981, pp. 347-364.

7. V. GIRAULT & P.- A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture
Notes in Math., Vol. 749, Springer-Verlag, Berlin and New York, 1979.



