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Mixed Finite Element Methods for Quasilinear 
Second-Order Elliptic Problems* 

By F. A. Milner 

Abstract. A mixed finite element method is developed to approximate the solution of a 
quasilinear second-order elliptic partial differential equation. The existence and uniqueness of 
the approximation are demonstrated and optimal rate error estimates are derived. 

1. Introduction. Let Q c c R12 be a domain with C2 boundary M. We shall assume 
that for some e, 0 < E < 1, and for each pair of functions (f, g) in HE(Q) x 
H 3/2+?(aQ) there exists a unique solution p E H2 ? E(2) of the quasilinear Dirichlet 
problem 

(a) Lp = -V -(a( p) Vp + b(p)) + c( p) = f in Q, ( ~~(b) p = -g on a 0, 

where V w denotes the gradient of a scalar function w, and V v denotes the 
divergence of a vector function v. Note that then p belongs to W1'?(Q), which will 
be needed throughout the paper. 

We shall also assume that the coefficients a: Q x R -> R, b: Q x R -R 2, and c: 
Q x R -> R are twice continuously differentiable with bounded derivatives through 
second order; moreover, assume that a(x, q) > a, > 0. The variable x will normally 
be omitted in this notation below. 

For 1 < s < x and k any nonnegative integer let 

Wk s(2) = { f E Ls( Q) Daf =E Ls(Q) if Ial < k} 

denote the Sobolev space endowed with the norm 

IlAflks;S = (E |D af I|| LS(Q) 

(the subscript Q will always be omitted unless necessary to avoid ambiguity). Let 
Hk(Q) = Wk,2(0) with norm III I lk = II I IIk,2 (the notation 1I I10 will mean I * IIL2(S2) 

or II I - L2( )2). For 0 < r < ox let Wr,s(Q), Wr,s(aM), Hr( 0), and H r( M) denote the 
fractional order Sobolev spaces with norms I * I r,s; I *r,s;au, 11 * IIr;Q9 and 11 * llr;aQ' 
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We shall, denote by ( , ) the inner product in either L2(Q) or L2(0)2, that is, 

(m, 0) = f O dx or f - 0dx. 

Let K , ) be the L2-inner product on the boundary of Q: 

KX, I) =fX7Tds. 

We shall use the same notations to indicate the dualities between WrS((Q) and 
WrS((Q)' and HS(a Q) and H-s(a 2), respectively. 

Let 

V = H(div; Q) = (v E L2(Q)2 |divv E L2(Q)} 

normed by 

llvllv =llvll + Ildivvl|o, 

and let 

Hs(div; Q) = ( v E L2(i)2 divv E Hs(Q)), 
normed by 

11V||Hs(div;Q) = 1v11 + Ildivvlls. 

Let 

W= L 2(). 

If 

(1.2) u = -(a(p)Vp + b(p)), a = 1/a, 13 = ab, 

then (u, p) e V x W is a solution of the following weak formulation of (1.1): 

(1.3) 
(a) (a(p)u,v)-(divv,p)+(,B(p),v)=(g,v.v), v E V, 

(b) (divu, w) + (c(p), w) = (f, w), w E W, 

where v denotes the unit outward normal vector to M2. Since v v E H-1/2(ao) (see 
[12], [16]), the duality ( g, v v) is well-defined. 

Mixed finite element methods for (1.1) are discrete versions of (1.3) and have been 
treated for linear operators L by several authors [2], [5]-[7], [9], [12]-[16]. 

Let .9/h be a quasi-regular polygonalization of Q (by triangles, rectangles, or 
possibly parallelograms), with boundary polygons allowed to have one curved side, 
of characteristic parameter h e (0, 1), and let 

Vh x Wh C V X W 

be the associated Raviart-Thomas-Nedelec space of index k > 0, [11], [12]. To be 
more explicit, for E c R2 let Pk(E) denote the restrictions of polynomials of total 
degree k to the set E and let Qk(E) denote the restriction of Pk(R) ? Pk(R) to E. 
Then, let Rk(E) = Pk(E) if E is a triangle (interior or boundary) and Rk(E) = 

Qk(E) if E is a rectangle (interior or boundary), and let Rk(E) = Rk(E)2. For any 
E C Th let 

V(E) = Rk(E) E SpanxRk(E)}, W(E) = Rk(E). 
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Set 

Vh V(k, 5h) = { V VVIE V(E), E E11 }h 

v { G VV(E)E VlV + VE * VJI=?=OonfEl(nEj} 

where vI, I = i, j, is the outer normal to aEl on E rn Ej; also, let 

Wh = W(k, Y1h) = { W E WI WIE G W(E), E Sh 

Let Th: V -- Vh be the Raviart-Thomas projection, [6], [12], which satisfies (see 
[13] for q 0 2 below) 

(1.4) (div[ Thv - v],w)=, vE V,w E Wh, 

(1.5) II7ThV - VIIO,q < QIvII s,qhS, llq < s < k + 1,ifv e V rn Ws,q(Q)2, 

(1.6) Ildiv( Thv - v)I|o < Qlldivvllshs, 0 < s < k + 1, if v c V n Hs(div; Q). 

Let Ph: W -- Wh be the orthogonal L2-projection into Wh defined by 

(1.7) (Phw-w,X)=O, wE W,XE Wh, 
which satisfies 

(1.8) llPhW - WIIO,q < QIIWIIsqhS, 0 < S < k + 1, if w E W n Ws,q (), 

(1.9) llPhW -Wl-r -< QllWlshr?s 0 < r, s < k + 1, if w c ( 

(1.10) (divv, w - PhW) = O, wE W, v E Vh. 

We can now formulate the mixed finite element method to approximate the 
solution of (1.1): 

Find (uh, Ph) E Vh X Wh such that 

(1.11) (a) (a(Ph)Uh,V) -(divv, Ph) +(1(ph),V) = (g,v V), V e Vh, 

(b) (divuh, w) + (c(ph), w) = (f, w), w e Wh. 

We shall demonstrate in Section 2 the existence of a solution (uh, Ph) E Vh X Wh 

of the nonlinear algebraic system (1.11) through an adaptation of the method used 
by Douglas in [4]. In Section 4, we shall establish the uniqueness of that solution 
inside a certain ball. Furthermore, we shall show that (uh, Ph) converges to (u, p) in 
L2(i)2 x L2(Q) at an optimal rate as h I0 (Section 3) and also in (Hs(Q)2)' X 

Hs(0)1, 0 < s < k + 1, provided that the boundary of Q, the coefficients a, b, and c, 
and the solution p of (1.1) are smooth enough (Section 6). In Section 5, we establish 
the convergence of Ph top in Lq(Q), 2 < q < ox, at an optimal rate as h -O 0. 

2. Solvability of the Discrete Problem. For p e Wh, we shall write 

(2.1) a(p) - a(p) = -c& (p)(p - p) = -a0(p)(p-p) + - &(p)(p -)2 

where 

oip(p) = f'ap(p + t[p - p]) dt, 

ipp( p) = (1 - t)app(p + t[p - p]) dt 

are bounded functions in U. Similarly, we can write 

(2.2) 1(p) -_ (p) = _- (p)(p _ p) + 1p(p)(p _ p)2 = 
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(2.3) c(p),- c(p) = -cP(p)(p - p) + cPp(p)(p _ p)2 = -_p(p)(p _-p) 

where I,gpCp(, ~p) 1pp(p) and Cpp(p) are bounded functions in U. 
If we now subtract (1.11) from (1.3), we obtain the error equations 

(a) (a(p)[u - Uh],V) -(divv, p -Ph) +(Ip(P)[P Ph],V) 

= ([a(Ph) - a(p)]Uh + 1(Ph) - 1(p) + Op3(p)[P Ph],V), 

(2.4) v e Vh, 

(b) (div[u - Uh], W) + (cp(p)[p Ph]W) 

= (C(ph) - C(p) + Cp(p)[P - Ph] W), w 8 Wh. 

Substituting (2.1), (2.2), and (2.3) into (2.4), we see that (with p = Ph) 

(a) (a(p)[u - uh],v) -(divv,p -Ph) +([ap(p)u + 3pp(p)](p Ph),V) 

(2.5) - p([Pp(Ph)U + Opp(Ph)](P Ph) + &p(Ph)(P -Ph)(U - Uh),v) 

v e Vh, 

(b) (div[u - Uh], W) + (cp(p)[p - Ph],W) = (Cpp(Ph)[P Ph]2W), 

w e Wh. 

Set F = ap(p)U + 1ip(p) e CB?(2) and y = cp(p) e CB(Q). Let us now replace u 
by 7ThU and p by Ph P on the left-hand side of (2.5) to obtain (using (1.4) and (1.10)) 
the relations 

(a) (a(p)[vhu - Uh],V) - (divv, Php Ph) +(F[PhP PhI,V) 

(a(p)[vhu - u] + r[PhP -p] + [&pp(ph)U + Oipp(Ph)](P -Ph) 

(2.6) + &p(Ph)(P Ph)(U - Uh),V), 

V e Vh, 

(b) (div[ 7hu- Uh], W) +(Y[PhP Ph],W) 

= (Y[PhP -pI + Cpp(Ph)(P - Ph),w) e Wh. 

Now let M: H2(Q) -> L2(Q) be the operator 

Mw = -V .(a(p) Vw + a(p)Fw) + -yw, 

and let M* be its formal adjoint; that is, 

(2.7) M*X = -V * (a( p) VX) + a( p)F* VX + yX . 

We shall assume that the restrictions of M and M* to H2(Q) n Hol(Q) have 
bounded inverses; that is, for any 4 e L2(Q) there exists a unique 4 e H2(Q) (n 

Hol(Q) such that MO = 4 (respectively, M*4 = 4) and 11112 < QJJ'110. This would 
be guaranteed by assuming cp > 0 (see, for example, [8]). Let 

D: Vh X Wh -- Vh X Wh 
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be given by (F((,u, p)) = (y, z), (y, z) being the (unique) solution of the system 

(a) (a(p)[vhu - y],v) -(divv, PhP z) +(F[Php - z],v) 

(2.8) = (a(p)[vhu 
- u] + F[Php p] ?[&PI (p)u + ip(p)]( p - p) 

+cP(p)(p - p)(u - 
0,v), 

v e Vh, 

(b) (div[7Thu - y], w) + (Y[PhP - Z],w) 

= (Y[PhP -P] P+ ~p(p)(P p),W), W W Wh, 

the existence of which follows for small h from [5], since the left-hand side of (2.8) 
corresponds to the mixed method for the operator M. Thus, (y, z) is the solution of a 
linear algebraic system of the form 

(a( p)+, v)-(divv, 4) + (F4, v) = F(v), V E Vh, 

(div +, w) + (yo, w) = G(w), w E Wh, 
which for h sufficiently small has a unique solution ( 4) G Vh x Wh for any 
F e V', G e W'. (Existence follows from uniqueness. Thus it suffices to prove that if 
F = 0 and G = 0, then (+, 4) = (0, 0). This is done in [5] by an argument entirely 
analogous to that of our Lemma 2.1.) We are taking in (2.8) 

F(v) = -(p,divv) + (a(p)u + 
rp - [&(p)u + ipp((p)](p 

_ 
p)2 

+ P(P)(P 
- p)(u - V 

G(w) = (divu + yp - ~Pp(p)(p - p)2, ). 

The existence of a solution (Uh, Ph) e Vh X Wh of (1.11) is equivalent to that of 
the following problem. 

Problem 2.1. The map (F has a fixed point. 
The solvability of Problem 2.1 will follow from the Brouwer fixed point theorem if 

we can prove that (F maps a ball of Vh X Wh into itself. 
In order to do that, we shall use the following technical result. 

LEMMA 2.1. Let 2 < 0 < oc. Let w G V, q c L2(0)2, and r G L2(Q). If T G Wh 
satisfies 

(2.9) ( ((p)Iv) -(div v, T) +(FTIv) = (q,v), vEV 

\ (div w, w) + (yt, w) = (r, w) w FE Wh 

then, there exists a constant C = C(0, a, F, y, Q) such that 

(2.10) HITo,o <, C[h 2/91AIJO + hl +(2/0)(1 Ok)||divtol1o + llqll + l|r||o] 

for h sufficiently small. Also, if w e W'09(div; Q)= { V e L9( Q)2 divv G L9(Q), 
q E L9(Q)2, and r e L9(Q), 

!HT||oa, < C[h|lwJJo,o + h2-80kJJdivw Jo,o + hJJqJ 0,0 + h2- Ok lrJJo,0 + ||q| ,0 + ||r|| 2,0J. 

Here, and throughout the paper, 3lj will denote the Kronecker symbol. 
Proof. Let 0' = 0/(0 - 1) be the conjugate exponent of 0. Since 

lT1'o o = sup (j' ) 
11L90)0,01 
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we wish to b,ound (, 4) for 4 c L9'(Q). Let 4 e W2'0'(Q) be the (unique) solution 
of M*0 = 4p in Q, 4 = 0 on M2. Then [1], 

k14+12,0' _< K11411,0,. 
Observe that the Sobolev imbedding theorem [17] implies that W2-(2/79)9'(Q) C 

H1(Q) and W1-(2/0),9'(0) c L2(Q); so, W1'9'(2) c H(2/9)(Q) with 

(2.11) sIX112/0 < KIIXlll,. 

Next, note that for any E e 7h 

a(p)V(p e Wlo'(E) ; a(p)VO1E W8 -(I0')0'(aE)2 

and therefore the degrees of freedom defining WTha(p)vo on E are well-defined, that 
i ha( ph)vo is well-defined. 

Using (1.4), (1.10), (2.9), and integration by parts, we see that 

(T, ,) = (, M*O) = (T, -V (a(p)v4)) + a( p)IF. V4 + yO) 

= (,-V - (hha(p)V4))) +(FrT, vha(p)Vo) 

+ (FrT, a(p)Vo- 7Tha(p)Vo) + (yT, 4) 

= (q, wTha(p)v) -(a (p)w, 7Tha(p)V4) 

+ (FrT, a(p)vo- 7Tha( p)Vo) + (YT, 4) 

= (q, a(p)v4)) +(q, 7Tha(p)Vo - a(p)v4) 

+ (a (p)t + FrT, a(p)Vo)- 7ha(p)Vo) + (divc, 4) + (yT, 4) 

= (q, a(p)V4)) +(q, wTha(p)V4 - a(p)v4) 

+(a(p)t + FrT, a(p)vo)- 7Tha(p)vo) +(divt + yT, -PhO) 

+ (r, 0) + (r, Ph - 
0). 

First, observe that 

(q, a(p)v4)) < K||q||o||v44||o K||q||0||(||2,0- 
Furthermore, since V(E) D PO(E)2, an LP-version of the Bramble-Hilbert Lemma 
[3] implies that (using (2.11)) 

Ila(p)v4) - 7Tha(p)V4)PO I Kh2< V4l270 < Kh2|V4,a0 I _12,0, 

(a bound which cannot be obtained from (1.5) if 2/0 < 1/2) and therefore 

(q - a(p)w, 7Tha(p)V4) - a(p)v4)) < K(sIqII + lWIO)IIVTha(p)V) - a(p)v4)1o 

< K( |q||o + 1|co ) h2/09 1442, 0 . 

Also, we see from (1.5) that 

(Fr, a(p) V4 - 
7Tha(p) V4) < KIjTl00IIa(p)V4 - wha(p) V4)1OS,O 

K K||Tr|0o0hI| V4 llj, < KlTllo,0hlI)L2,o. 

Finally, from (1.8) and the Sobolev imbedding theorem we see that 

(divt, 4 - Ph4) < Klldivwlloll - Ph4llo 

< K||div xllohl +(2/19)(I - 80k) 110111+(210)(1 -80k) 

< K||div @|lohl +(2/0)(I - 80k)l 11012,0 

(yT, - Ph4) K rTIIoo'0II( - PhpI1oo', < KlITro ,h 2ok 14l12 ,, 

(r, d ) + (r, Ph.-6 ) - K||r0l-)11 < KIrI0A1161I.-(2/ A,, < KrAL114112, 
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It then follows that 

(T, #) < K [h||T|0o ,+ h2101w|Ilo + h1 +(2/0)(lI 0k) ldivwilo + ||q||o + llrll0] 11+110,0 

and thus, if h is sufficiently small, it suffices to take C > (1 - Kh)-1 in (2.10). The 
second bound for JITllo follows easily from the equation for (T, 4) following (2.11), 
(1.5), and (1.8). Q.E.D. 

Let now '."h = Vh with the stronger norm llvllK- = h1vII0,2+? + Ildivvllo, and let 
*h= Wh with the stronger norm IIw IKJ = IIw II(4?2I)/?. 

We are now ready to demonstrate the existence of a solution of Problem 2.1. 

THEOREM 2.1. For 3 > 0 sufficiently small (dependent on h), 1D maps a ball of radius 
8 of ','h X Ilh into itself. 

Proof. Let 0 = (4 + 28)/7 so that (1/0) + (1/(2 + 8)) = 2- Let 

l hu - Il -wh < 8 and IIPhP - p1jv < 8 1 

Interpret q and r in (2.10) as 

q = F(Php - p) + a(p)(Thu - u) 

+ [ jpp(p)U + ipp((p)](p _ p)2 + & (p)(p p-p)(U- 

r = y(PhP - p) + 
Cpp(p)(Pp 

- p)2 

and apply Lemma 2.1 to (2.8). 
Note that, since 8 < 1 implies that 0 > 4 and that 2 + 8 < 4/(2 - 28), He(Q)2 c 

L2+e(Q)2, H1+E(Q)2 C W1,2+e(Q)2 and H2+e(0)2 C W2,2+e(Q)2- Thus, 
H' +(,/2 (Q)2 C W1'2',(Q)2 and 11X111,2+? < Qe I +(?/2)' Then, (1.5) and (1.8) imply 
the inequality 

|lPh P - z0,0 < K [ h2/ ||Thu - Y||o + hl (2/0)(I ok)|Idiv(Q7hu - Y)JI| 

+ |Iqllo + llrllo] 

< K h2/0-lwhu - yllo + hl +(2/0)(I 
-80k)IIdiv( -Thu-y) ll 

+hjlpII1 + hlIuII1 + IIP - P1104 + IIP - P11,O011U -- FL10,2+? 

(2.12) < K [h2/017Thu - y|o + hl +(2/0)(I -8011)div(Q7hu - 0lo 

+ hIlPI12 + IIP ( - PhPIIO , + ldPhP -PIIO@) 

( ||U -7ThU 11 2+? + 11 7ThU 
- 

FI110,2+?)| 

K [ h2/01uT-h yllo + hl +(2/0)(I -80o)jjdiv(77hu -y)JI0 

+hIpP112 + 82 + (h||p||j,o + 8)(h jUjj1,2+, + 3)] 

< K [ h~"2/0| u-y|o + hl?(2/0) -80kdivQh k-y) (h + 82)jjPj2+L- 
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If we now take the last term on the left side of each equation in (2.8) over to the 
right side, the left side becomes exactly the mixed method equations for the operator 
-V (a(p)v). It follows from [2] that then 

(2.13) I7hu - yllv < K [llPhP - zo + l1qllo + llrllo] 

< K[llPhp - zJll a + (h + 82)lIP12+l?- 

If we now substitute (2.13) into (1.12), we see that, for h sufficiently small, 

(2.14) lPhP - z10,0 < Kj[h + 82], 

with K1 depending on 11p112+? linearly. Putting (2.14) back into (2.13), we obtain 
(with K2 = K(K1 + 1Ip112+)) 

(2.15) Ildiv(7Thu - y)J0 < K2[h + 82] 

(2.16) 7Hhu -y|o y <, K2[h + 82]- 

It follows from (2.16), using the quasi-regularity of Yh, that 

117 ) |U - 
Y||O,2+E < Kh (2/(2 +E)) -|7ThU - Y I I0 (2.17) khU - l02 e ~ ~ -y1 

< K h -(/(2 +))K2(h + 82) < K3[h2/(2+e) + h-(e/(2 +))82] 

We now see that (2.15) and (2.17) imply that 

(2.18) 117ThU - Ylh < 2K3 [h 2/(2 +) + h -(/(2 +))82] 

Now let h < (4K3 and take 8 = 4K3h Observe that in order that 
2K3h 27(2+ 8/2 and 2 K3h-(?A2? ))32 8 3/2, we must have 8 e [4K3h 
(4K3 lh e/(2 +e) I 0, which is satisfied for h and 8 as chosen. 

The theorem is now proved, since (2.14) and (2.18) imply that IIPhP - ZIIsh < 
and IL7Thu -YIK- < 3; that is, 1 maps the balls of radius 8 = 0(h2/(2+ centered 
at ( vhu, Ph P) into itself. Q.E.D. 

3. L2-Error Estimates. Note that Theorem 2.1 in fact shows that as h -O 0 we 
obtain a sequence t(Uh, Ph)} h I Owhich converges to (u, p) in V (n L2 +e 0 2) 2 x L0(92) 

and furthermore, that there is a constant C = 4K3 + QQc IIu I I such that 

(3.1) max{ |lu - Uhllo02+?; IIP -Phll0, } Ch 
e 

since 

I|U - Uhll0,2+? < IIU - hU1lO,2+? + llF7hU - Uhllo0,2+ 

< QhIIul 1,2+, + 8 < QhQ,ulull+?, + 4K3h 
and 

IIP - PhI1O0,9 IIP - PhPI10,9 + llphP - PhI1O,9 

< Qh||p||j,0 + 8 < QhQ,|p||2 + 4K3h27(2+?). 

Let us now rewrite (2.4) as 

(a) (a(p)[u -Uh], V) -(divv, p -Ph) 

(3.2) + ([&p(Ph)Uh + ?p(Ph)] (P -Ph), V) =O V EVh, 

(b) (div[u - Uh) wa ) + ( upc(iPhoP i Ph Wd () a W (h 

where 0ip(Ph) and Cp( Ph) are bounded functions in Q defined in (2.2) and (2.3). 
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Observe that (3.2) corresponds to the mixed method for the operator N: H2(Q2) n 
Hod(9) 4IL2(Q) given by 

Nw = -V -(a(p)Vw + a(p)[&p(Ph)Uh + Op(Ph)]W) + C,(Ph*- 

Its formal adjoint N*: H2(2) n Ho'(Q) -- L2(Q) is 

(3.3) N*X = -v -(a(p)Vx) + a(p)[&,(Ph)Uh + Ilp(Ph)] VX + ep(Ph)X. 

Before we turn to the rate of convergence of (Uh, Ph) to (u, p), we need the 
following technical result. 

LEMMA 3.1. There exists an ho > 0 such that, if h < ho, N* has a bounded inverse 
mapping L2(Q) onto H2(Q2) n Ho(Q). 

Proof. Since M*-1: L2(Q) -- H2(Q ) n HJ(2) is bounded and N* - 

(M*-lN*)-lM*-1, it suffices to show that M*-lN* has a bounded inverse on 
H 2(Q9) n Ho(si). For a linear differential operator D: X -- Y, let IllDill be its norm 
as a linear functional; e.g. 

111M*111 = IIM IIY(H2(Q) nH (Q);L2(0)) 

Then, all that is needed is to prove that IIIM*-1(M* - N*)III is less than one, since 
this will imply that I - M* 1(M* - N*) = M* 1N* has a bounded inverse. Thus, it 
is sufficient to show that IIIM* - N*|ll is smaller than (IJIM*-Thll)1. 

We have, by (2.7) and (3.3), 

(M* - N*)X = a(p)[ap(p)u - &p(Ph)Uh + I3p(P) - Op(Ph)] VX 

+ (Cp(p) - ep(Ph))X 

(3.4) = a(P)[(ap(P) 
- 

&p(Ph))u + p(Ph)(u 
- 

uh) 

+ (Ip(P) - Op(Ph))] VX 

+(cp(p) - c(Ph))X- 

Observe that p = - Ph, 

ap(P) - &p(Ph) | f'[ap(p) - ap(Ph + ti)] dt 

(3.5) -=~f1(I - t)j ?app(Ph + tt + s( -t) ,) dsdt 

dppe, 

where app is a bounded function. Similarly, we obtain 

(3.6) ipp P) - Op(Ph) = 
0PA cp(p) - cp(Ph) =p, 

where O,PP and c-pp are bounded functions. Substituting (3.5) and (3.6) into (3.4), we 
see that 

(M* - N*)X = a(p){ [appu + p] (p Ph) + &p(Ph)(U - Uh)} VX 
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and thus, using (3.1), 

|I(M* - N*)xIIo < K4[IIUIIO,OOIIP -PhIIO,(4+2e)/e1jIVXIO,2+?e 

+ IIU 
- 

Uh11O 2+J1 VX1O,(4+2e)/e + IIP 
- PhIO1XII,-] 

< K5|PI +? 2[ h 11 VXIII + h2A ||)jXli +?] 

< K6h 2A2?e[2+e) XIIV2 

since H1( 0)2 c L'( U)2 for any finite r and H1+E(2) c L??(Q). Now, take h0 small 

enough that K6h /(2+ ) < (IIIM*lIIIYi. Q.E.D 

We can now obtain a rate of convergence of (Uh, Ph) to (u, p) as h -* 0. 

THEOREM 3.1. There is a positive constant C independent of h, depending on 1p1P2+, 

quadratically such that 

(i 
IIP - PhIo C fhllP II2, if k=0, 

\hsllplls, 2 < s < k + 1, if p e Hs and k > 0, 

(ii) IIU- UhIO < Chs1plP?s+i, 1 < s < k + 1, ifp e HC (0), 

(iii) Ildiv(u -Uh)l10 < ChsllPlls+2, 0 < s < k + 1, if p E Hs+2 (). 

Proof. Let t = U - Uh, ( = p-Ph, a - ghU - Uh, and T = PhP - Ph- Rewrite 

(3.2) in the form 

((a(p)t, v) -(divv, ) +([&p(Ph)Uh + 1p(Ph)]T,V) 

= ([&p(Ph)Uh 
+ 

1p(Ph)][PhP -p],V), v Vh, 

(div , w) + (cp(ph)T,w) = (p(Ph)[PhP -p], w), w E Wh. 

It follows from Lemma 3.1 of [5] and our Lemma 3.1 that 

|ITIIO < K hlltllo + h2 Okldiv|llo + p[ (Ph)uh + Ip3(Ph)]I(PhP - P) o 
(3.7) 

+ jjCp(Ph)(PhP 
- P)Io] 

If p e Hs(Q2), then p E Hs -(2/(2 + E)), (Q) and IIpIIs-(2/(2+E)),9 < K11pll s Thus, using 

(1.8) and (3.1), the penultimate term in (3.7) can be bounded by 

II[p(Ph)Uh 
+ 1h(Ph)I(PhP -P)O 

(3.8) < K [||uILOL,,,JPhp - PIIo + IIu - UhIIo02+ElPhP - P11O,(4+2E)1e1 

K||p 112K + [hsIIpis1 + h/(2 +E)hs (2/(2 + E))l|P |2| ,] 

< K||p112 +EhsIIpIIs. 

We now derive a preliminary bound for II II. Substituting (1.8) and (3.8) into (3.7) 

gives the bound 

l1Trlo < K h1ltllo + h2-8ok ldivriIo + hsliplisiP 2+E , 

which in turn implies, using again (1.8), that 

(3.9) lIIo = IIP - PhIIO < IIP - PhPllo + uITIo 

< K 11p12 +ehStjpjjs + h2-8okjjdivtjjo + hlltlloI. 
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The quasi-regularity of Y7 implies that 

(3.10) (o __ Kh II(Y110,2+e. 

The Sobolev imbedding theorem implies that 

(3.11) Hl+ec()2 c W(E/2),oc(Q)2 

Using (1.5) with q = oc and s = c/2, we obtain from (3.1), (3.10), and (3.11) the 
inequality 

((Uh((,oo 1 (40,)o + (lkThU - u110, + (llo(I,oo 

(1K [liP112+E + hE/2IIU11e/2,o + h-2/(2+E) I I02 

< K [HPI12+, + h 2/(2 E)((17ThU UIIO,2+e + IIU Uh0,2+Je)] 

< K[((PI12+E + h2A2?e(QhlU(II+, + Ch2/(2?e))] K 2(((P((2?. + i). 

If we now rewrite (2.4) as 

{(a(p)a,v) -(divv, T) = (a(p)[7Thu - u] - [&p(Ph)Uh + h(Ph)] V) 

V E Vh, 

(divy, w) = (-p(ph), W), w E Wk, 

we see using [2] (just as we did to obtain (2.13)), (1.5), and (3.12), that for 
2 < s < k + 1 andp C Hs`l(Q) 

(3.13) (l<lilv < Klip12+e[[7ThU - Ullo + ((t1(o] < Kilp112+e[ll(l(o + hSi(p(ls+I] 

From (3.13) we now obtain by (1.5) and (1.6) the bounds 

litlO < I(U - 7ThUllO + ll(llo 

(3.14) < K(((pj12+g + i)[1(X1(o + hSl(pls+ji], 1 < s < k + 1, 

(3.15) l(divtllo < Ildiv(u - 7Thu)JIO + (ldivallo 

< K( 1P112+e + i)[ ftjo + hsllplls+2] 0 < s < k + 1 

which, when substituted into (3.9), yield the estimate 

(3.16) 11f11o < KIpI 2[hjjtjo + hS80kjjpjjs + hsllpIls] 

< K(1Ip1+1 + 1)[hjjfjjo + hS-80klplI, 2 < s < k + 1 + 30k 

But (3.16) now implies (i) holds if h is small enough. Applying (i) to (3.14) and (3.15) 
shows that (ii) and (iii) also hold. Q.E.D. 

Observe that Theorem 3.1 shows that {(uh, Ph)} h 0 converges in V x W to (u, p) 
both at an optimal rate (for any h) and with minimal smoothness requirements on 
the solution of (1.1) (if k > 1). 
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4. A Uniqueness Result for the Discrete Problem. We shall now prove a unique- 
ness result. 

THEOREm 4.1. If f e H2+e+(l-E)80k(2) and h is sufficiently small, then for any 
K > 0 there is a unique solution of (1.11) in the intersection of the balls 

{IU - Uhlhlx/ + IIP - PhLIrh K411UIIO,.IMM IIY(L2 (); H2(Q)nHo(0))) 

n { I|u - UhIlO,0 + IIP - PhIIO,. < K } B 

where K4 is the constant of Lemma 3.1 appearing after (3.6). 

Proof. First note that Theorem 3.1 in fact shows that any solution (Uh, Ph) e Vh 
X Wh of (1.11) lying in B will verify the bounds (i), (ii), and (iii) of Theorem 3.1. 
Assume now that, for i = 1 and 2, (u( pii)) E Vh X Wh is a solution which satisfies 
the above hypotheses. Let , = u - u($), 9 = p - ph ), U = u() - u(2 ), P = Ph ) -Ph) 

and cy = IThu - U('). Theorem 5.1(b) below will then imply that 

(4.1) 111,o -<- Qh /2P 12+?+(1-E)80' i = 1,2. 

Also, Theorem 3.1(b) implies 

(4.2) llilllo < QhIIP112, i = 1,2. 

It follows from (1.5), (3.10), and (4.2) that 

lllo0,00 < Ilu - gThull O + 1a,11000 < K [h E/2 IIUI/2 o+ h1|1|,10] 

(4.3) < K [h E/2II UI1+ + h1(11Thu - ulo + IiQlO)] 

< K[h p/211p + h-lhllPI12] < K(p), i = 1,2, 
where K( p) depends on IIP 112 + quadratically. 

It follows from (1.3) and (1.11) that 

(a(p)U,v) -(divv, P) = ([a(ph2)) - (P(P)Au(2)'v 

+([a(p) - a(p(1))]U + p(p(2)) -p(pl)) VI 

v C_ Vh, 

(divU, w) = (C(P(2)) - C(P(l)), w), WE Wh. 

Let 

(Ph1)) a(Ph ) a ( P) Pp, a(p) - a(Ph 1)) = p (0411 

p( (1)-) p(p(2)) = (p)p, C(1ph)) - C(Ph2)) Cp(P)P, 

where a- (P), a-p( I), p(P), and C-p(P) are bounded functions in Q, where P is some 
convex combination of p () and p 2). Then 

( ( (p)U,v) - (divv, P) = -([Ct(Thu$h) + ihp( )jP,v) 

(4.4) +?(ap(ow)(u,v), V E Vh 

(divU,w) = 
-(CP(P)P,w), we Wh. 

It follows from [2], (4.1), and (4.3) that 

(4.5) ((UI(O < K(p)[((PIlo + h(lUllo], (ldivUllo < K(p)[((P((O + hilUllo] 
For h sufficiently small, (4.5) implies 
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(4.7) 1 IldivUllo -<- K(p)JIP110. 
Rewrite (4.4) in the form 
(a(p)U,v) -(divv, P) +([Ol(P)u$h) + AiP)IP,v) = (h( ) a u,v). v E V 

(divU, w) + (5c-P(P)P, w) = 0, w E Wh. 

Then, it follows from [4], an obvious variation of Lemma 3.1, and (4.1) that 

(4.8) IIPIIO < K(p)[hIIUIIo + hildivUllo]. 
If we now substitute (4.6) and (4.7) into (4.8), we have IIPIIo < KhIIPIIO, which 
implies that P = 0 for h sufficiently small. Then (4.6) implies that U = 0. Q.E.D. 

5. Lq-Error Estimates (2 < q < oc). We shall first obtain a negative norm estimate 
for T. 

LEMMA 5.1. There exists a positive constant C < K(IIpII14+ + 1), independent of h, 
such that, if ag and the coefficients a, b, and c of (1.1a) are sufficiently smooth, then for 
O < s < k, 

(Ill-s _ 
C[ hrl+1?s?1pLl+l+(s-k+l)+ + h r2+1`P +11 +0k 

1 < r1,r2 < k + 1,2 - 30k < / < k + 1, wherepis the solution of (1.1). 

Proof. Since 

|(|(r||(s-= sup ( r +4 ') 

we wish to bound (T, #) for 4 e Hs(Q). Let 4 E Hs+2( 2) be the (unique) solution 
of M*0 = 4, in Q, 4 = 0 on U2, the existence of which we shall assume. Assume also 
that 1111s+2 < KII4uIs. Note that (1.5) and the Sobolev imbedding theorem give the 
bound 

(5.1) IIa( p) V4 - 
g7ha( p)V'jj0o(2+)/1? < Kh |2 a ( p )V |II|?/2,(2 +,?)/? 

Khe/211,7(pll _ KheI211,01s +2. 

Also, the Sobolev imbedding theorem implies that a( p )VO E Lt(Q)2 for any finite 
t, with lIa(p)VI1o, t s< K114112; the quasi-regularity of Yh implies that if X E Vh and 
1T G Wh v 

(5.2) IIXIIO,2+e < Kh -e2 
llyllo, llSTllO,2+e < Kh - e |2 e|o-40 

Let K = &pp(Ph)U + Ppp(Ph)' X = &p(Ph), and p = cpp(Ph)* We have X, p E L'(Q) 
and K e L?(2)2. Rewrite (2.5) as 

(a) (at(p )t,v) -(divv,T) + (rT, v) 
(5.3) = ([Ka + Xi] + r[Php -p], v), v E Vh, 

(b) (div , w) + (YT, w) = (p2 + ?Y[Php -p], w) w E Wh, 

where (, t, and T are the same as in the proof of Theorem 3.1. It follows from (1.4), 
(1.10), (5.3), and integration by parts (exactly as in Lemma 2.1) that 

(T, 4,) = ([Ks + xAI] + r[Php - p], a(p)v4) 

(5.4) + ([K' + xw] + r[php -p], 7Tha(p)Wk - a(p)vo) 

? (a(p) + rT,a(p)V - 7Tha(p)V4) +(div + yT,4 - Phk) 

+ (,2 + v[PhP -p], n ) + (p2 + v[Php pI, - 
Ph P - 6). 
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First, note that (1.5), (1.8), (5.1), (5.2), and Theorem 3.1 imply 

([a K? +XfIj, a(p)Vkp) < K(((11|0,2?e + 

< K(p- Ph hP( (O2?+ + (T(10,2?+F + ((U hU(0,2?e + 110110,2+j 

X (IIP - PhPI102+? 1 110,2+?) 11 V+L 

< K( h r2e/(2e) P11r2-eA2+e),2?, + h- el 
| 1 

+ h r2?e/(2+e) ||U||r2-eA2+e),2?2 + h 1 Iloilo 

> ( 11E/P21E)l( Ip/eA2+e),2?, 
+ 

? JITI O) 110112 

< Kh-2e/(2+e)(hr2|p(PIr2+l + (lPhP - PIO + ((t((o + 1T1hU - UIIO + l|ClO) 

x (h'lIpllj + IIPhp - Pilo + I410)IIAllfs+2 

< Kh 2e/(2 e)h r2IIPIr2?+hlIlpIll+8okIIkIls+2 

= Khl+r2 2e/(2e)IIPIIl,8kIIPIIr2+1II40IIs+2, 

2 - 0 k < 1 k + 1,1 r2 < k + 1, 

? Kf + 7Tha(p)V4. - a(p)VP) 

(5.6) < Kh2e/(2 e)h r2IIPIIr2?+ jhlIIPIIl?+OkIITha( p) Vk - a( p) VklO.(2?+)/. 

< Khl+r2I2P/(2??)IIIi?|p p1, llr2+ lh e/+IIs?2, 

2 - 0k < 1 < k + 1, 1 < r2 < k + 1, 

( pt2 + )< K||t|0O2 +F I|| I0, (2 + e)/,E 

< Kh/2e/2 e)h lP(1?+8h0Ikh P(r2 + 8(k 141(2 

< Kh Ir22e/(2e)ip 11 1+Ok IIP 1 r2 + 1 ?l4 lIs + 2, 

2 - 30k < 1 < k + 1,1 < r2 < k + 1, 

( pt2 th Ph - + ) < KII|I|0,2?+,FIPh4 - 
11,(2+,e)/E 

(5.8) 
< 

Khl?r2/(-2?2+e) IIPIII?8okIIPIr2? lhe/211IIl| 

< IClr2e/(2?e)IIIl8kIIr?I4Is2 Khlr tIP 11 +'60k "P 11r2+11+ 12, 

2 - 30k < 1 < k + 1, 1 < r2 < k + 1. 

Next, we obtain from (1.9) the bound 

(r[Pph p]J, a( p) V<>) + YPhp -P]J, (A) 

(5.9) < KlIPhp - pll-S-1(llVAlS+1 + lI(lls+I ) 

? Khrl+s+lIIPIIlrlllPlls+2, 0 < r1 < k + 1. 

Also, (1.5) and (1.8) give the estimates 

(r[Php PI, 7Tha(P)Vp - a(p)VP) +(y[Php -p] Ph' - 
() 

(5.10) < KIIPhp -pIIo(Ikgha(p)Vp 
- 

a(p)vAjjo + IPh 
- 

(Pilo) 

< Khrl+s+lllPllrll4AIlls+2, 0 < r1 < k + 1, 
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(FrT, a(p)vk - gha(p)V k) +(YT, ( - Ph4) 

(5.11) ? K|TH0(IIa(p)V4 - 7Tha(p)V(kIIO + 1|- Ph-A10) 

< Khs+lr Tjol4fl?S+2. 

Finally, (1.5), (1.8), and Theorem 3.1 imply that 

(a(p)t, a(p)vA - 7Tha(P)V(k) 

(5.12) < K((t;(0jja(p)v4 - 7Tha(p)V(kIIO < Khrl+s+l(IpI(rji?i1((4(s+25 

1 < r1 < k + 1, 

(div , 4 - Ph4) < K||div (Illoll(( -ph II 

(5.13) Khr +s+1l II(P(r,?l(+1ks+25 1 < rI < k + 2, if s < k-i, 

( KhP(lr,+2+s-kI(IIs+?1+k-s 0 < ri < k + 1, if s > k - 1. 

If we combine now (5.4)-(5.13), we see that 

(5.14) ||T||_ s< K Ijhs+1IITIIO + h+?r2el? p I 2+1 + h rl? +s IIP Irl+ 1 +(s-k+1)+] 

for 2 - 30k < I < k + 1, 1 < rI, r2 < k + 1, where K contains a multiple of IIPII ?e4 
If we now take s = 0 in (5.14), we obtain the estimate 

(IlT _< K h(IT11 + hr2?+e'lip+?8 0kIIPI2l +1 + hrl?+(IPllrl+1+8ok] 

which, for sufficiently small h, implies that 

(5.15) ((1T1( < Kh Ihl+r2e((p((l?0k(p(IIr2 +1 + hrl?+(Ip(lrl+l+8ok] 

Substituting (5.15) into (5.14) completes the proof of the lemma. Q.E.D. 
We can now demonstrate the convergence of Ph to p to be at an optimal rate in 

L q( ), 2 < q < oc (for k > O if q > 2/c). 

THEOREM 5.1. There are positive constants Cq and C (both containing a multiple of 
IIpII4+e), independent of h, such that, if p E Wr'q(Q2) n Hr+l+80k+t(q,r)(Q), 1 < r 
< k + 1 - (e - 2/q) 8ok, where t(q, r) = -(2/q) + (1 + (2/q) - r)+, then 

(a) IIP PhIIO,q < Cqh llPllr+l+6k+ t(q r) q < oc, 

(b) IIP PhII0,o, < Ch [lplIIr,oo + IIPIIr+1+?okb 

Proof. Using Lemma 5.1 (with s = 0, / = 1 + e(1 - 3Ok), r1 + 2/q = r2 + (2/q) 
- esOk = r), (1.8), and the quasi-regularity of ,h we obtain the bounds 

(a) IIP -PhIIO,q < IIP - PhPO,q + JjT11o q 

< Kq [ h rllp 11r,q + h-(q- 2)lq||TI|O] 

< Cq [hrllp 1r,q + hrllpllr+1+80k+t(q,r)+ 

(b) IIP -PhAO,o < IlP 
- 

PhP1O100 + 11T110 0 

< K [h rllp 1 r,oo + h -1lT o ] 

< K [hrllp 1r,oo + h-l+r+?llp11r+l+?ok 0. Q.E.D. 



318 F. A. MILNER 

6. Error Estimates in H'(Q)' and (HI( U)2)'. We can also derive negative norm 
error estimates from Lemma 5.1. 

THEOREM 6.1. There exists a constant C > 0 (containing a multiple of IIpII42+), 
independent of h, such that, if p is sufficiently smooth, then for 0 < s < k + 1 we have 
the following estimates: 

(i) IIP -Phli-s < C h 1 IIIIp?rl+(s-k+?)++ h r2+e IIpIII+8IPlr2+i ] 
2- 30k < I < k + 1, 1 < r1, r2 < k + 1, 

(ii) jju - Uhll|| < C hri+sllpj r?+l +(s-k)++ h r2+1-e 
IpII1?++8JIpIIr2+1+Eok 

j 

2 - 30k < 1 < k + 1,1 < rl, r2 < k + 1, 

(iii) Ildiv(u - Uh)t_s < C h r?st IPIIrl +2 + hr2 pitPl6++0SokllPIllr2+1+et-0k] 

2 - 30k < 1 < k + 1,0 < r1, r2 < k + 1. 

Proof. (i) follows directly from Lemma 5.1 and (1.9), since 

= T + (QPhp - p), (i1i -k-1 < IiTii-k + IiPhP Pit-k-1)- 

Rewrite (5.3) as 

(6.1) f(a(p),v) = (divv, T) -(1(,V) +([KT + Xt],V), V E Vh, 

\(divC ,w) = (-yt,w) +(pg2,w), w E Wh. 

Note that (iii) for s - 0 is just a consequence of (iii) of Theorem 3.1. Let then 

4 Ee Hs(Q), 1 <- s < k + 1. Then, 4 Ee L0/2(2) with '1100/2 < KIIiIls. The second 
equation of (6.1) and (1.8) imply that 

(div , ) )-(div , Ph4') + (div , 4-PhA ) 

-(Yh, 
+ 

h4') +(p PhO) +(divt, 4 - Ph,) 

_(ye, 4) +(., 4'- P_4p ) +(pg2, i) +(pg2, p4h -4 ) 

+ (div , 4 - PhO) 

< KII4 Is [111-s + hstllllo + tt4t0,2?,e + h 0t(tt(,4 + hslldiv ttllo 

since [1/(2 + ?)] + [1/(2 + E)] + [1/(0/2)] = 1. Therefore, (iii) follows from (i), (a) 
of Theorem 5.1, (iii) of Theorem 3.1, and interpolation [10] for 0 < s < 1. 

Finally, assume that the coefficient a is smooth enough that for X E Hs-1(s) 

there is a unique p E Hs+1(Q2) such that V (a( p)V4) = X in t2, 4 = 0 on aQ, with 

IIL?s+1 < KlIIxIS-ID O < s < k + 1. Let E e Hs(Q2)2; let 4 E Hs+1(Q) be the solu- 
tion of V(a(p)Vk7) div 4 in Q, 4 = 0 on asa, and let X = 4 - a(p)V4. Then 
div x = 0, lixiL Is < K 14,s, and I I4L?s+ < K II,Is. It follows from (1.4), (1.5), (1.3), 
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(1.8), (1.10), (5.1), integration by parts, Theorem 3.1 and Theorem 5.1 that 

(a(p), q) = (a(p), X) +(g,v+) 
= -(div , p) + (a(p)t, 7ThX) + (a(p)t, X - 7ThX) 

= - + (d, Pha) + iv, PhO - ) (a(p), X ThX) +(a(p)t,7ThX) 

= (7ye Ph4) -(pg2, Ph() +(div , Ph(: - () +(a(p) , X - 7ThX) 

-(rF, 7ThX) + ([ K + /Xt, I ThX) 

(_Y, I () + (_YtI Ph(P - +) _(gp2 0) _ (p2 p Ph _ 0) 

+ (div , Ph4P - ) + (a(p) , X - 7ThX) -(GM X) 

M, 7hX - X) +([ K + XA], X) +([QK + Xt XhX - X) 

< Kjjpjjs 141jIj, + hs?lIIf10 + I0,4 + hs?1I 02,4 

+hs+l1jdivtIj0 + hsIl3llo + 11|1-s + hsjj|jjo 

+ (8110o2+? + 11j02+e)11400(2+e)/F + hs(llCIl0 + IlII0)!IlI.,4 

< KA4'jts [hr2?+/p-Ir? i&p IpI1?+,80ok + h r' lpllrl+l+(s-k)+?1 

from which (ii) follows immediately. Q.E.D. 
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