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Mixed Finite Element Methods for Quasilinear
Second-Order Elliptic Problems*

By F. A. Milner

Abstract. A mixed finite element method is developed to approximate the solution of a
quasilinear second-order elliptic partial differential equation. The existence and uniqueness of
the approximation are demonstrated and optimal rate error estimates are derived.

1. Introduction. Let & € C R? be a domain with C? boundary 0$. We shall assume
that for some ¢, 0 < e <1, and for each pair of functions (f, g) in H*(Q) X
H3/2%5(3Q) there exists a unique solution p € H2*¥(Q) of the quasilinear Dirichlet
problem

(11) (a) Lp=-v -(a(p)vp+b(p)) +c(p)=f inQ,
' (b) p=-g ondQ,

where vw denotes the gradient of a scalar function w, and ¥ - v denotes the
divergence of a vector function v. Note that then p belongs to W'*(Q), which will
be needed throughout the paper.

We shall also assume that the coefficients a: & XR — R, b: & xR — R? and c:
Q2 XR — R are twice continuously differentiable with bounded derivatives through
second order; moreover, assume that a(x, ¢) > a; > 0. The variable x will normally
be omitted in this notation below.

For 1 < s < oo and k any nonnegative integer let

wks(Q) = { fe L(Q)|D*f e L*(Q) if |a| < k}

denote the Sobolev space endowed with the norm

R 1/s
Wlesia = ( Y b um))

laj<k

(the subscript £ will always be omitted unless necessary to avoid ambiguity). Let

H*(Q) = w*?(Q) with norm || - ||, = || - ||, (the notation || - ||, will mean || - || ;2q,
or || * || z2.g)2)- For 0 < 7 < oo let W*(Q), W"*(0Q), H'(2), and H"(3%2) denote the
fractional order Sobolev spaces with norms || - ||, s.0, || * Il 500> | * l.0> a0d | - |l .50
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304 F. A. MILNER
We shall denote by ( , ) the inner product in either L*(2) or L*(2)?, that is,
,0) = 0dx or - 0dx.
(n,0) fﬂ m fﬂ M
Let ( , ) be the L%inner product on the boundary of Q:
(N, m)= / A ds.
0%

We shall use the same notations to indicate the dualities between W™°(2) and
wrs(Q) and H*(dQ) and H ~*(3), respectively.

Let

V = H(div; @) = { v e L}(Q)’|divy € L}(Q)},

normed by
Ivlly = Ivllo + lidiv vilo,
and let
H*(div; Q) = { ve LZ(Q)zldivv € Hs(SZ)},
normed by
IVl gae aiv: 2y = IVIlo + lIdiv vll,.
Let
W= L*(Q).

If
(1.2) u=—(a(p)vp +b(p)), a=1/a, B=ab,

then (u, p) € V X Wis a solution of the following weak formulation of (1.1):

(1.3) (a) (a(p)u,v) —(divy,p) +(B(p),v)=(g,v-v), VeV,
’ (b) (divu,w) +(c(p),w)=(f,w), weE W,

where v denotes the unit outward normal vector to 9Q. Since v - v € H "1/2(3Q) (see
[12], [16]), the duality (g, v - v) is well-defined.

Mixed finite element methods for (1.1) are discrete versions of (1.3) and have been
treated for linear operators L by several authors [2], [S]-[7], [9], [12]-[16].

Let 7, be a quasi-regular polygonalization of € (by triangles, rectangles, or
possibly parallelograms), with boundary polygons allowed to have one curved side,
of characteristic parameter & € (0, 1), and let

V. XW,CVXW

be the associated Raviart-Thomas-Nedelec space of index k > 0, [11], [12]. To be
more explicit, for E C R? let P,(E) denote the restrictions of polynomials of total
degree k to the set E and let Q,(E) denote the restriction of P,(R) ® P, (R) to E.
Then, let R, (E) = P,(E) if E is a triangle (interior or boundary) and R, (E) =
Q,(E) if E is a rectangle (interior or boundary), and let R,(E) = R,(E)?. For any
E e J,let

V(E)=R,(E) ® Span{xR,(E)}, W(E)=R,(E).
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Set
V,=V(k,7,)={veVlv,eV(E),EcT,}
= {v € [T V(E)|vlg v, +V|g-v,=00nE N Ej},
Eeg, ' !

where v;, | = i, j, is the outer normal to dE, on E, N Ej; also, let

W,=W(k,7,)={we W|wlzr€ W(E),E€J,}.

Let m,: V - V, be the Raviart-Thomas projection, [6], [12], which satisfies (see

[13] for g # 2 below)
(1.4) (div[my — v],w)=0, veEV,weWwW,

(1.5) Nmy = vlo, < Qlvl, o°,  1/g<s<k+1ifveVn we(Q),

(1.6) ||div(my — v)||, < Qlldivv|sh®, 0<s<k+1,ifveVnH(div; 2).
Let P,: W — W, be the orthogonal L2-projection into W, defined by

(1.7) (Pw—-—w,x)=0, weW,xeW,,

which satisfies

(1.8) [[Pw — wllo,, < QlIwl, A%, O0<s<k+1,ifwe wn wi1(Q),

(1.9)  |Pw —wll_, < QIwllsh™**,  0<r,s<k+1,ifwe H(Q),

(1.10) (divv,w — Pw)=0, weW,veV,.
We can now formulate the mixed finite element method to approximate the

solution of (1.1):
Find (u,, p,) € V, X W, such that

(@) (a(pp)uy,v) = (divy, p,) +(B(py).v) =(g,v-v), VEV,
(b) (divuh’w)+(c(Ph)’w)= (f’w)’ we Wh'

We shall demonstrate in Section 2 the existence of a solution (u,, p,) € V, X W,
of the nonlinear algebraic system (1.11) through an adaptation of the method used
by Douglas in [4]. In Section 4, we shall establish the uniqueness of that solution
inside a certain ball. Furthermore, we shall show that (u,, p,) converges to (u, p) in
L?(R)? X L*(R) at an optimal rate as & [0 (Section 3) and also in (H(2)2) X
H*(Q),0 < s < k + 1, provided that the boundary of €, the coefficients a, b, and c,
and the solution p of (1.1) are smooth enough (Section 6). In Section 5, we establish
the convergence of p, to p in L), 2 < g < oo, at an optimal rate as & — 0.

(1.11)

2. Solvability of the Discrete Problem. For p € W,, we shall write

(21) a(p) —a(p) =-&,(p)(p—p) = -a,(p)(p — p) + &,(p)(p — p)’,
where

iy(p) = ['a,(p+ tlp — p)) at,
pp(p) = [ (1= )ty (p + tlp ~ p])

are bounded functions in Q. Similarly, we can write

(22) B(p) —B(p)=-B,(p)(p—p) +B,,(0)(p—p)=-B,(p)(p—p),
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(2.3) c(p) —c(p) = —¢,(p)(p —0) +&,(p) (P —p) = -5,(p)(P — p),

where B,(p). &,(p), B,,(p), and &,,(p) are bounded functions in Q.
If we now subtract (1.11) from (1.3), we obtain the error equations
(@) (a(p)lu—u,l,v) —(divv, p — p,) +(B,(p)[P = Ps].¥)
= ([a( py) — a(p)]u, + B(ps) — B(p) + B,(P)[ P = P4l.V),

(2.4) vev,

(b) (div[u —u,],w) +(c,(p)[p = pul.w)
= (c(pa) —c(p) +c,(P)p = pulw),  wEW,

Substituting (2.1), (2.2), and (2.3) into (2.4), we see that (with p = p,)

(a) (a(p)lu—u,],v) —(divv, p = p) +([a,(p)u+B,(P)](P = P4).V)
(2‘5) = ([&pp(Ph)u + épp(ph)](P _Ph)2 + &p(Ph)(p _Ph)(“ - uh),V),
vev,

(b) (divlu —u,],w) +(c,(P)p = pu)ow) = (&, (p) P — P41 W),
we W,

Set T' = a,(p)u + B,(p) € C3(R) and y = c,(p) € C5(L). Let us now replace u
by 7,u and p by P, p on the left-hand side of (2.5) to obtain (using (1.4) and (1.10))
the relations

(a) (a(p)lmu—u,],v) =(divy, P,p = p,) +(T[Pyp = p4].v)
= (a(P)['”h“ —u] +T[P,p—p]+ [&pp(ph)u + Bpp(ph)](p _Ph)z

+&,(p,)(p = pu)(u—u,),v),

(2.6)
VEY,

(b) (diV[’lThll - uh], W) +(‘Y[Php _Ph]’w)
= (‘Y[PhP—P]+€’pp(ph)(p—ph)2,w), we W,.

Now let M: H*(2) - L*(Q) be the operator
Mw=-v -(a(p)vw + a(p)Tw) + yw,

and let M* be its formal adjoint; that is,
(2.7) M*x = -v -(a(p)vx) +a(p)T - vx + vx.

We shall assume that the restrictions of M and M* to H?(Q)N Hy(R) have
bounded inverses; that is, for any ¢ € L?(Q) there exists a unique ¢ € H*(2) N
H}(Q) such that M¢ =  (respectively, M*¢ = ) and |||, < QYo This would
be guaranteed by assuming ¢, > 0 (see, for example, [8]). Let

oV, X W, >V, XW,
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be given by ®((p, p)) = (¥, 2), (¥, z) being the (unique) solution of the system

(a) (a(P)[Wh“ - y],V) —(divv, P,p — 2) +(F[PhP - z],v)

(28) — (a(p)[mu = u] + T[P,p — p] +[&,,(p)u + B,,(0)](p — o)’
+a,(p)(p — p)(u— p),v),
vVEYV,,

(b) (div[mum —yl,w) +(y[P,p — z],w)
= (v[Pap =Pl + 5, (0)(p = p)'w),  weW,
the existence of which follows for small 4 from [5], since the left-hand side of (2.8)

corresponds to the mixed method for the operator M. Thus, (y, z) is the solution of a
linear algebraic system of the form

(a(p)¥,v) —(divv,¢) +(To,v) = F(v), VEYV,
(diV\[}, W) +(Y¢s W) = G(W)s we W,
which for & sufficiently small has a unique solution (¥, ¢) € V, X W, for any
F € V', G € W. (Existence follows from uniqueness. Thus it suffices to prove that if
F =0 and G = 0, then (¥, ¢) = (0,0). This is done in [5] by an argument entirely
analogous to that of our Lemma 2.1.) We are taking in (2.8)

F(v) = ~(p.divy) +{a(p)u + Tp —[&,,(pJu + B,,()](p — )’
+a,(p)(p — p)(u—p),v),

G(w) = (diva+vp = 2,,(0)(p = )", ).
The existence of a solution (u,, p,) € V, X W, of (1.11) is equivalent to that of
the following problem.
Problem 2.1. The map ® has a fixed point.
The solvability of Problem 2.1 will follow from the Brouwer fixed point theorem if
we can prove that ® maps a ball of V, X W, into itself.
In order to do that, we shall use the following technical result.

LEMMA 2.1. Let 2 <@ < o0. Let weE V, q€ L*(Q)? and r € L¥(Q). If T € W,
satisfies
(29) {(a(p)w,v)—(divv,*r)+(1"'r,v)= (q.v), veEV,

(divew,w) +(yr,w) = (r,w), we W,
then, there exists a constant C = C(0, a, T, v, Q) such that
(2.10) 7o < C[A¥*fallo + #* /D=2 div w0 + [lallo + rllo]
for h sufficiently small. Also, if @ € W%¥(div; Q)= {v e L0(9)2|divv e LYQ))},
q < L%Q)? andr € LYQ),
lIrllo.e < ClRlwllo.s + h2=2|divallo.s + lallo.s + 4>~ *o<[rllo.o + lall-v.0 + Il -2.0].

Here, and throughout the paper, §, , will denote the Kronecker symbol.

Proof. Let 8" = 6,/(6 — 1) be the conjugate exponent of 6. Since

Iy = sup ¥)
v Wl
Y#0
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we wish to bound (7, ¢) for ¢ € L¥(Q). Let ¢ € W29 (Q) be the (unique) solution
of M*¢ = Yy in Q, ¢ = 0 on 3. Then [1],

lll2.0- < Kll¥llo.o-
Observe that the Sobolev imbedding theorem [17] implies that W2-@/9¢(Q) c
HY(Q) and W1 /9.0(Q) c L%(Q); so, Wh¥(Q) c H¥9(Q) with
(2.11) [All,0 < KN g
Next, note that for any E € .7,
a(p)ve € W' (E)’ = a(p) Ve, € W/ (3E),
and therefore the degrees of freedom defining m,a( p)V¢ on E are well-defined, that
is, m,a( p) V¢ is well-defined.
Using (1.4), (1.10), (2.9), and integration by parts, we see that

(1,9) = (7, M*¢) = (1,-v -(a(p)ve) + a(p)T - V¢ + v¢)
= (7,-v «(ma(p)ve)) +(Tr, ma(p)ve)
+(Tr,a(p)ve — ma(p)ve) +(yr, ¢)
= (¢, ma(p)ve) —(a(p)w, ma(p)ve)
+(Tr,a( p)ve — ma(p)ve) +(y7,¢)
= (q, a(p)ve) +(q, ma(p)ve — a(p)ve)
+(a(p)w + Tr,a(p)ve — ma(p)ve) +(dive, ¢) +(y7, ¢)
= (q, a(p)ve) +(q, ma(p)ve — a(p)ve)
+(a(p)w+TI1,a(p)ve — ma(p)ve) +(dive + yr,¢ — P,o)

+(rs¢) +(I‘, Ph¢ - ¢)
First, observe that

(a0, a(p)ve) < Klaloll vollo < Kllallollll2.6--
Furthermore, since V(E) D Py(E)?, an LP-version of the Bramble-Hilbert Lemma
[3] implies that (using (2.11))

la(p)we = ma(p)vello < Kn*?lVél2n < Kh**|Vll1,o- < K> *[9]2.61,
(a bound which cannot be obtained from (1.5) if 2/0 < 1/2) and therefore

(a— a(p)w, ma(p)ve — a(p)ve) < K(llally + llwllo)[ma( p)ve — a(p) vl

< K(”‘l”o + ”w”o)hz/e”‘i’”z,a'-
Also, we see from (1.5) that

(Tr, a(p)ve — ma(p)ve) < Klrllogla( p) ve — m,a(p) Voo

< Kllllo ohl vl o < Kll7llo o2l 61l5,4-
Finally, from (1.8) and the Sobolev imbedding theorem we see that

(divew, ¢ = P,o) < K|[divelole — Pyl

< K”diVwnohl+(2/0)(1_80")”95”1+(2/0)(1—sOk)

< Klldiv wf|ght /00200 ]|, 4,
Klltlo,olle = Pidllo.or < Klllo,sh>~*Hbll2. -,
Klrlollello < K”"”o”¢”1—(2/0),0' < K]lrllollll,,--

(‘Y"-’ ¢ - Ph¢
(r,¢)+(r, P~ ¢

) <
) <
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It then follows that
(1.9) < K [hl7llo.g + ¥ Jlslly + A+ O0=30||div wl|, +[lqlly + [Irllo] [¥]l0.6-

and thus, if & is sufficiently small, it suffices to take C > (1 — Kh)! in (2.10). The
second bound for ||7]|, 4 follows easily from the equation for (7, ¢) following (2.11),
(1.5), and (1.8). Q.E.D.

Let now ¥7, =V, with the stronger norm |v||,- = |IVl[g,., + [[divV|y, and let
W, = W), with the stronger norm [|wl,, = [[Wllo 4+ 2e)e-

We are now ready to demonstrate the existence of a solution of Problem 2.1.

THEOREM 2.1. For § > 0 sufficiently small (dependent on h), ® maps a ball of radius
8 of ¥, X W, into itself.

Proof. Let = (4 + 2¢) /e so that (1/6) + (1 /(2 + €)) = 1. Let
[mu — plly, <8 and [|P,p —plly, <8 <1.
Interpret q and r in (2.10) as
q=T(P,p - p) +a(p)(mu—u)
+[a,,(p)u+B,,(p)](p — )’ +a&,(0)(p—p)u~—p),
r=y(P,p—p)+2,,(p)(p—0p),

and apply Lemma 2.1 to (2.8).

Note that, since ¢ < 1 implies that § > 4 and that 2 + ¢ < 4/(2 — 2¢), H(Q)? C
L2+e(9)2’ H1+e(9)2 C W1,2+e(9)2’ and H2+e(9)2 C W2’2+E(Q)2. Thus,
H'M/D(Q) € w2E(Q)? and A ||y, < Q,lIAll; 4 o) Then, (1.5) and (1.8) imply
the inequality

1Py p — Z”o,o <K [hz/”llﬂhu - yllo + h1+(2/0)(1_80")||div(77hu - Y)”o
+llallo + lllo]
< K |1/ =yl + 0000 div(ma — )
+llpl + Al +l1p — plios + 112 — pllo.ollu ~ wlloa ]
(212) < K [h O -y, + W00 div(mu — y)],
+hlpla +1p = ollow +(Ip = Pypllos + 1Py p — olly.o)
(lu = 7l +lmu = wloss,)]
< K[h¥mu — yll, + B +@00=80)|div(mu — y)],
+hlplly + 82 + (Alpllve + 8) (Al .y, + 8)]

< K[/ — yly + RO 80 div(mu — )y + (h + 83l .



310 F. A. MILNER

If we now take the last term on the left side of each equation in (2.8) over to the
right side, the left side becomes exactly the mixed method equations for the operator
-V - (a(p)v). It follows from [2] that then

lma = yllv < K124 p = zllo + llallo + Irlo]

2
<K[12,p = 2llog +(h + 8)lpla-].
If we now substitute (2.13) into (1.12), we see that, for 4 sufficiently small,
(2.14) 1Pyp — Z”o o < Ki[h +8%],
with K, depending on || p||3,, linearly. Putting (2.14) back into (2.13), we obtain
(with K, = K(K; + || pll3+.)
(2.15) "d“’('”h“ - Y)Ho Ky[h +87],
(2.16) lmm = yllo < K[ 1 + 82].
It follows from (2.16), using the quasi-regularity of .7, that
lmpm = ¥lloase < KA M lmm — yllg
< Kth—(e/(2+e))K2(h + 82) < K3[h2/(2+£)+h—(£/(2+e))82].
We now see that (2.15) and (2.17) imply that
(2.18) I = ¥l < 2K (B340 4 e/ 052

Now let 1 < (4K;)"“*29/C2~9 and take § = 4K;h*/@**). Observe that in order that
2K;h¥2%9 < §/2 and 2K;h/A2*D§2 < §/2, we must have § € [4K,h¥/ 9,
(4K,;) 'he/@*+9] = & which is satisfied for & and & as chosen.

The theorem is now proved, since (2.14) and (2.18) imply that || P,p — z||,,, < 8
and ||mu — y||5, < &; that is, ® maps the balls of radius § = O(h*/®*9), centered
at (mu, P, p)intoitself. Q.E.D.

(2.13)

(2.17)

3. L%Error Estimates. Note that Theorem 2.1 in fact shows that as & — 0 we
obtain a sequence {(u,, p,)},, o Which converges to (u, p) in V N L2*5(Q)* x L%(Q)
and furthermore, that there is a constant C = 4K; + QQ,||u||; ., such that

(3.1) max{fJu = wllosses 1P = allos} < CHYCH2,
since
lu = wyllgss, <llu=mullg,,, +lmu —wyllo,..
< Qhlully 5, + 8 < QRO Jul, ., + 4K 3h*/C79,
and
lp - Ph”0,0 <lp - Ptho,a + P, p — ph”0,0
< Qhlplie + 6 < QhQ lIpll, + 4K h*/CF).

Let us now rewrite (2.4) as

() (a(p)lu—wu,l,v) —(divv, p - p,)
(3.2) +([a,(p)us + B,(p)](P = pu)¥) =0,  VEV,,

(b) (diviu—u,].w) +(¢,(p)lp —pul.w) =0,  we W,
where ﬁp( py) and ¢,(p,) are bounded functions in Q defined in (2.2) and (2.3).
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Observe that (3.2) corresponds to the mixed method for the operator N: H(2) N
H}(Q) > L*(Q) given by

Nw = -v -(a(p)Vw + a(P)[&p(ph)uh + Bp(ph)] W) +&,(p)w.
Its formal adjoint N*: H2(Q) N HL(Q) —» L*(Q) is
(33) N*x=-v -(a(p)vx) +a(p)[&,(pi)u, + B,(p))] - VX + & (py)x.

Before we turn to the rate of convergence of (u,, p,) to (u, p), we need the
following technical result.

LEMMA 3.1. There exists an hy > 0 such that, if h < hy, N* has a bounded inverse
mapping L*(Q) onto H*(2) N Hy(Q).

Proof. Since M*7l: L*(Q) - H*®) N HYQ) is bounded and N*! =
(M*IN*)"'M*-1 it suffices to show that M*~N* has a bounded inverse on
H*(2) N HY(Q). For a linear differential operator D: X — Y, let ||| D|| be its norm
as a linear functional; e.g.

|||M*”| = ”M* ".S!’(HZ(SZ) N HY(Q); L?(Q))*

Then, all that is needed is to prove that [|[M*~}(M* — N*)||| is less than one, since
this will imply that I — M*~'(M* — N*) = M*~'N* has a bounded inverse. Thus, it
is sufficient to show that ||| M* — N*||| is smaller than (||| M*1|||)~".

We have, by (2.7) and (3.3),

(M* — N*)x = a(p)[a,(p)u— &,(p,)u, + B,(p) — B,(p1)] - ¥x
+(c,(p) =&, (pu))x
= a(p)|(a,(p) = &,(py))u + &,(p,)(u - u,)
+(8,(p) —B,(p)] - ¥x

(3.4)

+(Cp(P) —5(Ph))x-
Observe that§ = p — p,,

a,(p)—a,(p) = [ |a,(p) —a,(p, +t£)] at

(3.5) =¢tf'a- t)[)lapp(ph + g+ s(1 - 1)§) dsdr

1
[1
1
§
l
=a,,,
where a@,,, is a bounded function. Similarly, we obtain

(3.6) B,(p)=B,(ps) =B,,6 ¢, (p)—¢,(p,) =5,

where B_p,, and c,, are bounded functions. Substituting (3.5) and (3.6) into (3.4), we
see that

(M* — N¥)x = a(P){[&pp“ + Epp](z” = pa) +&,(p))(u - “h)} " VX
+Epp(P_ph)X’
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and thus, using (3.1),
[(M* — N*)xllo < K4["u"0,oo"P "Ph”O,(4+2e)/e”VX||0,2+e
+u - “h"o,2+e”VX||0,(4+29)/E +p - ph||0||X||0,co]

< Kollplas [ B0l + Bl ]
< Keh* 49|,
since H'()% ¢ L'(Q)? for any finite » and H**%(Q) ¢ L®(Q). Now, take h, small
enough that K¢hy/?+9 < (llm*')~'. Q.ED.
We can now obtain a rate of convergence of (u,, p,)to(u, p)ash — 0.

THEOREM 3.1. There is a positive constant C independent of h,depending on || p||, .,
quadratically such that

: h"p"2’ lfk = O’
(i) lp = pallo < C{ | . S

klpls, 2<s<k+1,ifpe H andk >0,
(ii) lu = w,lo < CRllpls+1,  1<s<k+1,ifpe H(Q),
(iii)  [div(u —u,)llp < Chlpllsc2s  O<s<k+1,ifp e HF(Q).

Proof. Let { =u—wu,, §£=p—p,, co=mu—u, and 7= P,p — p,. Rewrite
(3.2) in the form

(a(p)%,0) = (divv, 7) +([&,(ps)uy + B,(p4)]7.v)
= ([&p(Ph)uh_'-ﬁp(Ph)][Php_P]’v)’ VEY,,
(divg, w) +(Z'p(Ph)”"W) = (5p(Ph)[PhP "P],W), we W,
It follows from Lemma 3.1 of [5] and our Lemma 3.1 that

Irllo < & [l + 12~ %ldivello + | [& (2 )us + B,(2)](Pop = )],

+]&,(2a)(yp = )|l

If p € H'(Q), then p € H @t Q) and || pll, /240 < K|l Pll,- Thus, using
(1.8) and (3.1), the penultimate term in (3.7) can be bounded by

”[&P(Ph)uh +Bi(p)|(Pup — P)”O
<K [ll“"o,muPhP = pllo +llu - “h||0,2+e“PhP - p”O,(4+2£)/e]
2 — £
< Kllpl e[ ¥lplls + h2/@*ORs =D pll; 3 /a4 11, 6]

2
< Kllpllz+ch°lpl;-
We now derive a preliminary bound for ||£]|,. Substituting (1.8) and (3.8) into (3.7)
gives the bound

_ . s 2
Irllo < K [ Al + A~ ldivello + AlplLpla o]
which in turn implies, using again (1.8), that

(39) lelo =12 = pallo <llp = Pupllo + il
2 _ .
< K[l ool + h2=2oediv o + Al

(3.7)

(3.8)
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The quasi-regularity of 7, implies that

(3.10) lollo.c < KR=2/2*ially 5.
The Sobolev imbedding theorem implies that

(3.11) H' (Q)* c we/2=(Q)

Using (1.5) with ¢ = o0 and s = ¢/2, we obtain from (3.1), (3.10), and (3.11) the
inequality

lsllo o <llullo.o + flmm — u”o,oo + ”0”0,00
K [1pl24e + 2 ull, 000 + 7%+ ollg ]
K [”P"2+e + h_z/(zﬂ)("”'h“ =gy, +u— “h"o,2+e)]

2
< K[lpllase + B2+ Qhlul, ., + ChYC9)] < K(llpl+. + 1).

N

(3.12)

N

If we now rewrite (2.4) as

(a(p)o,v) —(divv,7) = (a(P)[‘"'h“ —u] _[&p(ph)uh + Bh(Ph)]g’v)’
vev,

(dive,w) = (—Ep(ph)g,w), we W,

we see using [2] (just as we did to obtain (2.13)), (1.5), and (3.12), that for
$<s<k+1landp € H*(Q)

2 2
(3:13) ollv < Klpllo+.[llmm — ully + 1€llo] < Kllpllz-c[l1gllo + °llplls+1]-

From (3.13) we now obtain by (1.5) and (1.6) the bounds

Igllo < llu = mully +llollo
2
< K(lplzve + 1)[Igho + Allpl,2],  1<s<k+1,

div{|lo < ||div(u — mu)|, + ||dive
sy 1Sl <ldivi — ml, +faivol,

< K(Iplase + 1)[liglo + Allpllsa),  O<s<h+1

which, when substituted into (3.9), yield the estimate

2 - s
lgllo < Kllplla+[Allgllo + 2= %o4(pll, + #pll]

(3.16) ,
< K(lplase + 1)[Alelo + 2 ~%4pl,],  2<s<k+1+ 8,
But (3.16) now implies (i) holds if 4 is small enough. Applying (i) to (3.14) and (3.15)
shows that (ii) and (iii) also hold. Q.E.D.
Observe that Theorem 3.1 shows that {(u,, p,)}, , convergesin V X W to (u, p)
both at an optimal rate (for any /) and with minimal smoothness requirements on
the solution of (1.1) (if k > 1).
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4. A Uniqueness Result for the Discrete Problem. We shall now prove a unique-
ness result.

THEOREM 4.1. If f€ H?> " 1=9%«(Q) and h is sufficiently small, then for any
K > 0 there is a unique solution of (1.11) in the intersection of the balls

{Ilu = wlly, +1p = pill; < (mh%AM'uwwmm®nww)}

n {”“ - “h“o,oo +p - Ph”O.oo K}
where K , is the constant of Lemma 3.1 appearing after (3.6).

Proof. First note that Theorem 3.1 in fact shows that any solution (u,, p,) € V,
X W, of (1.11) lying in B will verify the bounds (i), (ii), and (iii) of Theorem 3.1.
Assume now that, for i=1and 2, (u{?, p{?) € V, X W, is a solution which satisfies
the above hypotheses. Let§, = u — u$), ¢, = p — p{?, U = u) —u, P = p{ — p?,
and o, = mu — u}). Theorem 5.1(b) below will then imply that

(4'1) "51”0,00 < Qh6/2”P”2+e+(1—e)80," i= 1s2'
Also, Theorem 3.1(b) implies
(4.2) Iglo < Qhllplo,  i=1,2.

It follows from (1.5), (3.10), and (4.2) that
IEllo.0o <l = Tllg oo + ll0llo oo < K [A*/[ull, 5.0 + Ao o]
(4.3) < K[hully . + A7l = ullg + [811o)]
< K[npllase + h7lpla] < K(p),  i=1.2,

where K( p) depends on || p||, ., quadratically.
It follows from (1.3) and (1.11) that

(a(p)U,v) —(divy, P) = ([a(pflz)) - a(p}ll))]u(hz),v)
+([alp) = a(pP)|U + B(p2) = B(2P). V),
vev,
(divU,w) = (c(p?) —c(p),w), wew,.
Let
a(pf?) —a(p?) =a,(P)P,  a(p)-a(pf’) =3, (£)4,
B(ps") —B(p2) =B,(P)P,  c(p)—c(p?)=2¢,(P)P,

where a (P) a,(§), B (P),and ¢ (P) are bounded functions in &, where P is some
convex comblnatlon of p(l) and p(z) Then

(a(p)U,v) = (divy, P) = ~([@, (PP + B,(P)] P.v)
(4.4) +(@,(£)EU,v),  vev,
(divU,w) = —(&,(P)P,w), weE W,
It follows from [2], (4.1), and (4.3) that

4.5) [IUlly < K(p)[IPllo + AlUN,],  lldivUllo < K(p)[I1PNlo + AU
For A sufficiently small, (4.5) implies

(4.6) 10l < K(2)I1Pllo.
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(4.7) ldivUlly < KCp)IIPllo.
Rewrite (4.4) in the form

(a( p)U,v) —(divv, P) +([&p(ﬁ)u(,12) + Ep(l_’)]P,v) = (&p(él)glU,v), vev,
(divU,w)+(Ep(F)P,w) =0, weWw,.

Then, it follows from [4], an obvious variation of Lemma 3.1, and (4.1) that

(4.8) 1Plly < K(p)[A[Ull, + AlldivU],].

If we now substitute (4.6) and (4.7) into (4.8), we have || P||, < Kh| P||,, which

implies that P = 0 for & sufficiently small. Then (4.6) implies that U = 0. Q.E.D.

5. L%-Error Estimates (2 < g < o). We shall first obtain a negative norm estimate
for 7.

LEMMA 5.1. There exists a positive constant C < K(||p||3.. + 1), independent of h,
such that, if 9Q and the coefficients a, b, and c of (1.1a) are sufficiently smooth, then for
0<s<k,

[|7]l-s < C[hrl+S+1”p||r1+1+(s—k+1)++ hr2+1_e"p"rz+1”P“I+80k] )
1<nr,rn<k+1,2-268, <!<k+ 1, where p is the solution of (1.1).

Proof. Since

(7, ¢)

T|l.s= sup ————,

Irll-+= | sup S,
)

we wish to bound (7, ¢) for ¢ € H*(Q). Let ¢ € H**2(Q) be the (unique) solution
of M*¢ = Y in @, ¢ = 0 on 952, the existence of which we shall assume. Assume also
that ||¢||,., < K||{||,- Note that (1.5) and the Sobolev imbedding theorem give the
bound

(5.1) ||a(P)V¢ - Wha(P)V¢|IO,(2+e)/e < Khe/z”“(P)V¢||e/2,(2+e)/e

< Kn*?|volli < Kh*?|¢ll;+2.
Also, the Sobolev imbedding theorem implies that a( p)V¢ € L'(2)? for any finite
t, with [la( p)Vélly, < K||$l|,; the quasi-regularity of .7, implies that if x € V, and
T E W,

(5:2) Ixloz+e < KR=/*ixllo,  Nllo s, < KR/ lmlo.

Letk = a,,(p,u + Bpp(p,,), A=a,(p,)and p=¢,,(p,). Wehave A, p € L*(Q)
and k € L*(Q2)2. Rewrite (2.5) as

(a) (a(p)t,v) —(divv, ) +(Tr,v)
(5.3) = ([x¢ +ALJ¢ + T[P,p—pliv), VvEYV,

(b) (divg,w) +(yr,w) = (p§2+y[P,,p—p],w), we W,
where £, §, and 7 are the same as in the proof of Theorem 3.1. It follows from (1.4),
(1.10), (5.3), and integration by parts (exactly as in Lemma 2.1) that

(1,9) = ([x¢ + A&+ T[P,p — p],a(p)Ve)
(5.4) +([xé + X]é + T[P,p — p. ma(p) Ve — a(p)V9)
+(a(p)§ + Ir,a(p)ve — ma(p)ve) +(divg + yr,¢ — P,9)
+(p& + v[P,p — ). ¢) +(p&2 + Y[P,p — P]. Pid — $).
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First, note that (1.5), (1.8), (5.1), (5.2), and Theorem 3.1 imply

([k¢ + A81£, a(p) Vo) < K(|lEloz+e + Ello2+ o) IElo2+ el Pllo, o+ 01
< K(Ilp = Pypllosse +lI7lloase +llu = mully,, . + loloas.)
X ("P - Php"0,2+e + "1‘”0,2_"8)” V¢|l1
< K(hrz—e/(zﬂ)"l’"rz—e/(ue),2+e + h“/(2+e)”,‘."0

+ hrz—e/(2+E)"u"rz—e/(2+e),2+e + h_e/(2+5)"0”0)

X (R pl_ pas iase + 1@ Olrllo) 16l
< Kh=2/ 97| p|lry 1 +lpsp — pllo + I€llo + lmm = ully + [Ello)
x (Wlpll; + 1P, p = pllo + Igllo) Il 2
< Kh= 2/ C2OR7p|l,crh | pli+ soellblls 42
= Kn' 272/ @ pll s Ml alldllesas
21—y <l<k+1,1<n<k+1,
([x& + AL ]¢, ma(p)ve — a(p)ve)
(5.6) < Kh= /@ On7|p|, B pllss, Jmaa(p) Vo — a(p) Voo, 2uere
< Kn' 2@ pl| 1l ih Ml 2,

20 <I<k+1,1<n<k+1,
2
(082, ¢) < K|&llo 2+ ellpllo. 2+ e e
< Kn=2/C O p|| 1 5, 72PN, 5,112
< Kn'* 7 2/@59 || s NPl s allollss 2
2-0p<I<k+1,1<r<k+1,
2
(sz, P — ¢) < K||&llo.2+|Pro — ¢‘”0,(2+e)/e
< Kn'*r=2/C|p|| s Pl +1h 2ol

< Knt 20 pll g M, < allglls <)

2-6,<I<k+1,1<sr<k+1
Next, we obtain from (1.9) the bound

(T[P,p —pl.a(p)ve) +(¥[Prp - pl, ¢)
(5.9) < KIP,p = pll_s—1(IVolls+1 +ll9lls+1)
< KR plnllellssa 0 <k+1
Also, (1.5) and (1.8) give the estimates
(T[P,p — pl. ma(p)ve — a(p)ve) +(¥[P,p — p], P9 — ¢)
< K|, p = plo(lma( p)vo — a(p)woo + 1P — ollo)
< K pl llssa, 0O <k+1,

(5.5)

(5.7)

(5.8)

(5.10)
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(T, a(p)ve — ma(p)ve) +(y1, ¢ — P)
(5.11) < Kllo(la( p)vo — ma(p)volo + 6 — Pyollo)

< KB rloliplls+»-
Finally, (1.5), (1.8), and Theorem 3.1 imply that
(a(p)§, a(p)ve — ma(p)ve)
(5.12) < K&lolla(p) 99 = ma(p) velly < KA pll: a8l
1<srn<k+1,
(div, ¢ — P,¢) < Kl|divilolle — Pioll,
(5.13) Il 1< <k 2its<k-1,
”p"rl+2+s—k"¢"s+1+k—s’ 0 < n < k + 1’ ifs>k-1.

If we combine now (5.4)—(5.13), we see that

(514) lrll_g < K [A=*Ulrllo + A7 ply s, Il ax + A7 Pl ey

for2 — 8, <!<k+1,1<r,r <k+ 1, where K contains a multiple of || p||5., ..
If we now take s = 0 in (5.14), we obtain the estimate

lrllo < K [llello + 27 = Upllss, 20 + Bl 21 v8,, )
which, for sufficiently small 4, implies that

(5.15) Irllo < K [B7 Ul s ol + 55 ol 100,

Substituting (5.15) into (5.14) completes the proof of the lemma. Q.E.D.
We can now demonstrate the convergence of p, to p to be at an optimal rate in
Li(R),2 < g < oo (fork > 0if g > 2/¢).

THEOREM 5.1. There are positive constants C, and C (both containing a multiple of
| pll5..), independent of h, such that, if p € W"9(Q) N H 1 +utian(Q) 1< r
<k+1-(e—2/9) "8, wheret(q,r)=-2/q)+ A + (2/q) — r)*, then

@) NP = Pullog < CHNPI c1vsprnqns 4<%,
() 12 = Pilloe < CH [Pl o + 11Plle1480, ] -
Proof. Using Lemma 5.1 (with s =0, /=1 +e(1 = 8y), r, +2/q=r,+2/q)
— €8y, = r), (1.8), and the quasi-regularity of 7,, we obtain the bounds
(@) lp = pillo.g <llp = Pypllog +lIrllo.q
<K [l  + B2/

< C WMl WPl ]

(b) lp - ph”O,oo <lp - Php”O,oo + ”Tllo,oo
< K [A1plly o + BV 7lo]

< K[Wplro + B pll 41 1o, ] QED.
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6. Error Estimates in H*(Q) and (H*(Q)?)". We can also derive negative norm
error estimates from Lemma 5.1.

THEOREM 6.1. There exists a constant C > 0 (containing a multiple of | p||3..),
independent of h, such that, if p is sufficiently smooth, then for 0 < s < k + 1 we have
the following estimates:

@) 12 = palls < CLR Ul aismre e+ 27 Bl 12l
2-0y<I<k+1,1<nr,n<k+1,

@) = wly < C[A Ml orsie i+ Bl s Pl o]

2_80k<l<k+1,1<r1,r2<k+1,
(i) [div(u — wu,)]_, < C[h’l“lelrln S Catl 1) P T IR
2-0u<I<k+10<r,rn<k+1.
Proof. (i) follows directly from Lemma 5.1 and (1.9), since
g=1+(Pp—p)s (I€ls-s <ltls +1Pup = pll_—1)-
Rewrite (5.3) as

(a(p)E,v) = (divy, 7) —(T,v) +([x€ + AL]E,v),  vEV,

(6.1) {(divg,w) = (=v&,w) +(pg2,w), we W,

Note that (iii) for s = 0 is just a consequence of (iii) of Theorem 3.1. Let then
Y € H'(R), 1 <s<k+ 1. Then, y € L*(Q) with ||¥|ls,, < K||¢||,. The second
equation of (6.1) and (1.8) imply that

(divg, ¥) = (divg, Py) +(divE, v — Pup)

~(v&, Pyy) +(pg2, Py) +(dive, ¢ — )

~(v&,9) +(v&, ¥ — P) +(p8%, ) + (8%, P — &)
+(divg, ¥y — Puy)

It

It

2 2 .
< K||¢||s[||$||_s + ko€l + lElloz+ e + AoliElloa + h3||d1V§||o]

since [1/(2 + )]+ [1/(2 + )] + [1/(8/2)] = 1. Therefore, (iii) follows from (i), (a)
of Theorem 5.1, (iii) of Theorem 3.1, and interpolation [10] for 0 < s < 1.

Finally, assume that the coefficient a is smooth enough that for x € HYQ)
there is a unique ¢ € H**}(Q) such that v - (a(p)Ve) = x in €, ¢ = 0 on 92, with
ol < Klixll,—1» 0 < s < k+ 1. Let y € H(Q)? let ¢ € H**!(Q) be the solu-
tion of V(a(p)ve)=divy in €, ¢ =0 on 32, and let x = ¢ — a(p)V¢. Then
divx =0, |Ix|l, < K|[¥|l,, and ||¢|l,,; < K|[¥|l,. It follows from (1.4), (1.5), (1.3),
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(1.8), (1.10), (5.1), integration by parts, Theorem 3.1 and Theorem 5.1 that

(a(p)8, ) = (a(p)8, x) +(§, Vo)
~(divg, ¢) +(“(P)§’ WhX) + (a(p)§, X = 7T;.X)
~(divg, Po) +(divE, Po — ¢) +(a(p)8, x — mx) +(a(p)E, mx)
(v&, o) —(p£2, Pyo) +(divg, Po — ¢) +(a(p)E, x — mx)
—(Tg, mx) +([x& + A81&, mx)
= (v£,0) + (£, Pyp — ¢) —(pé% 0) — (&%, Pp — 9)
+(diV§, Py — ¢) +(°‘(P)§v X~ WhX) —(I‘«E, X)
—(T&, myx — x) + (k& + Ag1E, %) +([6€ + AE]E mx — %)
< KIWL [I81-s + A2l + el + el

+h " divEllo + AollEllo + 1€l + 7*l€llo

(1o s + €02+ )l o + 1€l + 1801 €l
< Kl [272* "l

I

T 7 Y s - Hpe

from which (ii) follows immediately. Q.E.D.
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