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Finite Element Methods of Optimal Order 
for Problems with Singular Data 

By Kenneth Eriksson 

Abstract. An adapted finite element method is proposed for a class of elliptic problems with 
singular data. The idea is to subtract the main singularity from the solution and to solve for 
the remainder using suitable mesh-refinements. Optimal order error estimates are proved. 

1. Introduction and Results. Let Q be a bounded domain in RN with smooth 
boundary F and consider the following problem: Given xo e Q find u = u(x) such 
that 

N 
a au 

N 
a 

(1.la) Lu(x) - ax a,,(x) ax) + () + a(x)u 

= 8(x - xo) in Q, 
N a 

(1.lb) lu(x) = a,l(x) a nj(x) = 0 on r, 

where 8 is the Dirac distribution (unit impulse), n = (nj) is the outward unit normal 
to F, and aij, a, and a are smooth (C? regular) functions on Q, with al= aj1, and 
such that the associated bilinear form 

+v w a,vw+aw 
A(v, w) f( aiJa + Ea W + avw dx 

satisfies the ellipticity-coercivity condition 

(1.2) A(v, v) > CIIVII2 Q for all v E H'(Q), 

where c is a positive constant and - 111,Q the usual norm in H1(Q), the space of 
functions with square-integrable first-order derivatives in U. It is well known (cf., 
e.g., [8]) that problem (1.1) admits a unique (distributional) solution u, which is also 
determined by the corresponding variational equations 

(1.3) A(u,4i)=4i(xo) foralliE- W,(Q?), 

where W 1(Q2) is the space of functions with bounded first-order derivatives on Q. 
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346 KENNETH ERIKSSON 

In general, problem (1.1) (or (1.3)) cannot be solved exactly, so we are faced with 
the problem of finding an accurate approximate solution. We shall consider the 
following standard approach for this (cf., e.g., [1], [7], [11]): Given a finite-dimen- 
sional space Sh C H1() n C(Q2) find Uh E Sh such that 

(1.4) A(uh, X) = x(x0) for ally E Sh. 

By the coercivity of A(-, -), there exists a unique such Uh determined by the linear 
system of equations 

M 
E UiA(X,, Xj) = XJ(xO) forj = 1, ... ,M, 
i=1 

where uh = Ejm I U- 
XI, 

and { X j } mlI is an arbitrary basis for Sh. For appropriate 
finite element spaces Sh, where h is the associated mesh-size parameter, there exist a 
priori estimates for the error Uh - u in terms of h. One problem in deriving these 
estimates is that the singularity of u at x0, which is of order logx - x01-1 for N = 2, 
and Ix - x01-N2 for N # 2, frustrates the usual type of error analysis. For N = 1 
this is a minor problem since then the singularity is concentrated at x0 and u is 
continuous. Choosing x0 as one of the nodal points and using continuous piecewise 
polynomials for Sh, the usual analysis carries through, and, for example, for 
polynomials of degree r - 1 we have llUh - Uhl11 <Chrl. For N > 1, however, the 
standard method of analysis fails since then the solution does not even belong to 
H1(Q2). Nevertheless, Babu'ska [1] was able to show, for N - 2, L = -1 + I (minus 
Laplacian plus identity), and finite element spaces Sh possessing standard approxi- 
mation and inverse properties (such as piecewise linears on a quasi-uniform triangu- 
lation of Q), that 

||Uh - ullOh Q< Ceh , 

where 11 II Q is the L2(0)-norm and E > 0 is arbitrary. Later, Scott [11] improved 
and generalized this result by showing that for elliptic operators of order 2m, normal 
covering boundary conditions (cf., e.g., [9]), and dimension N > 2, one has 

h|Uh - U < C(xo)h2m-s-N/2 for2m - r < s < 2m - N/2, 

where C(x0) tends to infinity as x0 approaches r, r > 2m is the order of approxima- 
tion of Sh C Hs(2), and the Sobolev norm index s may also be negative (cf., e.g., [9] 
for the definition). Despite its generality, Scott's result falls short in a certain respect. 
For instance, if m = 1, r = 2 (piecewise linears), and N = 2 or 3, we obtain no 
information about v(uh - u), and for N > 4, no information whatsoever. 

Recently, in [7], we proposed the use of adapted finite element spaces for the given 
problem. Denoted by Sh(xo, a, r) where h E (0, 2], a E [0,1), and r > 2 are 
parameters, these spaces can be described as follows: Given positive constants c and 
C let Q be divided into elements T such that 

(1.5) c diam(TX) h (dist(x0, XT)) + hl/ (1 - ) < C diam(TX) for all T, 

where eachT is the restriction to Q of the interior of a N-simplex X (cf. [4]), with 

(1.6) (diam(TX))N 
C cf dx, 
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and the intersection of any two such simplices is either a face of both, or of lower 
dimension. For Sh = Sh(xo, a, r) we take the space of all continuous functions on 
which reduces to polynomials of degree at most r - 1 on each T C O. By (1.5) the 
mesh is refined (graded) around x0 in such a way that elements at distance d from x0 
have diameters of order hda, but a minimum diameter of order h1l7(-a). Hence h is a 
parameter for the maximal global mesh-size, and a determines the degree of 
refinement. Of course, such a mesh-refinement enables a better approximation in Sh 

of any given function which is irregular near x0. The condition (1.6) is used to derive 
local inverse estimates. 

The following results were obtained in [7] for uh c Sh(xo, a, r) being the solution 
of (1.4). For a > (r- 2)/(r- 1), 

(1.7) |lv(Uh - U)|Ll(g) < Chr 

and for a > (r - 2)/r, 

(1.8) lUh - UIhl(Q) < Ch , 

where C is a constant independent of h and x0. Further, if a > (r - 1)/r, and if 
d x - x01> ch17 1c and dist(x, r) > d for a suitable c > 0, then 

(1.9) Iuh(X) - u(x) Chr(ln l/hrdN, 

wherer = 1 if r = 2, r= Oifr> 2. 
In this paper, we analyze a method to approximate the solution of (1.1) to the 

accuracy (1.7), (1.8), and (1.9) which requires a lesser degree of mesh-refinement 
than the one in [7]. One reason for introducing such a method is that the computa- 
tional effects of strong mesh-refinements are not yet very well known. Recall that the 
condition number for the stiffness matrix (A(Xi, XJ)) depends on the mesh-size. 

In order to describe the method we first note that the solution of (1.1) can be 
written in the form 

(1.10) u = uo + V, 

where u0 is the fundamental singularity of u defined by (in the sequel we only 
consider the case N > 2) 

Idtn(Q) In * 
x-X-01) if N = 2, 

(1.11) u0(x) = j Idet(Q) Ix-x -N+2 if N > 2, 
(~ 2)aNIxX 

where Q is the inverse of A1l2, the positive square root of A (a,j(x0)), x-x = 

Q(x - x0), and aN iS the surface area of the unit ball BI(O) c RN. For example, if 
L = -/ + I we can take Q = I and thus obtain 

u0(x) = (N - 2)N Ix x01 (N > 2), 

which we recognize as the fundamental solution of -zA. It is a matter of straightfor- 
ward calculation to verify that in the general case u0 satisfies 

(1.12) - E a,;(x0) ax U0 - (X - X0) in a2. 
i,j=1 
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In view of (1.10) we are led to seek an approximate solution of (1.1) in the form 

(1.13) Uh = UO + Vh, with Vh E Sh - Sh(xO, a, r), 

and such that 

(1.14) A(ih, X) = x(xO) for all XE Sh 

Again, by the coercivity of A(-, *), there is a unique such Uh. In fact, to seek Uh is to 
seek Vh = 1Kx1 E Sh such that 

M 

(1.15) V JA(XI, XJ) = XJ(xO) - A(uo, Xj) forj = 1,... ,M, 

where { X J is a basis for Sh 

We shall prove the following error estimates for this method: 

THEOREM 1. Let u be the solution of (1.1) and Uh = UO + Vh that of (1.14), with 

Vh e Sh(xo, a, r). Then, for a > (r - 3)/(r - 1), 

(1.16) ||IVUh - VUIIL1(Q) < Ch 

andfor a> (r -3)r, 

(1.17) lhUh - UhIL1(Q) < Ch, 

where C may depend on the given problem as well as on a, r, and the constants in (1.5) 
and (1.6), but not on h. 

Further, we have the following pointwise error estimate: 

THEOREM 2. Let u and Uh be as in Theorem 1 with a > (r - 3)/r. Then 

IUh(X) - U(X) < Chr (lnl/h) rIx xoI forx E Q, x =xO, 

where C is independent of x and h, and r = 1 if r = 2, r = 0 if r > 2. 

Remark. The constants C in Theorems 1 and 2 become infinite as xo approaches 
r. In order to have a method which is effective also when xo is close to (or even on) 
the boundary r one can modify the definition of uo according to 

Idet(Q) I (ln(|x - -01) + ln(|x- - )) if N = 2, 

Idet(Q)l -N+2 ~~~-N?2\ 

et(Q)N 
(x _ 

X0N + IX -xo ) ifN> 2, 

where xL* is the "Q-reflexion" of xo in F defined by xO* = Qx*, x* = 2z - x0, and z 
minimizes IQ( y - x0) , y E F. For this modification of the method the estimates of 
Theorems 1 and 2 hold with constants C independent of xo. 

The proofs of Theorems 1 and 2 are given in Sections 4 and 5, respectively. 
Sections 2 and 3 are devoted to preparatory work. 

2. Preliminaries. Throughout this paper we shall denote by c and C various 

positive constants which are independent of h (but which may depend on the data of 
the given problem (1.1), the constants in (1.5) and (1.6), and on the parameters a and 
r). Similarly, C1 and C * will denote two specific such constants. 
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Beside~ the usual Lp-norms 

IIV1IL(Q') = (J Iv(x),I dx) forp = 1 andp = 2, 

and 

IV IIL(Q,)=esssup Iv(x)I, 
X EQ 

we shall use the Sobolev norms 
/ 1/2 

||V||k, Q' = Z IIDLvII12(Q )) 
If I < k 

where 1I1 = 81 + * + I8N iS the length of the multi-index : = 01.. . fiN), and 

DP =(a)1..a ). 

In particular, II denotes the usual L2(02')-norm. The Sobolev space Hk(72) is 
the space of all functions w such that IIl k,2S iS finite. 

In the proofs we shall consider subdomains of Q defined by 

Dj- {x E- Q: 2-(J+') < |x- xoi < 2-J } 

and 

(x E S1: Ix - xoI < 2-J} forj integer, 

and set dj 2-J and hj hdj. Accordingly, dj is proportional to the diameter of DJ 
and S,1 and as long as j is not too large so that hi is smaller than the minimal 
mesh-size hl"(1-a), h, is proportional to the maximal mesh-size on D and S1J. We 
shall frequently use the obvious facts that dj < Cdj+1 and hi < Chi1+, and we also 
note that since S2 is bounded, there is an integerj] such that Dj is empty forj < jl. 

Due to the variable mesh-size a typical interpolant in Sh(xo, a, r) approximates a 
given function with variable degree of accuracy over U. The following three results 
are quoted from [7]. 

LEMMA 1. Given w there is an interpolant w, E Sh(xO, a, r) of w such that forj < JI, 

lw - w,1I1,u < ChjIIwII2,Q_j 

and 

||W - 
W111,D, ChJm-liwlWlm Di for 2 < m < r, 

where J1 is determined by 2-j1 = Clhl" (1- a) for a suitable sufficiently large constant 
C1, andVDjl- 1V \ Q2 

The next lemma shows a similar property for the Galerkin approximation. 

LEMMA 2. If j < J1, and if Vh E Sh(xo, a, r) and v satisfy 

A(Vh-V X) = O forall XE Sh(XO, a, r) with support in DJ, 

then 

IIVh - V||1,DI ? ChXIIVIIr,D1 + Cdjllvh - VIIO,D. 
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From (1.5) we have the following inverse property: 

LEMMA 3. For any T as in (1.6) and any polynomial p of degree at most r - 1, we 
have 

IIPIILIPL TT(T) for q E [1, oo). 

For the proofs of these results we refer to [7]. 

3. A Step of Reduction. Recall that by definition u = uo + v and Uh = uo + Vh. 

Hence, we can estimate uh - u by estimating Vh -v. We shall do this by estimating, 
each individually, vh -i and v - v, where v is an appropriate approximation of v. 
In this section we introduce such a v and derive estimates for v - v. For the analysis 
of Vh - v we also investigate the regularity of D. 

Setting 

(X)= da ((a,, (x)- a,1(x0)) 
0 Ea _(x)_ - a(x)uo in ?, 

and 

( x ) --L aij (x) ax Onj(x) onfr, 
i,j=1 

we see from (1.1) and (1.12) that 

(3.1a) Lv = 1 ing, 

(3.1b) lv=4) onr. 

We shall use the following facts: 

LEMMA 4. Let '1, 4, and v be defined as above. Then 4) is a smooth function (with 
degree of smoothness depending on dist(x0, F)), and the following estimates hold for b 
and v (for IfPI < r, say): 

(3.2) ID,00(X) I < CIX 
_ 

XOI-N+?1-11f 

(3.3 DOv( x 
In x - 0j-'+ 1 if -N + 3 -1/10, 

(3 3) |DIv(x) C X _ XI-N+3?1A + 1) if-N + 3-1 O0 

Proof. The smoothness of 4) and the estimate (3.2) follows at once from the 
definitions. The estimate (3.3) can be obtained, implicitly, from [8]. For complete- 
ness, we show in an appendix that the result follows easily from the properties of the 
Green's function. 

We now introduce v, requiring that D be close to v, that v Ee H2(Q), that v possess 
at least r derivatives away from xo, and that vh (which is the Galerkin approximation 
of v) be also the Galerkin approximation of D. Therefore, let v be the solution of 

(3.4a) Lb in Q, 

(3.4b) lIb= onr, 

where $ is defined as follows: Set E = h1l(1-a) and let Qh be the smallest mesh-do- 
main covering B,(xo) n Q, B,(xo) {x: Ix - xol < e}. By a mesh-domain we mean 
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(the interior of the closure of) a union of elements. Set 

(3.5) (X 
O on oh 

(X outside Oh, 

where 7TT is the local L2-projection onto Pr_-(T), the space of polynomials of degree 
at most r - 1 restricted to T. 

It is well known that problem (3.4) admits a (unique) solution, and the following 
estimates hold for 1 and 5: 

LEMMA 5. Let 1b be defined by (3.5) and let v be the solution of (3.4). Then (with 
= hl/(1-a)) 

(3.6) I?L(Q C N12+1 (In Ile) R/2 

(3.7) 'bLl(2h) < C , 

(3.8) 115112,Q <C C-N12 +1 (In Ile) N/2 

where N = 1 if N = 2,N = 0ifN > 2, andforj < JA andr > 2 (cf. Lemma 1), 

(3.9) IIbIIr,Dj < Cdj N/2?3 

Proof. We have first 

II11L2(Q2) < 1'101L2(Q\Qh) + E || 1L2(T)E 

TC Oh 

and by (3.2), with R = Ix - xol, 

lIBI2 (u9 4 ldam() -N+1)2 N-ldR -+21 ) 

Using Lemma 3, we obtain 

P1L2(T) f " dx |$ 14 dx < II01ILj(T)11$11L.(T) 

< C1* L1 (T) 
N12 

1 L2(T)5 

and hence, using (3.2), 

E 141IL2(T) < CcN/ L (oh) C N/2?l 

Together our estimates now prove (3.6). 
The estimate (3.7) follows at once from the proof of (3.6), and (3.8) follows from 

(3.6) by the standard H2-regularity estimate, since 4 is smooth (cf., e.g., [9]). 
For the proof of (3.9) we note that such an estimate holds for v, because of (3.3). 

Hence, 

11V51r,D ? 11 - V11r,D + Cdj /2 3r. 

Further, we have 

(3.10) (v - v)(x) = f g(x, y)(4D(y) - 0(y)) dy, 
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where g is the associated Green's function; i.e., g(x, y) is the solution of 

A (+,g(x, -)) =+~(x) for all A(= W,'(s2). 

It is known (cf., e.g., [8]) that such a g exists and that 

( Cl n(I x-y1 + 1) if -N + 2 - 13 -y(=O, 

Clx- -?2-III-IvIif -N+ 2 -l/3l -l1-Y< 0. 

Hence, for xE Dj and III < r, 

|D( - V)(X)| < SUP |Dxg(x, Y)|(IILl(Qh) + IkIIILl(Oh)) < N 

Y COh 

where we have also used (3.2) and (3.7) in the last step. Together our estimates show 
(3.9) which completes the proof of Lemma 5. 

We shall now see that v is appropriately close to v. 

LEMMA 6. Let v be the solution of (3.4) and v that of (3.1), or, equivalently, set 
v = u - uo. Then 

(3.12) 11 V(V - V) |L1(&1) < CE, 

and 

(3.13) IIV - VL (Q) < CEcln 1/E. 

Proof. Let Bc,(xo) be the ball of smallest radius such that Oh C Bc,(xo) and set 
B = B2C,(xo) n U. We have at once that 

||V'(v - v)0L1(Q) < i( - V)IIL,(B) + ||V (V - V)||L1(U\B) for i = 0,1, 

and, by (3.11) and a change of order of integration, 

11'i(b - V)IIL,(B) _< SUP jVig( Y)IILj(B)11 IILl(S2h) 

. Ce2 (ln1/c) I (1 IILl( h) + Ik'IILl(,h)) 

< Cc`(InI/c)N-) fori = 0,1. 

Replacing g(x, -) by its expansion 

g(x, y) = g(x, x0) +(y - xo)Vyg(x, x0) + (y - xo)Vy2g(x, 71)(y -X) 

where Ox = Ox + (1 - O)y, 0 < 0 < 1, and t denotes transpose, and using the fact 
that b - is orthogonal on Oh to the linear part of the expansion, we see from 
(3.10) that 

(v - v)(x) = J (y - x0)vY2g(x, )(y - xo)t(C(y) - b(y)) dy. 
h 

Hence, again by (3.11), 

1,7(V- V)(X)I j CE|v,vYg(x, <) 1 IILl(Qh)) 

< CEx - NxoNi forx E Q\B, i = 0,1. 
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Integration over 2 \ B shows that 

I|V'(V - v)IILi(Q\B) < CE -'(ln/e) fori = 0,1. 

This completes the proof of the lemma. 
We close this section by noting that also the final claim on v is satisfied, namely 

that its Galerkin approximation is Vh. For by (3.1), (3.4), and the definition of (b, we 
have 

A( 5- v, X) = (L (b -v),X)= (X -D, X) = 0 for all XESh, 

and by (1.3) and (1.4), 

A(vh - v, X) = O for all X E Sh 

so that 

(3.14) A(vh - 5, X)= for allX ESh. 

4. Proof of Theorem 1. In view of Lemma 6 and the fact that uh-u = Vh-v, it 

is sufficient to show that for the appropriate a's 

(4.1) 11V(Vh - 0)|L,(Q) '< Chr 

and 

(4.2) IlVh - VIIL (a) < Chr, 

respectively. 
Given a positive constant C* let J be determined by 

C*hll('-a) < di < 2C*hll('-a). 

Thus, hj, dj, and hAl - a) are of the same order; but, by choosing C* sufficiently 
large, h d 1 is suitably small, since 

(4.3) hjd-1 = hda-1 < 1/CVC . 

The constant C * will be determined later. For the moment we only require that the 
results of Lemma 1, Lemma 2, and (3.9) apply forj < J, i.e., that C * > C1. 

In order to prove (4.1) we first use Schwarz's inequality to change from the 
L1-norm to a weighted L2-norm. Setting e = Vh - V and 

S = E d7N/2IIeIlDj, 
jSJ 

we have 

11 VeIKLl(Q) 
= 11 VeI1(D.) + 11 VeIILj(Qj+l) < CS + dJ 

N 
IeII,,Ql 1. 

JAJ 

We shall show that for a > (r - 3)/(r - 1) and a suitable choice of C*, 

(4.4) S 2 iS+ Cd Je2IIeIIu + Chr1, 

and 

(4.5) dte de2seir r < Chfr-lo 

Obviously, the desired result then follows. 
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By Lemma 2, we have 

(4.6) S < C E dJN/2(hjlIIbIIr,Di + dIlIeIIoDi) + dhr/IIeIl DJ 

J<J 

< C E dj/2h vl I *II2D + C E d7/>1IIeIIO,D + dN12IIeIIl,DJ, 
j SJ jSJ 

and by Lemma 5 and our assumption a > (r - 3)(r -1), 

(4.7) Ai (4ll e) oarl D. <H C 1hi-) 

Cr-I E Jxr-l)+3-r < ch-1 

In order to estimate roblDwe use duality. Let ej equal e 
wlleIIO,D 

on Ds and vanish 
outside DJ , and let w solve 

(4.8) A( x,w) = ej) forgall, y e d() 

Hence, Ilello D. 
= (e, ej) = A (e, w), and by (3.14) and Lemma 1, 

||e||0 
D. 

= A (e, w - w,) < C E ||elll, D,hi11W112,D1 + Cjjejj,,j+1hjjjw112,Qj- 

It is well known that problem (4.8) admits a unique solution w such that 

(4-9) 11W|12,0 <1 CIlej110,UQ 

and with the representation 

(4.10) w(x) = *(x, y)ej(y) dy, 

with a g* (the Green's function for the adjoint problem) such that 

(4.11) CDXg*(x, y)j Clx- for 111 < 2. 

Hence, for w we have the estimates 

IIWII2,D < Cdi /2djN/2 for i < j, 

II2Q<Cd!V/2dj- N12 for i >, j. 

For i = j - 1, j, and j + 1 this follows from (4.9), since ej has L2-norm equal to one, 
and for the other i's from the representation (4.10) and the estimate (4.11). We have 
thus the following estimate: 

(4.12) IIeIIO,D <, Cdj12 IIeIIlD hidi -h + CdJ 
N"2 Z |IIeIIDh!d / 

i j <<iSJ 

+ CIIellIiu,+lhjdN/12d- N/2. 

Using obvious arguments, we obtain 

||e||0 D < CdJ /l max ( hid -N) 1 lell Ddj /2 

+Ch1d1N,/2 E IIeIIl,D,d;v/2 + CINeII1,1J+1hjd1/2d; N/2 

j<JS+ 

Ch dJ-N12S + Cjjejj,,u h dN2 N1/2 
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and hence, using (4.3), 

C E d IIN;2-l|eIIO D K CS E hjdj-' + CIIeIIjj+'1hjdJN/2 E djl 
IJJ J6jJ J6J 

< CShJdJ1 + CielI1QJ+l1hjdJ /2dJ1 < (C/C1-o)S + CdJ /2||elll,QJ+1- 

For a suitable choice of C * and together with (4.6) and (4.7) this shows (4.4). 
We now prove (4.5). By the coercivity and the continuity of A(-, *), and by (3.14), 

we have 

IleII1 Q CA(e, e) = CA(e, -X) 1 C||V-XII, for all X ShE . 

Lemma 1 then shows 

IleII, < C E hy(rl)IIbIIr D1 + Ch I2111 
j<J 

and by Lemma 5, 

(4.13) jjejj2 < C ? 22 I)dj2(- N2+3-r) + Ch2h(-N+2)/ (l-a)(lnh) 
(4.1~~~~J 3J e6Jh ( hI I 

i J 
h 

since E - hl/(1a. But for a > (r - 3)/(r - 1), 
, -2(r-Id2(-N12+3-r) dJNh2(r-1) 2 d12(r-1)+2(3-r)< cNh2(r-1) 

and 

h2h (- N+ 2)/ (1 a) (In /Ih) < C( C*)dJ Nh4l(l - O)(In 1/h); <- C(C*)d) Nh2(r-1). 

Together these estimates show (4.5) which completes the proof of (4.1). 
We now turn to the proof of (4.2). We have at once 

(4.14) IleIIl(g) < C E dJN/ IIeIIo,D + d N2 Ilello,j+. 
j<J 

Applying (4.12) and changing order of summation we obtain 

E dj/2IIeII0,|D < C , lIel,D h,d, N/2 : djN 
J i6<J i <j SJ 

+ C E lIel DhidNI2 E 1 + CjjeIIjj h1 hd 1, 
isJ ' S<ijJJ 

and hence (for convenience we now assume that]j > 1), 

E dJ2 llello,D < C E ih,d, N2IeINlD + CJhjdN72IIe||, 1 
jSJ iSJ 

We shall show that the single term in (4.14) can be estimated in the same way. 
Repeating the arguments used to derive (4.12), we obtain 

IIeIIo,uj+l < C E IIeIIl,D,h,1W112,D1 + CfIeIIj,Uj+1hJIIWII2,Qj, 
iSJ 

where w now is the solution of the problem 

A(4, w) = (4, ej+?) for all 4 E H'(Q), 

for an appropriate e + with L2-norm equal to one. Hence by (4.9), 

dJN72IIell0,QJ+I < CdJN/2( E h,IIeII,DD + hjIIelll,QJ+1) 
i <-J 



356 KENNETH ERIKSSON 

which is an even better estimate than we required. We have thus shown that 

IIeIIL1(Q) < C E jhJdJN1/2IIell*,D + CJhjd N2IIeIIi,SkJ+. 
j J 

Now, set 

S' jhjd .X/2 llell,, * 
j,J 

We shall show that for a > (r - 3)/r and a sufficiently large C *, 

(4.15) SI < IS' + CJhjdjNl2IIeIlIQJ + Ch', 

and 

(4.16) JhjdjY2IllellQ < Chr. 

Clearly the desired result then follows. 
By Lemma 2, 

S' < C E jhr dN/2iII * + C E jh1d7N/I21-lel10,D + Jhjd N72IIeIIj,Q 
j?J jSJ 

and by Lemma 5 and our assumption a > (r -3)r, 

1: jhrdjN/211511 < C hr jdjra+ 3 - r< Ch r. 

jSJ j1 Sj?J 

Using (4.12), we have 

Ejh jhdj/2 - 1IeIIO,D s C | IIeIl hid -N/2 hjdN 
jSJ i<J i j J 

+CE |e||l hidV/2 1: jhjdj-l 
i< J j, j < i 

+ CjIeII1 QJ+1hjd~N12 E jhjdj, 
11 <j < J 

which shows that 

E jhjdjN/2 - 1e1O*,D < C | IIel Dih 2dfN12-1 + C III,j+lJh2dN12-1 

and, hence, that 

C E Ih]d7"/2-1e110,D * (C/CV'a)S' + CJhjdjN72IIeII1,u?1. 
jSJ 

For C* sufficiently large our estimates now together show (4.15). 
It remains to prove (4.16). Since forj < J 

Jh dN12 < jhjdN/2, 

we obtain from (4.13) that 

J2h d2NIeII2f < C E j2h2rdj2(3-r) + CJ2h5d4Nh(-N+2)/(1-a)(ln ), 

Jh l hdIJ 
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so for a > (r - 3)/r, 

J2h 2dII 2II < ch2r E j2d 2ar+2(3-r) + C(C*)J2h6/(1-a)(lf h ) < Ch2r. 
Ji <J 

This completes the proof of (4.2) and hence of Theorem 1. 

5. Proof of Theorem 2. We shall show that for a > (r -3)r, 

luh(x) - U(X) < Ch(lnl/h)lx - -x N 

In view of Theorem l and the fact that ih -u equals Vh- v, it is sufficient to show 
that 

(5.1) |Vh(X) - v(x) Ch (lnl/h)d + Cd NIVh - VIIL1(Q), 

where d = Ix - xol. 
We first consider the case when d > chl/('-a) and c is a sufficiently large 

constant. Let B be the intersection of 2 and Bd/2(x), i.e., set 

B= {xEQ2: Ix-xol<{d}. 

Following the arguments in [10] (cf. Corollary 5.1 of [10] and the remark below), we 
deduce that 

(5.2) lvh(X) - V(X)| < C(hd) (lIn -)max IlDEvIL (B) + Cd IIVh - VIIL,(B)- 

Hence (5.1) follows from (3.3) and our assumption a > (r - 3)/r. 
In the case d < chl/(1a) we first use Lemma 3. Thinking of v(x) as a constant on 

T 3 x we obtain 

|Vh(X) - V(X)| < ChN/(la)|Vh - V(X)L1(7) 

< Ch /( -a)(IlVh - VIIL,(T) + ||V -V(X)IIL,(T) 

It remains to show that 

IIV - V(X)IIL1(T) < ChN/( )hrdN. 

For N > 2 this follows at once from (3.3), since 

IIVIIL,(T) + hN/( )jv(x)j < ChN/(1-)d-Nhr 

For N = 2 we first note that for y E T and a suitable curve S we have, using (3.3), 

Iv(y) - V(WX) j V'(s) ds < Ch1/(l-1a)max(lnI ln I )' 

and hence 

IV- V(x)IL,(T) < Ch3/ (Ia)ln l/d < Ch2/(I-1a)hrd-2. 

This completes the proof. 
Remark. For x bounded away from F the local estimate (5.2) follows at once from 

Corollary 5.1 in [10]. Following the arguments in [10] and using cut-off functions 
which satisfy an appropriate boundary condition (the vanishing of the conormal 
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derivative on F), it is easy to see that (5.2) holds also in the general case. Such 
cut-off functions were also used in [6]. 

Appendix. 
Proof of (3.3): Recall that by definition v = u - uo, Lv = b, and lv = 4). We shall 

show that for, say, 1/31 < r 

{ C(Ix - N?'IIl + I) if 1#/1 0 3 - N, 
DOv (x) ,Cln(lx - xol + I) if 131 = 3 - N. 

Let x # xo be given and set d = Ix - xol. Since v = u-uo, and both u and uo are 
smooth functions away from xo, it is sufficient to consider the case when d is 
suitably small. Let w be a smooth cut-off function such that 

w = 1 in Al, supp(w) c H2, and llDYwllL.(Q) < Cd-IY15 
where Ai = {y E E: (i + I)-ld < ly - xol < (i + I)d }. Let g(y, z) be the Green's 
function for L and 1; i.e., let g be the solution of L*g(y, z) = 8(z- y) in 2, 

lz*g(y, z) = 0 on F. Using Green's formula and a splitting of 1 we can write v as the 
sum of three terms 

v = Jgw dx +J g(l - w)(D dz + Jgo dF(z) = v, +v2 + V3, 

where the latter identity defines vl, v2, and V3. For d sufficiently small, x is bounded 
away both from F and the support of (1 - w)4, and thus, in a neighborhood of x, 
we can differentiate v2 and V3 under the integral signs. Using (3.2), (3.11), and 
straightic.nvard calculations, we obtain 

lDPV2(x)lI f lDIg(x, z)l 1(1 - w(z))O(z)ldz 

< cJ max(lnlx - z-1, Ix - zl-2 )lZ - Xol1dz 
S\Al1 

/ C(d N+3-lll + 1) if 1 #8 3 - N, 
Clnl/d if 1.11= 3-N, 

and 

IDfV3(x)I I J lDg(x, z)l lj)(z)ldI(z) < C. 

Similarly, we obtain for y E = \A3, 

(Cd-N+3-1Yy(ln(/dI)A if lIY - xol < d/4, 
(6.1) jD'Yvl(y)j <, -N 20rN? l 

u 0 fL'-xl d 
Cdly-xo| In ly-xol + I if lY-xol > 4d, 

where , = 1 if IYI = 2 - N and , = 0 otherwise. In order to estimate DEvl(x) we 
proceed as follows: For 1/P1 < 1 we have at once that 

|D8vj( X)| < ID/g(xl */) ( IL II3I)dA2?WC(dN?3L1(A12) 

, Cd2- U(In 1/d))1 Nl-ll) d-+ C( ll N1 -N+3-lfll + 1 
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For (/3( > 1, set D = D0Dy and w = Dv1v for some a and ,u such that Ia( = 1. Since 
Lw = DA (wD) + q for some q = lYI<fiI b.YDYvl, where by are certain derivatives of 
the coefficients of L, we have 

w =f jgDA(wO) dx +J g dz + glwdF(z) = w1 + w2 + W3. 

Here 

IDgw,(x)l < IlDxg(x, )11LI(A2 )IID (A)IL(A2) < Cdd N 1 1A1 = Cd- N+3-Ifil 

and 

IDaw3(x) I J D"g(x, z)| l|w(z)|dF(z) < C, 

since lw is smooth. In order to estimate D0w2(x) we first use (6.1) to obtain 

L\ xg(x9 z)'q(z) dz " Cd-N+4 9 

and hence 

IDaw2(x)l < Cd-N+4-jl + Cd sup lDYv1(y)l. 

ye A3 

We have thus shown 

lDfv,(x)l = ID"w(x)l < Cd-N+3-ll + Cd sup IDYv1(y)I. 
IYISI<I 
yeA3 

Since we may as well assume that the supremum is attained for -y = / and y =x, 
and since d is small, it follows that 

IDfv,(x)I|< Cd-N+ 3 -l1. 

This completes the proof. 
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