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Finite Element Methods of Optimal Order
for Problems with Singular Data

By Kenneth Eriksson

Abstract. An adapted finite element method is proposed for a class of elliptic problems with
singular data. The idea is to subtract the main singularity from the solution and to solve for
the remainder using suitable mesh-refinements. Optimal order error estimates are proved.

1. Introduction and Results. Let € be a bounded domain in RV with smooth
boundary I" and consider the following problem: Given x, € Q find u = u(x) such
that

(1) Lu)=- % 2{ay(02) 4 £ a0+ a(x)
la u(x) = _,.,=1 ax, a,(x ox. I=1a, x o a(x)u
=8(x —xy) inQ,
o du
(1.1b) u(x) = Zla,j(x)gnj(x)=0 onT,
L= !

where § is the Dirac distribution (unit impulse), n = (n;) is the outward unit normal
to I, and a,, a,, and a are smooth (C* regular) functions on {, with a,, = a,, and
such that the associated bilinear form

Jr

_ dv Iw v
A(v,w)=/ﬂ(z + ;a,ax1w+avw dx

%3, Bx,
i, ! J
satisfies the ellipticity-coercivity condition
(1.2) A(v,v) > clvllio forallv e H'(Q),

where c is a positive constant and || - ||; o the usual norm in H'(Q), the space of
functions with square-integrable first-order derivatives in Q. It is well known (cf.,
e.g., [8]) that problem (1.1) admits a unique (distributional) solution u, which is also
determined by the corresponding variational equations

(1.3) A(u, ¥) =y¥(x,) forally € Wi(Q),

where W1(Q) is the space of functions with bounded first-order derivatives on .
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346 KENNETH ERIKSSON

In general, problem (1.1) (or (1.3)) cannot be solved exactly, so we are faced with
the problem of finding an accurate approximate solution. We shall consider the
following standard approach for this (cf., e.g., [1], [7], [11]): Given a finite-dimen-
sional space S, ¢ HY(Q) N C(Q) find u,, € S, such that

(1.4) A(u,, x) = x(x,) forally € S,.

By the coercivity of A(-, -), there exists a unique such u, determined by the linear
system of equations

M
Z l]IA(XI9 XJ) = xj(xo) for.] = 19"'9M,
=1

where u, = LM, Ux,, and {x,}}L, is an arbitrary basis for S,. For appropriate
finite element spaces S,, where 4 is the associated mesh-size parameter, there exist a
priori estimates for the error u, — u in terms of 4. One problem in deriving these
estimates is that the singularity of u at x,, which is of order log|x — x,|™! for N = 2,
and |x — x|~V "% for N # 2, frustrates the usual type of error analysis. For N = 1
this is a minor problem since then the singularity is concentrated at x, and u is
continuous. Choosing x, as one of the nodal points and using continuous piecewise
polynomials for S,, the usual analysis carries through, and, for example, for
polynomials of degree r — 1 we have |lu, — ul|, ¢ < Ch"~'. For N > 1, however, the
standard method of analysis fails since then the solution does not even belong to
H'(). Nevertheless, Babuska [1] was able to show, for N = 2, L = ~A + I (minus
Laplacian plus identity), and finite element spaces S, possessing standard approxi-
mation and inverse properties (such as piecewise linears on a quasi-uniform triangu-
lation of ), that

[lae), — “”o,sz < Gh'TY,

where || - || g is the L,(2)-norm and & > 0 is arbitrary. Later, Scott [11] improved
and generalized this result by showing that for elliptic operators of order 2m, normal
covering boundary conditions (cf., e.g., [9]), and dimension N > 2, one has

luy — ull, o < C(xg)A*" N2 for2m —r<s<2m—N/2,

where C(x,) tends to infinity as x, approaches I', » > 2m is the order of approxima-
tion of S, C H*({), and the Sobolev norm index s may also be negative (cf., e.g., [9]
for the definition). Despite its generality, Scott’s result falls short in a certain respect.
For instance, if m = 1, r = 2 (piecewise linears), and N = 2 or 3, we obtain no
information about v(u, — u), and for N > 4, no information whatsoever.

Recently, in [7], we proposed the use of adapted finite element spaces for the given
problem. Denoted by S,(x,, @, r) where h €(0, 1], « €[0,1), and r > 2 are
parameters, these spaces can be described as follows: Given positive constants ¢ and
C let @ be divided into elements 7 such that

(1.5)  cdiam(7) < h(dist(xq, 7)) + A/ 1~® < Cdiam(7) for all ,

where each 7 is the restriction to & of the interior of a N-simplex 7 (cf. [4]), with

(1.6) (diam(#))" < C [ dx,
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and the intersection of any two such simplices is either a face of both, or of lower
dimension. For S, = S,(x,, a, ) we take the space of all continuous functions on &
which reduces to polynomials of degree at most » — 1 on each 7 € Q. By (1.5) the
mesh is refined (graded) around x, in such a way that elements at distance d from x,,
have diameters of order Ad®, but a minimum diameter of order /@ ~®. Hence k is a
parameter for the maximal global mesh-size, and a determines the degree of
refinement. Of course, such a mesh-refinement enables a better approximation in S,
of any given function which is irregular near x,. The condition (1.6) is used to derive
local inverse estimates.

The following results were obtained in [7] for u, € S,(x,, &, r) being the solution
of (1.4). Fora > (r — 2)/(r — 1),

(1.7) v (uy = u)||L,@ < CRY,
and fora > (r — 2)/r,
(1.8) [y, — u”Ll(Q) < Ch',

where C is a constant independent of 4 and x,. Further, if « > (r — 1)/r, and if
d=|x — xo| > ch’/1~* and dist(x, I') > d for a suitable ¢ > 0, then

(1.9) |uy(x) — u(x)| < Ch’(In1/h) d"",

wherer = 1ifr=2,7=0if r > 2.

In this paper, we analyze a method to approximate the solution of (1.1) to the
accuracy (1.7), (1.8), and (1.9) which requires a lesser degree of mesh-refinement
than the one in [7]. One reason for introducing such a method is that the computa-
tional effects of strong mesh-refinements are not yet very well known. Recall that the
condition number for the stiffness matrix (A(x;, x ,)) depends on the mesh-size.

In order to describe the method we first note that the solution of (1.1) can be
written in the form

(1.10) u=u,+uo,

where u, is the fundamental singularity of u defined by (in the sequel we only
consider the case N > 2)

WO 15— ) itn -2,

2
(1.11) uo(x) =
———(]lsei(%)l 5 — 2,V N> 2,

where Q is the inverse of 4'/2, the positive square root of 4 = (a,,(x,)), £ — %o =
Q(x — x,), and oy is the surface area of the unit ball B,(0) € R". For example, if
L = —-A + I we can take Q = I and thus obtain

1
(N =2)oy
which we recognize as the fundamental solution of —A. It is a matter of straightfor-
ward calculation to verify that in the general case u, satisfies

-N+2
l

uy(x) = |x — xq (N>2),

N aZuO )
(1.12) -y a,j(xO)W =8(x—x,) inQ.

/=1
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In view of (1.10) we are led to seek an approximate solution of (1.1) in the form
(1.13) t,=uy+v,, witho,€S,=S,(x,,a,r),

and such that

(1.14) A(@,, x) = x(x,) foralx € S,.

Again, by the coercivity of A(-, -), there is a unique such #,. In fact, to seek i, is to
seek v, = LM, Vx, € S, such that

M
(1.15) 2 Vi A(x,» x,) = x,(x0) — A(ug, x;) forj=1,....M,

=1
where {x,}/Z, is a basis for S,,.
We shall prove the following error estimates for this method:

THEOREM 1. Let u be the solution of (1.1) and @, = uy + v, that of (1.14), with
v, € S,(x4, a, r). Then, fora > (r — 3)/(r — 1),

(1.16) v, — Vu”Ll(sz) < Ch Y,
and for o > (r — 3)/r,
(1.17) ll&,, — u”Ll(Q) < Ch',

where C may depend on the given problem as well as on a, r, and the constants in (1.5)
and (1.6), but not on h.

Further, we have the following pointwise error estimate:

THEOREM 2. Let u and @, be as in Theorem 1 with o > (r — 3)/r. Then

[it,(x) — u(x)| < Ch"(In1/h) |x — x0|_N forx € ,x # x,,
where C is independent of x and h, and ¥ = 1ifr=2,7 = 0ifr > 2.

Remark. The constants C in Theorems 1 and 2 become infinite as x, approaches
T. In order to have a method which is effective also when x, is close to (or even on)
the boundary T" one can modify the definition of u according to

———lde;(WQ)l (1n(|5c — &) + n(J5 - )‘cgl'l)) N =2,

|det(Q)| ('

A

where £ is the “Q-reflexion” of %, in I defined by ¥ = Ox&, x§ = 2z — xp, and z
minimizes |Q(y — x,)}, y € I. For this modification of the method the estimates of
Theorems 1 and 2 hold with constants C independent of x,.

The proofs of Theorems 1 and 2 are given in Sections 4 and 5, respectively.
Sections 2 and 3 are devoted to preparatory work.

2. Preliminaries. Throughout this paper we shall denote by ¢ and C various
positive constants which are independent of 4 (but which may depend on the data of
the given problem (1.1), the constants in (1.5) and (1.6), and on the parameters « and
r). Similarly, C; and C, will denote two specific such constants.
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Besides the usual L ,norms

» 1/p
HUHLP(Q/) = (./;2 [o(x)] dx) forp=1andp =2,
and
”U“Lw(n') = esssup 'U(X)L
xeQ

we shall use the Sobolev norms

oo = 10%0 0]

IBI<k
where |B] = B, + --- + By is the length of the multi-index 8 = (B,,...,8y), and

B By
oo (2
0x, 0x
In particular, || - ||o o denotes the usual L,(2’)-norm. The Sobolev space H*(Q) is

the space of all functions w such that ||w]|, g is finite.
In the proofs we shall consider subdomains of £ defined by

D= {xe€Q: 270" <|x — xo| <27/},

and
Q = {x € Q: |x — xo| < 2'/} for j integer,

and setd, = 27/ and h, = hd}. Accordingly, d, is proportional to the diameter of D,

and €, and as long as j is not too large so that 4; is smaller than the minimal

mesh-size 4"/ =%, h is proportional to the maximal mesh-size on D, and 2. We
shall frequently use the obvious facts that d, < Cd,,; and h; < Ch,,,, and we also
note that since § is bounded, there is an integer j; such that D; is empty forj < jj.

Due to the variable mesh-size a typical interpolant in S,(x,, &, r) approximates a
given function with variable degree of accuracy over . The following three results
are quoted from [7].

LEMMA 1. Given w there is an interpolant w, € S,(x,, a, r) of w such that forj < J,,
[w — W1||1.$2, < Ch,l|W||z,n,_l,
and
w = willo, < Ch}" MWl for2<ms<r,

where J, is determined by 27/t = C,h'/ A~ for a suitable sufficiently large constant
ChandD} = Q,_\Q ,.

The next lemma shows a similar property for the Galerkin approximation.
LEMMA 2. Ifj < Jy, and ifv, € S,(x,, a, r) and v satisfy
A(v, —v,x) =0 forallx € S,(x,, a, r) with support in _D?,
then

o, = vllv.p, < Ch; Mol by + Cd; Moy = vllo, -
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From (1.6) we have the following inverse property:

LEMMA 3. For any 7 as in (1.6) and any polynomial p of degree at most r — 1, we
have

“P“L (N S C(dlam( )) N/q“P“L A7) for q E[l °°)
For the proofs of these results we refer to [7].

3. A Step of Reduction. Recall that by definition u = u, + v and &, = u, + v,,.
Hence, we can estimate &1, — u by estimating v, — v. We shall do this by estimating,
each individually, v, — & and & — v, where ¥ is an appropriate approximation of v.
In this section we introduce such a & and derive estimates for & — v. For the analysis
of v, — ¥ we also investigate the regularity of o.

Setting
du N du .
(D(x)_ Z ax (al_j(x) az_/(XO)) . Z (x)—o—a(x)uo an,
1,j=1 J =
and
6(x) =~ ¥ ()2 (x) onT,
1,j=1

we see from (1.1) and (1.12) that
(3.1a) Lv=® inQ,
(3.1b) b=¢ onT.

We shall use the following facts:

LEMMA 4. Let ®, ¢, and v be defined as above. Then ¢ is a smooth function (with
degree of smoothness depending on dist(x, I')), and the following estimates hold for ®

and v ( for |B| < r, say):

(3.2) |DP®(x)| < Clx — x,
C(in(lx = xo ) +1)  if-N+3-18]=
C(lx = xl "7 +1) N+ 3 —[gl#0.

‘—N+1—|B|

’

(3.3) 1D (x)| <

Proof. The smoothness of ¢ and the estimate (3.2) follows at once from the
definitions. The estimate (3.3) can be obtained, implicitly, from [8]. For complete-
ness, we show in an appendix that the result follows easily from the properties of the
Green’s function.

We now introduce #, requiring that & be close to v, that € H?(Q), that & possess
at least r derivatives away from x,, and that v, (which is the Galerkin approximation
of v) be also the Galerkin approximation of §. Therefore, let & be the solution of

(3.4a) Li=® inQ,
(3.4b) h=¢ onT,

where & is defined as follows: Set ¢ = #*/ @~ and let 2, be the smallest mesh-do-
main covering B,(x,) N Q, B,(x,) = {x: |[x — x,| < ¢}. By a mesh-domain we mean
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(the interior of the closure of) a union of elements. Set

- 7® onQ,,
(3.5) ®(x) = {(I) outside Q2,,,

where 7, is the local L,-projection onto P,_,(7), the space of polynomials of degree
at most » — 1 restricted to 7.

It is well known that problem (3.4) admits a (unique) solution, and the following
estimates hold for ® and #:

LEMMA 5. Let ® be defined by (3.5) and let © be the solution of (3.4). Then (with
e = hl/ (1—a))

(3.6) @@ < Ce™*1(in1/e) ™",

(3.7) “(i)“Ll(Q,,) < Ce,

(38) [oll2.0 < Cem2* (In1/e) "7,

where N =1if N =2,N =0if N > 2, and forj < J, and r > 2 (cf. Lemma 1),
(39) [l p, < €72+

Proof. We have first

“(i’NLz(m <||‘D”Lz(sz\sz,,) + X ”&’”Lz(f)’

TCQ,

and by (3.2), with R = |x — x|,

[@lenay < €[ (R RV 1R < ce "2 in 1)
Using Lemma 3, we obtain
11, = [ 80 dx = [ @ dx <@, 1.
< C”q)”Ll('r)s—N/zn(i)“Lz(‘r)’

and hence, using (3.2),

)y ”&)”Lz(f) < CS_N/2||(I)”L1(Q,,) < Ce M2t
TCR,
Together our estimates now prove (3.6).
The estimate (3.7) follows at once from the proof of (3.6), and (3.8) follows from
(3.6) by the standard H *-regularity estimate, since ¢ is smooth (cf., e.g., [9]).
For the proof of (3.9) we note that such an estimate holds for v, because of (3.3).
Hence,

”5”r.D, <|ls - U”r,Dj + CdJ—N/2+3_,.

Further, we have

(3.10) (5 - 0)(x) = fg g(x, »)(B(») — @(»)) dy,

h



352 KENNETH ERIKSSON

where g is the associated Green’s function; i.e., g(x, y) is the solution of

A(Y, g(x,)) =¢(x) forally € W (Q).
It is known (cf., e.g., [8]) that such a g exists and that

Chnlx -y +1) if-N+2—[B[-[y[=0,

Bpv <
(311)  |DfDJg(x, y)| ARl

Clx—y if -N+2—|B|-|y|<o0.
Hence, for x € D;and |B| < 7,
[DA(5 = 0)(x)| < sup |8 (. V(1,0 + [9l10,) < €727,
Y&y,
where we have also used (3.2) and (3.7) in the last step. Together our estimates show
(3.9) which completes the proof of Lemma 5.
We shall now see that i is appropriately close to v.

LEMMA 6. Let § be the solution of (3.4) and v that of (3.1), or, equivalently, set
V=u— uy Then

(3.12) Iv(5 = v)llz,@ < Ce2,
and
(3.13) 5 = oll,, @) < CIn1/e.

Proof. Let B.,(x,) be the ball of smallest radius such that Q, C B (x,) and set
B = B, .(xy) N Q. We have at once that

[v(5 = )o@ <IIv(® = )y + 195 = 0)|L@p fori=0.1,
and, by (3.11) and a change of order of integration,

195 = o), gy < sup 928 2, )8 = la
yEQ,

—i N1-i =
< Ce/(In1/e)"* (18]l 0, + 9]0,
< Cei(In1/e) ¥ fori=0,1.
Replacing g(x, -) by its expansion
g(x,y) = g(x,x0) +(» = x0) ¥,8(x, x0) "+ 3(y = x0) v,8 (x, m)(y = x)",

where n = 6x, + (1 — 0)y, 0 < 8 < 1, and ¢ denotes transpose, and using the fact
that ® — @ is orthogonal on Q, to the linear part of the expansion, we see from
(3.10) that

(5= 0)(x) = [ (v = x0) 9806, 1)y = x0) (8(3) = @(»)) &
h
Hence, again by (3.11),
V(2 = )0l < € viv g, oo (1@l + 12]2,,)

< CElx —xo| " forxe Q\B,i=0,1.
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Integration over € \ B shows that

[w/(5 = v)||r @ < Ce~i(In1/e)' ™" fori=0,1.

This completes the proof of the lemma.

We close this section by noting that also the final claim on & is satisfied, namely
that its Galerkin approximation is v,. For by (3.1), (3.4), and the definition of ®, we
have

A(D—v,x)=(L(8 —v),x)=(®—®,x)=0 forallx €S,,
and by (1.3) and (1.4),
A(v,—v,x)=0 forallyx € S,,
so that
(3.14) A(v,—0,x)=0 forallx € S,.

4. Proof of Theorem 1. In view of Lemma 6 and the fact that 4, — u = v, — v, it
is sufficient to show that for the appropriate a’s

(4.1) v (vh = 8)||L,) < ChH,
and

(4.2) oy = 8llL,@) < CH',
respectively.

Given a positive constant C, let J be determined by
CohV/ 00 < d, < 2C h/ 0=,
Thus, &, d,, and A/ =* are of the same order; but, by choosing C, sufficiently
large, h,;d;! is suitably small, since
(4.3) hyd;' =hd; ' <1/Cy ™

The constant C, will be determined later. For the moment we only require that the
results of Lemma 1, Lemma 2, and (3.9) apply forj < J, i.e., that C, > C,.

In order to prove (4.1) we first use Schwarz’s inequality to change from the
L,-norm to a weighted L,-norm. Setting e = v, — ¥ and

s=X d,Nﬂ”e”l,D,,
j<sJ

we have

[ Ve“Ll(SZ) =2 | Ve“Ll(D]) +] Ve“Ll(QJ“) <CS+ d}v/zlle||1,ﬂ,”~
JsJ

We shall show that for « > (r — 3)/(r — 1) and a suitable choice of C,,

(4.4) S<is+ Cd,’"/zllelll'ﬂj + Ch™ 1,
and
(4.5) d; el o < ChN

Obviously, the desired result then follows.
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By Lemma 2, we have
(4.6) S<CY d,N/z(h,r‘_1||5||r,D} + dj_llle”o.o}) + dJN/2||e||1,D,
J<J

< C X d¥h oo, + C X dY* Helo,n, + 4 lelr.p,
J<J j<J

and by Lemma 5 and our assumption « > (r — 3)/(r — 1),
(4.7) Y dY ol <C X k)

j<J hs<i<J

< Chr—l Z dja(r—1)+3—r < Chr_l.
hsj
In order to estimate||e||,, p, we use duality. Let e, equal e/||e||, p,on D; and vanish
outside D, and let w solve

(4.8) A(Y,w) = (y,e;) forally € H'(Q).
Hence, ||e||0‘D/ = (e, e,) = A(e,w), and by (3.14) and Lemma 1,

"e”(),D/ =A(e,w—w)<C 2 ”e”1,D,hi”W"2.D,l + C||e||1,sz,+1hJ||W“2,sz,~

1<J

It is well known that problem (4.8) admits a unique solution w such that
(4.9) Iwllz.q < Cllelly g

and with the representation

(4.10) w(x) = [ &*(x, »)e)(y) v,
with a g* (the Green’s function for the adjoint problem) such that

(4.11) |DEg*(x, y)| < Clx - Y™ for |B < 2.
Hence, for w we have the estimates
Il p, < €72} fori <,
Iwllzq < CaN2d; N fori>j.
Fori=j—1,j,andj + 1 this follows from (4.9), since e; has L,-norm equal to one,

and for the other i’s from the representation (4.10) and the estimate (4.11). We have
thus the following estimate:

(412)  lello.p, < Cd}* ¥ llelly phid ™2 + Cd ™2 3 lellyphid?
i<y J<i<sJ
+Cllellyq,, h,d7"%d N2,
Using obvious arguments, we obtain
lelly 5, < Cd¥/>max (hd; ™) X llell p,d
0.D, s 2 .D,

+Chidi ™ Y el pd* + Cllell g, h,d7"%d; "

j<i<J

< Ch,d; S + Cllelly g, hsd}d,; 2,
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and hence, using (4.3),
cYy d,N/Z_IHe“o,D <CS Yy h,d,_l + C||e”1,9,+1h1d}v/2 > d_[_l
Jj<sJ ’ JsJ J<J

< CShyd;' + Cllell, g, hyd}/%d;* < (C/Cy*)S + Cd} el g, -

For a suitable choice of C, and together with (4.6) and (4.7) this shows (4.4).
We now prove (4.5). By the coercivity and the continuity of A(-, -), and by (3.14),
we have

lel2.q < CA(e, e) = CA(e, 5 — x) < Clls — xlli.o forallx € .
Lemma 1 then shows
lel} o < € ¥ h2 Dol 5 + Ch3lol g, .
j<J

and by Lemma 5,

N
(413) felig<C ¥ h¥rDgA-N2+3-0 4 Ch}h"”*z)/‘l‘“)(ln%) ,

hsysJ
since € = B/ 3~ But fora > (r — 3)/(r — 1),
Z h}(r—l)dJZ(—N/2+3—r) < dJ—NhZ(r~1) Z dea(r—1)+2(3—r) < CdJ_Nh2(r_1),

nsusJ NS

and
RN/ 0= (1n1/m)Y < C(C,)d; MhY O (In1/k)Y < C(C,)d; VR,

Together these estimates show (4.5) which completes the proof of (4.1).
We now turn to the proof of (4.2). We have at once
(4.14) llell 2,2y < € > d,N/2||e||o,D, + d}V/2”e”0,ﬂ,+l‘
J<J

Applying (4.12) and changing order of summation we obtain
2 d}lello,p, < C X llelly.p,hd ™ X d)Y

JsJ i<J i<j<J
+CY llelohid®* ¥ 1+ Clelyg,, h,d}? ¥ 1,
i<J h<y<i i<y<d

and hence (for convenience we now assume that j; > 1),

> dJN/2“e“O,Dj <CY ih:de/2“e”1.D, + CJth}Vn“e“Lg,H-

j<J i</
We shall show that the single term in (4.14) can be estimated in the same way.
Repeating the arguments used to derive (4.12), we obtain

”e”o,ﬂ,,,l <C Z ”e“LD,hx”w”Z,D} + Cllelll,ﬂ,HhJ“w”lﬂ,’

i<J
where w now is the solution of the problem
A(Y,w) = (¥, e;,,) forally € HY(Q),
for an appropriate e, ; with L,-norm equal to one. Hence by (4.9),

d}V/ZHe“O,QHl < CdJN/z( Z h:llenl.D, + h;llelll.sz,+1)’

isJ
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which is an even better estimate than we required. We have thus shown that

”e”Ll(Q) <C Z jh_[dJN/zue”l,Dj + CJthJN/zlle”mz,H'
Jj<J

Now, set

S = Z jhjdjN/zllelll,Dl'

jsJ
We shall show that for & > (r — 3)/r and a sufficiently large C ,,
(4.15) S’ <3S+ CJh,d,N/leeHl’ﬂJ + Ch',
and
(4.16) Jh,d}"ell, o < Ch".

Clearly the desired result then follows.
By Lemma 2,

§' < € X jhd)oll, p, + C X jh,d > lello,p, + Thyd el g,
j<J i<t

and by Lemma 5 and our assumption a > (r — 3)/r,

X hd ol 0, < O X jdI < G

j<J hsisJ
Using (4.12), we have
% 2 elon, < C X el phdi ™ X jh,d}~!
j<J i<J isj<J
+CY |Ie||1,D,hidiN/2 )> jhjdj_1
i<J h<y<i
+ C”eul,sz,,,lhjdjN/2 Z jhjdj_l’

hsjsJ
which shows that
2 jhd}N* Hellop, < C X llelly,pihid}*~" + Clell, g, Jh3d]"* 1,

j<Jt i<J
and, hence, that

C X jh;d* Yello.p, < (C/CY®)S" + CIh,d} el q,..-
Jj<J

For C, sufficiently large our estimates now together show (4.15).
It remains to prove (4.16). Since forj < J

Jh,d}"* < jhd)N?,

we obtain from (4.13) that

N
Ih2dMelio< C X R0 + Cjzhg‘d,’vh(‘N”)/(l‘“)(ln%) ,

hsisJ
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so for a > (r — 3)/r,

N
J2h3d)|ell} o < Ch?" ) jPdPer 2670 4 C(C*)thG/(l”“)(ln %) < Ch?".

h<J

This completes the proof of (4.2) and hence of Theorem 1.
5. Proof of Theorem 2. We shall show that for a > (r — 3)/r,
i, (x) = u(x)| < Ch(In1/h) |x = x| ™.

In view of Theorem 1 and the fact that &, — u equals v, — v, it is sufficient to show
that

(5.1) o, (x) —v(x)| < Ch'(In1/h) d~N + Cd Vv, — v]lL, )

whered = |x — x|
We first consider the case when d > ch!/1~% and ¢ is a sufficiently large
constant. Let B be the intersection of £ and B, ,(x), i.e., set

B={xeQ:|x—x,<id}.

Following the arguments in [10] (cf. Corollary 5.1 of [10] and the remark below), we
deduce that

wrf 1V _
(52) [o(x) = 0()] < C(hd")"(1n 7 ) max [ DA s, + €~y = ol o

Hence (5.1) follows from (3.3) and our assumption & > (r — 3)/r.
In the case d < ch'/ =% we first use Lemma 3. Thinking of v(x) as a constant on
7 2 x we obtain

lop(x) —v(x)|< CR=N =Dy, — U(X)HLI(T)
< O ¥ A= |lo, = o]l + o = 2()yiry)-
It remains to show that
lo = v(X) L sy < CRY C=OR7d N,
For N > 2 this follows at once from (3.3), since

”U”Ll(r) + hN/(l—a)|v(x)| < ChN/A-og-Npr.

For N = 2 we first note that for y € 7 and a suitable curve S we have, using (3.3),

o(») = v(x)|= /S v'(s) ds

< Chl/‘l‘“)max(ln%,ln 1 ),
|y - xol

and hence

lo = 0(x)|l1,y < Ch¥A~®n1/d < Ch¥ A~ h'd 2.

This completes the proof.

Remark. For x bounded away from I the local estimate (5.2) follows at once from
Corollary 5.1 in [10]. Following the arguments in [10] and using cut-off functions
which satisfy an appropriate boundary condition (the vanishing of the conormal
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derivative on TI'), it is easy to see that (5.2) holds also in the general case. Such
cut-off functions were also used in [6].

Appendix.
Proof of (3.3): Recall that by definition v = u — u,, Lv = @, and lv = ¢. We shall
show that for, say, |B] < r

D)) < C(lx = x4 1) it|g=3 - N,
V\X )| <

Cln|x — x| +1) if [8]=3 - N.

Let x # x, be given and set d = |x — x,|. Since v = u — u,, and both u and u, are
smooth functions away from x,, it is sufficient to consider the case when d is
suitably small. Let w be a smooth cut-off function such that

w=1 ind,, supp(w)C 4,, and ||Dw||r @) < Cd~",

where 4, = {y € Q: (i + 1)7d < |y — xo| < (i + 1)d }. Let g(y, z) be the Green’s
function for L and /; ie., let g be the solution of L*g(y,z)=8(z —y) in Q,
I*g(y, z) = 0 on I'. Using Green’s formula and a splitting of ® we can write v as the
sum of three terms

v=f ngI)dx+f g(l—w)QI)dz+/g¢dI‘(z)=vl+vz+v3,
Q Q T

where the latter identity defines v,, v,, and v;. For d sufficiently small, x is bounded
away both from I' and the support of (1 — w)®, and thus, in a neighborhood of x,
we can differentiate v, and v; under the integral signs. Using (3.2), (3.11), and
straightforward calculations, we obtain

|pﬂvz(x)|<fQ |DAg(x, 2)||(1 — w(2))®(z)|dz

<C max(ln|x — 2 - z|_N+2_|ﬂl)| - x0|_N+1dz
04,
< C(d-N+3-1Bl+ 1) if |B|# 3 — N,
~ |\ cm1/4 if |B|=3 - N,
and
[Duy(x)| < [ ID?g(x, 2)| o (2)ldT(2) < C.
Similarly, we obtain fory € @\ 43,
Cd-V*3""(In1/d)" if |y — xo| < d/4,

6.1) |D,(y)|< N+2- - ‘
(6.1) [D™,(y)] Cdly — x| '*'{ln(|y—x0|‘+1)} if |y — x| > 44,

where p = 1 if |[y| =2 — N and g = 0 otherwise. In order to estimate D#v,(x) we
proceed as follows: For |8] < 1 we have at once that

IDﬁvl(x)I < "Dﬁg(x, : )"LI(AZ)"“’(I)"L‘,,(AZ)

< Cd2—|B|(ln l/d)ﬁ(l_lﬁl)d—N+1 < C(d-N+3—|B| + 1)
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For |B| > 1, set D = D°D* and w = D*p, for some o and p such that |o| = 1. Since

Lw = D* (w®) + n for some n = X, _ g b,D"v,, where b, are certain derivatives of
the coefficients of L, we have

w = D*(w®) dx + dz + wdT(z) = + + .
*/;2 b4 ( ) ‘/;'l gn /1: b ( ) Wi W, Wy
Here

IDw, (%) <ID2g(x, )L,caplP*(0®)| 2,4y < Cdd~N*17 Wl = Ca=N+3-18,

and
[Dows(x)| < [ |Dzg(x, )| Im(2)|aT(2) < €.

since /w is smooth. In order to estimate D°w,(x) we first use (6.1) to obtain

V D2g(x, z)n(z) dz| < Cd~N+4- 1Al
20\4,

and hence

|D°w,(x)| < Cd=N*4"1Bl 4+ Cd sup |D,(y)].
[vI<IBI

YEA,

We have thus shown

|DPv,(x)|=|D°w(x)| < Cd~N**~18l + Cd sup |DW,(y)|.

lvI<1B|
YEA;

Since we may as well assume that the supremum is attained for y = 8 and y = x,
and since d is small, it follows that

|DPv,(x)| < Cd=N*3-1AL
This completes the proof.
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