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The Convergence of Galerkin Approximation Schemes
for Second-Order Hyperbolic Equations
With Dissipation

By Barbara Kok and Tunc Geveci

Abstract. In this paper we consider certain semidiscrete and fully discrete Galerkin approxi-
mations to the solution of an initial-boundary value problem for a second-order hyperbolic
equation with a dissipative term. Estimates are obtained in the energy and negative norms
associated with the problem, yielding in particular H'- and L?-error estimates. The approxi-
mation to the initial data is taken, in this case, as the projection with respect to the energy
inner product, onto the approximating space. We also obtain estimates for higher-order time
derivatives.

1. Introduction. We consider the approximation of the solution of the initial-
boundary value problem
D2u(t, x) + Lu(t,x) + aDu(t,x) =0, (t,x)<€(0,T] xXQ,
(1.1) {u(s,x)=0, (1,x) €(0, T] x 3Q,
u(0, x) =uy(x), Du(0,x)=1iy(x), xeq.

The domain € c RY is bounded with smooth boundary 3. L is the second-order
elliptic operator

Lu= —

i M=

0 du
1 a_x,.(a”(x)aTcJ) + ag(x)u,

where

a;;=a,;€ C>(Q) and Zalj(x)§1§J = .3|§|2 VxeQ,V¢{ eR", > 0.
iy

We associate the bilinear form
du Jv
a(u,v) = -’;z(z a’/agj + aouu) dx

with L. The term aD,u(z, x), « > 0, represents a retarding or frictional force which
causes dissipation of energy.

Our aim is to extend the convergence analysis for conservative hyperbolic equa-
tions by Geveci [5] and Baker and Bramble [1] to include a dissipative term of the
above form.
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The problem (1.1) and its approximation is considered in the framework of certain
subspaces H*() of the Sobolev spaces H*(R), as in [1], [2], [5] and [7]:

H*(Q)={ve H(Q): L'v =0ondQforj <s/2}, s>0.
H=(Q) = () B°(Q).

s>0

The eigenvalues of the operator L with homogeneous Dirichlet boundary conditions
form a sequence {A}72; of real, positive, ncndecreasing numbers with correspond-
ing orthonormal eigenfunctions {¢,}5Z;, complete in L*(Q). H(Q) can then be
defined equivalently as [4]

I , 12
A(2) = { & 12(9): o], = { L |0, Ai} < oo}-

For s > 0, H™*(2) denotes the dual of H*(Q) with respect to the L*inner product,
with norm

1/2

ol = {f oa) )

The solution operator 7: H~'(Q) - H'(Q) of the associated elliptic boundary
value problem is defined by

a(Tf,9) = (f,9) Vo< H'(Q),
and is selfadjoint and positive definite on L*() so that
(v,w)_, = (T*v,w)

defines an inner product on L*(2) (Thomée [7]).

In the formulation and presentation of the convergence analysis, we shall mainly
follow Geveci [5]. Let X denote the space X = H'(Q) X L*(Q) with the ‘energy’
inner product

(U, V))o = alu,v) + (i, 0).

For U € H9*}(Q) X HY(L), we have the norm [|U][| = lull2,1 + llitl|;. The initial-
boundary value problem can now be written as an evolution equation for U(z) =
[u(), u()]" € X:

(1.2) DU(t) + AU(t) =0, U(0) = U= [ug, ito]",

where

o -11_ 0 o]_
A"‘_[L al]_A+a[0 1] A+at,

where
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as in [5], (1.5). We note that

_\e2| L0
oo (-1) { 0 Lq/z]’ q even,
C\@-n2| 0 —La=h2
(-1 [L(q+1)/2 0 > godd,
and
(1.3) Uiy = MAUlle  ([5, (1.8)]).
Dissipation of energy in the system (1.1) is demonstrated by the inequality
(1.4) Wu(llo < MU(s)Mllo, =520,

which is deduced from (1.2) as follows:
d
ZNUONE = ((DU(1), U)o + (U(1), DU(1))),
= ((=AU(1), U(1)))o + ((U(1), =A U(1)))g
=a(i,u) —a(u, i) —2a(u, i) +a(u,it) —a(i, u)
= —2alu, ) <0.
Therefore,
NU(HNG < NU(sHl5,  t>s>0.
Furthermore, for U(t) € HI*(Q) X HI(Q), we have the regularity result:

(1.5) o), <Mu(s)ily, t=s>0.
In fact,

Loz = Lyaswon
= (A(=A = af)U, AU))y + (AU, A% (= A — af)U)),
((=A7'U, ATU)), + (AU, = A7*10)),
—a((A%U, AU)), — a((AU, A2ST)),
—a((A7[0, &), A?[u, u]))o — al(A?[u, &], A?[0, #])),

—a(([O, Lqi‘]’ [u’ u]))o - a(([Lqu’ Lqi‘]’ [O’ u]))o

= —2a(L%, i) = —2alli]? < 0.

_a(‘l)q((Azq[O’ u], [u, i‘]))o - “(_1)‘]((1\2‘7[“’ u], [0, i‘]))o

381

The semidiscrete Galerkin approximation to (1.1) is derived from the formulation

(D2u(t), @) + a(u(t), 9) + a(Du(t),9) =0 Vo e H(Q),u(t) € H(R),

1Le.,
a(TD2u(t), ¢) + a(u(t), 9) + aa(TDu(t), ) = 0.
Then, with #(¢) = D,u(t), we have
TD,u(t) + u(t) + aTu(t) = 0,
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and parallel to the treatment in [1] and [5], an evolution equation for U(t) =
[u(2), w()]":
(1.6) JDU(t) + U(t) + a7 U(t) =0, U(0) = y,,
where
7= [—01 (T)} 7= [8 g ‘

We note that

J:LX(Q) x HY(Q) » HY(Q) X L}(2) and

T HY(Q) X L*(Q) - HY(Q) x L¥(Q).
As in [5], we have
(1.7) WIPu()llo = MU(HN-,,  p>1,

and we note that J is skew-adjoint on X.
Semidiscrete Galerkin Scheme: Let S;(Q) C H'(Q) be a finite-dimensional sub-
space with the approximation property

inf Q){”“ = @ullo + Allu — ‘Ph“l} < ch|ully, 1<qg<r,r>2,

PnE Sp
in which 4 € (0, 1) is a parameter.
Let T,: H~}(Q) > S;(Q) be an operator approximating T and be defined by

a(T,f 9,) = (f.9,) Vo, € S/ (Q),/f€ H(Q).
The operator T, has the properties (see [1] and [3]):

T, is symmetric, positive semidefinite on L*() and positive

1.8

(18) definite on S;(Q);

and

(1.9) (T -T)fll-p<ch??flly, -1<p<r—-2,-1<qg<r-—2.

The semidiscrete approximation to the solution u(¢) of (1.1) is a function
u,(t) € S/() which satisfies
(Dfuh(t), @) +a(u,(1), 9,) + a(Du,(t), 9,) = 0, o € 5;(Q),1>0,
,(0) = ug, € S;(RQ), i,(0) = Du,(0) = ity , € S;(Q).
We write this, in terms of U, (¢) = [u,(2), #,(2)], as
{JthUh(t) + U, (1) + aZ,U, (1) = 0,

(1.10) X
U,(0) = Uy s

t>0,

where

J, = [ _OI ?]‘ LX(2) x H-(Q) - S1(2) x LX(Q)

is skew-adjoint in S;(Q) X L*(Q) (see [5]), and where

T, = [8 ?]z SI(R) x LA(Q) - S7(2) x L(R).
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If we define

1/2
WV Il-p.n = {"U” (-1 T [lo]l —p,h} L
this being the seminorm induced by the bilinear form

(VW) _p= (TP o, w) +(TPo,w),

\%

) p

we see that
(1.11)  MJ2Glle = MU =p 1 p=1,forU, € S;(Q) x L2(Q) [5].

Energy estimates are readily obtained from (1.10), parallel to the derivations of (1.4)
and (1.5), in this case using the skew-adjointness of J, and

p

Ji? = (_l)p[jt;h ;;p]
(see [5]). Thus we have
(1.12) U, () -p.n < WU, OM-pn, p=0,2>0.

We choose Uy, = [Prlug, PYig]" = PU,, where P,: H'(Q) X L*(Q) > S; X S},
denotes the projection with respect to ((-, -)),, i.€.,
(Plo, @) = (v, 94), @, € S;(R),0 € L*(Q), and
a(PI}U’ ‘Ph) =a(v,9,), @,€85;(Q),ve HI(Q)
This is in accordance with the choice of initial data in [5].

Approximation-Theoretic Results: The following approximation-theoretic results
are well known ([5] and [7]) and will be used repeatedly:

(1.13)

(1.14) lo = Pi||l-, < ch?*lvlly, -1<p<r-2,1<gqg<r,
(1.15) lo— Pl|-, < ch?*vll, O0<p<r,0<g<r,
and hence,

(116) WV -=PVIll_, < ch? s "IVll,.,, O<p
We also have, from (1.9),
117) T =TIV, < ch? 4 YVIllj—2, O<p<r-1,1<g<r,

and

(1.18)

N
~
|
=
—
A
Q
N
~

WV I-pn < c{lVll-, + R7IIVIlo }, V€ H'(R) x LX(Q),
IVill-, < c{lVil-pn+ A2IVII )}, 0<p<r—1.

We now present the convergence analysis for the approximation of second-order
hyperbolic equations with dissipation, following the ideas of Baker and Bramble [1],
Geveci (5] and Thomée [7].

In Section 2 we obtain estimates in the energy and negative norms when the
approximation to the initial data is the projection onto the approximating space
S7(R) X S/(Q), as defined by (1.13).

In Section 3 we discuss fully discrete approximations generated by a class of
‘acceptable’ rational functions, as defined by Hersh and Kato [6].

In Section 4 we give estimates for the convergence of higher-order time derivatives
in the semidiscrete case, that is, for [l D;U(¢) — D;U,(H)II-,, 0 < p <r— 1.

VAN
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2. Convergence Estimates for Semidiscrete Approximations. The complete proofs
of the results stated below appear in the supplements section at the end of this issue.
The analysis therein follows that of Geveci [5, Section 2].

PrOPOSITION 1. If U(t?) satisfies (1.6) and U,(t) satisfies (1.10) with U,(0) = P, U,
U, € H*Y(Q) X HYRQ), then

NU(t) = U (Dllo < c(e*, )h I M, 1<g<r,0<t<t*,
ProPOSITION 2. If U(t) satisfies (1.6) and U,(t) satisfies (1.10) with U,(0) = P,U,
and Uy € HI*Y(Q) X HY(Q), then
NU(r) = U () l-pon < c(2*, ) h?H7HIG M,  1<p<r—1,1<g<r.

Propositions 1 and 2 then yield our main result.

THEOREM 1. If U(t) is the solution of (1.6) and U,(t) is the solution of (1.10) with
U,(0) = P,Uy, Uy € H7Y(Q) X HY(Q),1 < g < r,then for0 < t < t*,

NU(t) = Uy < c(2*, )P I,  O0<p<r—1.

3. Convergence Estimates for Certain Fully Discrete Schemes. Let /, denote the
identity map on S;(R). The operator T,: H™}(2) — S;(Q) is positive definite on
S, (), so that we can define L, = (T}|s;q)) "~ 1. Then as in [5, Section 3], we have

0 _Ih -1
Ay [L,, 0 }z(Jhlsh’m)xs;m)) :

We can rewrite (1.10) as

(3.1) DU, (1) + AU, (1) + afU, (1) = 0, U,(0) = P,
where
0 O
I = [0 1,,]'
Therefore,
(3.2) U, (1) = e Mtefip U, = e~ AanPyU,.

We now construct single-step fully discrete approximations to (1.2). Let r be a
rational function such that [6]:
(3.3) r(z)=e" + 0(|z["+1), z—> 0, and
|r(z)|< 1 forallzwithRez <O0.
The fully discrete approximation { W"}%_, € S/ () X S;(£) to U(?) is given by
Wl =r[—kA, ,1W", WO =PU,;
i.e.,
(3.4) W"=r"[—kA,,IPU,,

where k is the time step.
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The following lemmas will be applied in the derivation of the error estimate for
U(t) — W" t = nk:

We first note that — A, , is a dissipative operator, since for all U € §;(Q) X S; ()
we have

((U’ _Aa‘hU))O = (([“v l'l], [l'l, —L,u - aﬂ]))o
= —al(u,u) +al(u,iu)— (Lyu,ut) = —a(i, i) +a(u,it) — a(T,Lyu, i) .

Since L, = (T,|s;)"" this reduced to —a(it, &) + 2iIm a(u, i). Therefore
Re((U, —= A, ,U)) < 0. The operator — A , therefore generates a strongly continu-
ous contraction semigroup.

LEMMA 1. Let r be a rational function satisfying (3.3). Then

lF"(=kA,)lles;.sp <1, where S, = S;(2) x S;(2).

Proof. This follows directly from Hersh and Kato [6, Theorem 6].
LEMMA 2. For all f € D(— N}"}) we have
Mo (—kAg ) f = e ™ Rerflllpn < c(e*) NN fll-p s p>0.
Proof. See Hersh and Kato [6, Theorem 7).
LEMMA 3. For2 < m < v + 2, Z € X, we have
WA ZN - poh < c(NTLZN - pss P> 0.
Proof. By definition
A = (A, +af,)"

We note that A%, + £,A, = A,; AYF, =F, A/ Vj>1and #" =5, Vm> 1.
Then

m—2 N
(A, + at.l,,)m_1 =Y Cp 0NV + @, + Yy dm'ja”'_l_”f,,Az,,j
j=0 j=1

where
_[(m=3)/2 formodd,
" \(m—2)/2 for meven,

Cmo = Cmum-3 = Cmm—2 = 1’
while for 0 < j < m — 3, ¢, ;is determined by the triangle

m=2 1
m=3 11
. 111
1211
12311
133411
and dp ;= Cpm—2—2j5 J=1,....p.

On SI(2) X SI(), we have
m—2
AP = Y e ol BT S d,, jam1=2g, g
Jj=0 j=1
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and for Z € X,

WA NI Z - p o < Z Cp @ WIH(TZ) M= p 5 + @™ MEL IS Z) = po

I
Z a1 2, I 20T, Z) = p e

Forany;j > 0

NI (T Z)N=p.h = WIZ (T, Z) N =j o < TP (TR Z )0 = cllT, ZI - p 45
while

m—2
Y ¢, < c(a).
=0

Noting that [|Z,Wl-p.x < IIWl-, .4, p > 0, we have, as above,
a" LI HILZ) = p o < ()P (T,Z)l0 = c(e) 1T, ZN = p 4

and, similarly,
N
> d, o HNELHZI - n < c()NTLZH - p e
=1

The result follows.
As in [1] and [5], we define an auxiliary function Uf® = [u{®), 4{¥]7, with
Uk e H*(Q) x H*(Q2) and

(3.5) UM g+ m < kMM,
(3.6) Uy — Us©N-p < k*PNG MLy, m, p, g = 0.
THEOREM 2. Assume U, € (H7"Y(Q) X HI(Q)) N (H**Y(Q) X H(R)). Then, for
2<gsr2<ss<sv+ L nk=1<1t*
W — U(nk)llo < c(2*, @) { A7 MG, + &= HIG I } -
Proof. We first note that
W™ — U(nk)lllo < IW" = U, (nk)lllo + U, (nk) — U(nk)lllo-
From Proposition 1, we have
(3.7) U, (nk) — U(nk)lllo < c(2*, a) k7~ MUl 4
so that it remains for us to estimate
W" — U,(nk) = r"(—kA, ,)PUy — e PPl
= {r"(—kA,,) — e "o JPUSP
+{r"(—kA,,) — e KA} P (U — USP).
We estimate the second term:
Ill{"l(_kAa,h) - e_"kA""'}Ph(Uo (k))|”0
(3.8) <l (= kA o) ey spllP (Us = UsO) Mo + 1P, (U = U)o -
< 20, (U, = U)o < 2k MGyl -1,
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by Lemma 1 and (3.6). Let F,(z) = r"(z) — e"*. We now have to estimate
”an( - kAa,h)PhUO(k)”lO‘
As in [1] and [5], we write

Uo(k)= ZJ}{(J_Jh)AI+1U0(k)+Ji'v+1As+IUo(k)
=0
so that
PUKR =P, (J — J,)AUR + P, J,(J = J,)ANUHR + Y, JH(T — J,) NS
=2
+J;+1As+1Uo(k).
However, P,(J — J,)Z = 0, Z € X, and thus
I“E;(_kAa.h)PhUO(k)l“O < ”an(_kAa,h)Pth(‘] - Jh)Azuo(k)mO
HIE, (= kAo ) AU Mo

+ LE,(=kA ) J(T = 1) A TP,
1=2

By Lemma 1, (1.18), (1.17) and (3.5) the first term can be estimated as follows:
“an(_kAa,h)Pth(J - Jh)AzUo(k)HIO
(3.9) < 27, (J = J) NUPMo < ch/NINTUSPN -2
= chllUF Ny < chNT .
For 2 </ < s, we have by Lemmas 2 and 3, (1.18), (1.17) and (3.5),
I, (= kA o) Jn(J = J) AUl
< c(t*) K" ANA LTI = ) AU
< ce(t*, )k 2T, (T = J,) AUl
< c(t*, @)k 2h UM g -2
< c(t*, )k 27 NG, = (2%, a) T HIT I,
Finally, by Lemma 2 (2 < s < » + 1) and Lemma 3, it follows that
WE,(=kA o)A UM < e(e*) ko HIAS, T3 AUl
< ca, t*) kT, AU
We now apply result (3.35) of [S], namely
7, A UM < e (MTglll, + &=~ Pra=YIT, I, ),

(3.10)

to obtain
(3.11) MF,(=kA )TN UHP Mo < e(a, e*) NG + A MG, -

Combining (3.7)-(3.11) yields the result of the theorem. O
We also establish negative norm estimates.

THEOREM 3. For2 < g <r,2<s<v+ 1,1 <p<r—1,nk =1 < t* we have
(3.12) W = U, (nk)ll—psn < c(2*, @) { P+ [Tl , + &* N Tplll -1},
(3.13) |lw" = U,(nk)lll-,

< e(t*, &) { RPN, + (K + k=20 2) 1Tyl ),
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(3.14)  w" = U, (nk)ll-, < c(e*, a){R2* TGl + & HITlI ) -

Proof. The estimates (3.13) and (3.14) follow from (3.12), by using the energy
estimate of Theorem 2. In fact,

Iw" — U, (nk)lll-p, < c{IW" = U, (nk)ll_p n + RPIW" = U, (nk)lllo }
<c(r*, ) (RPN, + koM IT, M1 }
+c(*,0)h? { RGN, + k22T, -1 )
<c(*, ) (RPN, + (K71 + k2R UMl -1 } 5
and
W = Uy(nk)lll=p < c(e*, a) {R2 9Tl + (ko= + k=R 2) G )
<c(t*, a){h? UGN, + kT -

We proceed to prove (3.12). As in the proof of Theorem 2, we write
(3.15) W" = U,(nk) = F(=kA, ,)PBU + F(=kA, )P, (Uy = UfP)

and note that

(3.16) WF,(—kA . )P,(Uy — USRI p o < 2P, (Uy — UL ) llo < ck* MUl 51
by (3.6). Estimating the first term of (3.15) is done as in Theorem 2 by

WE, (=KAo i )PUSE M- p e < WE, (= kA g )Py Iy (] = J) AUl -

+ E |”F;1(_kAa,h)J}{(J - Jh)AHlU(k)l“—p.h
1=2

+HIE,(=kA ) L NSO e

Now, by (1.17) and (3.5) and noting that J, P, J, = J}2,

”an(_kAa,h)Pth(J - Jh)AUo(k)Hl—pﬁ
(3.17) < 2lIP, 7, (J = J) AUSON - p = 20177 (P 1) (T = J,) AU o
= 20(J = J)RUPN iy < ch? 7 Tl 1.
Forl=2,...,s, we have

WE,(=kA g ) Ji(J = J) AU o

c(t*) k2NN IR (T = J) AU -
(1%, @) k"2, (J = J,) N UM -
= c(t*, a) k' 2T = ) AT USSP 1y
c(t*, a) k' 2hP T | AU N 42 s

c(t*, a)k'2hP - DG .

<
<

(3.18)

<
<
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Finally,
NE,(—kA ) s PN UM - pon < c(e*) kT HIAS, T A T USRN - o
< c(t*, @) kU AT UMy on = c(2*, @)k HITZ A UL o

This is precisely (3.44) of [S], and applying the result (3.47) of the analysis there, we
obtain

WE, (= kA ) T3 A UM o < e (2%, @) (KT IG5y + B2 MG, } -
The theorem is established by (3.16)-(3.19). O

4. Estimates for Higher-Order Time Derivatives of Semidiscrete Approximations.
To obtain energy and negative norm estimates for DU(t) — D;U,(t), the following
formulations of our evolution equations are used: U(t) satisfies ((1.2))

DU(t)+ AU(t) =0, U(0) = U,

where A, = A + a#. We can rewrite (1.6) as follows:

(4.1) (J+a7*)DU(t) + U(t) =0, U(0) = 4,
where
«_|T O
7= [0 o]'

LetJ, =J + a9 *. Wenote that J A = I.
The semidiscrete approximation U, (¢) satisfies ((3.1))

DU,(t) + A, U, (1) =0, U,(0) = Uy s

where A , = A, + a#,. One can also rewrite (1.10) as

(4.2) (Jh + a%*)Dth(t) + Uy(t) =0, U, (0) = Uy >
where
[z
0O O

Let J,, =J, + aZ,* and note that J, ,A,, = I on §;(2) X §;(§). The following
result will be needed:

(4.3) NAZZI, < c()lZNlmsp,  m>1,p > 0.

In fact, as in Lemma 3,

m—1 "
A=Y Cp, A" + a" I + Y dm’,a"’_z’fAz-’,
=0 y=1

where

_[(m—=1)/2 formodd,
(m —2)/2 for meven,
and the coefficients c,, , and d,, , are as defined in Lemma 3. For Z € HPFMH(Q)
X HP*"(), we have
m—1 "
APATZ = Y c,, @ N"TPTIZ 4+ a"APIZ + ) d, " PNINVZ,
j=1 =1
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so that
A%ZII, = IIAPAZZIIlo
m—1 I ‘
< X e AP ZI + a”llAZEZIo + X d,, @™ PIIAPEAYZIl
/=0 j=1
m—1 ) ®
<| X e, @ |IA™2Zlo + oL ZI, + X d,, ;a2 IIFAVZI,
=0 J=1
< c(a){ WZll e p + NZI, + IIIZIIIp+{g;:;)} < c(a)IZIl s p-

Analogous to [2] and [5], we shall choose U,(0) = J;} 'A% ', s > 1. Our main
result is

THEOREM 4. Assume Uy € H*T9"Y(Q) X H**9(Q),s > 1,1 < g < r. Then
0<

IID;U(2) = DU (), < (2%, a) P97 HIUplll s+ .4 p<r—1L

The proof can be found in the supplements section at the end of this issue.
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