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On the Steady States of Finitely Many 
Chemical Cells 

By J. Bigge and E. Bohl 

Abstract. Mathematical models of the form (1) and (2) for diffusion-reaction phenomena are 
discussed. The occurrence of bifurcation points in the discrete case (2) is explained via a 
simple two-dimensional model. 

0. Introduction. Steady state models for transport phenomena in chemistry and 
biology are usually of the general form 

(1) (py') -(vy)' = g(y) on [0,1]. 
The function p = p(s) describes the diffusion coefficient and v = v(s) the velocity 
of an underlying flow bringing about convective mass transport. The function g 
stands for the generation part of the process. We need boundary constraints to 
complete the model. Normally they have the form of two-point linear conditions. 

A straightforward numerical model for (1) reads as follows: let N E N, h = 

(N + 1)-1, s =jh (j = 0,... N + 1), and approximate (1) by 

h-2((p(s. - 0.5h) + hv(s_1))y(s1_1) 

(2) -(p(sJ - 0.5h) +p(sJ + 0.5h) + hv(s1))y(s1) +p(sJ + 0.5h)y(s,1+)) 

= 9(AYSJ )) ( = 1, ... ., N) . 

This amounts to using central differencing on (py')' and backward differencing on 
(vy)'. 

Many recent papers [1], [4], [6]-[9], [12], [13] report differences between the 
bifurcation diagrams of (1) and of (2) (with respect to some control parameter). New 
bifurcation points occur and even complete extra solution branches show up for (2). 
All of these "discrete phenomena" disappear locally only in the limit h -* 0. 

In this paper, we want to stress the point that (2) may be interpreted as a direct 
mathematical model for a collection of N separated cells communicating with each 
other through membranes which allow for diffusive or convective mass transport. 
Each of these cells exhibits a chemical reaction generating (or consuming) a 
substrate S. Hence, the mass transport is completely confined to the membranes, 
whereas the reaction part is strictly left to the cells. This type of system has also been 
studied in [2], [10], [11]. It has more stable steady states than a system which is 
described by the continuous model (1) since parts of the extra solution branches to 
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(2) mentioned above are stable. For the case p 1, v 0 and an inhibited 
Michaelis-Menton process in the cells, this has been studied in [7b], [10]. If p 1 
and v vo >> 1, special phenomena for (2) have been obtained [5] (see also [6]) 
under the assumption of an exothermic first-order reaction yielding the function g 
given in Section 2. However, it is pointed out that the phenomena are independent 
of this special function g. They are rather due to a qualitative behavior of g 
described in [5], [6] and occur for numerous further nonlinearities including the 
Michaelis-Menton process mentioned above. 

The organization of this paper is as follows: In Section 1 we describe the finite cell 
model with the special reaction term g given in Section 2. Section 3 comments on 
numerical experiments. A closed branch of unsymmetric solutions bifurcates from 
the main branch of symmetric solutions. Small perturbations on the diffusion 
mechanism resolves the two bifurcation points to form two separate branches. To 
explain these phenomena a simpler mathematical model is set up in Section 4. It is 
based on the numerical results of Section 3, which say that only the cells at both 
ends of the system (cell number 1 and N) undergo substantial changes along the 
branch of unsymmetric solutions. All the other cells (number 2 to N - 1) operate on 
an almost constant level. This observation breaks the discussion down to only two 
uncoupled equations. The discussion of this system in Section 4 explains the 
numerical findings of Section 3. 

The second author extends his thanks to Prof. Dr. J. Descloux for an inspiring 
discussion which initiated this paper. 

1. The Cell Model. Consider a collection of N cells Z4 (j = 1,..., N) as shown in 
Figure 1. In each cell the same kind of chemical reaction takes place transforming a 
substrate S into a product. Each cell is assumed to be well stirred at any moment 
and to function independently of all other cells. For any j = 1,. . . , N - 1, the cell Z. 
communicates with the cell ZJ+1 through a membrane MJ+1 allowing diffusive or 
convective mass transport. No reaction occurs on the way through the membrane. 
We consider one-dimensional mass transport only along the horizontal axis. Hence, 
for setting up a mathematical model, Figure 1, b) is appropriate. It indicates the 
length h1 of the cell Z4 and the width k. of the membrane MJ between ZJ_ 1 and Z. 

Let us assume that the total flux through the membrane M. is in one direction 
only: either from Z41 to Z4 or from Z4 to Z4_ 1. The quantity J. is defined as follows: 

I total flux per time unit through Mj, if 
the direction of the flux is from Zj- 1 into Z4; 
the negative of the total flux per time unit 
through MJ otherwise. 

a) Z M ZI M +1 Z1+1 

b) k h k k3+ 

FIGURE 1 
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We denote by cj = cj(t) the concentration of the substrate S in the cell ZJ at the 
time t. Then At- '(cj(t + At) - cj(t)) describes the (discrete) rate of change of the 
concentration of S in Zj per time unit. The basic mass balance equation for S in ZJ 
reads 

(3) At-'(cj(t + At) - c(t)) = Jj- Jj+- hg(cj), 

where - g(cj) describes the total consumption of S per volume unit and time unit in 
the cell Zj. The steady state equation is 

(4) .1J- Jj+1 = h1g(c1). 

We consider two types of mass transport: diffusive flux 

(5) Jd= -Djkj-1'(cj -Cj_) 

or convective flux (due to a flow of constant velocity Xi from Zj-l into ZJ through 
Mj) 

(6) JJC = Xjcj_1. 

The quantity Dj in (5) stands for the diffusion coefficient of the membrane MJ. In 
general, the total flux is the sum of Jjd and JC, hence 
(7) J _ Jd + Jc 

Now, (4)-(7) yield the basic discrete steady state model: 

- jci 
- c1 -i 

+ j+cj1+ 
- 

Cj1 jj1-X c= 

(8) - kj + j?1 kjl i + c = g(cJ) 

j= 1,...,N. 

The model consists of N equations for N + 2 unknowns co, cj (j = 1,... ,N), CN+1. 

The physical interpretation of co and CN+1 is as yet undefined. Indeed, co and CN+1 

are given via boundary constraints. In the simplest case co and CN+1 are concentra- 
tions of the substrate S being fed to the system from either end. If we want zero 
diffusive flux on both ends we find 

Co = C1, CN+1 = CN 

from (5). In general, we have to add two (normally linear) equations to the system 
(8) for the unknowns co and CN+ 1. 

If the total consumption of S per volume unit and time unit depends on the cell 

Zj, then we have to consider g in (8) to depend on j: g(cj) = gj(cj). 
If we let kj = hj = h forj = 1,... ,N, our model simplifies to 

9) h-2((Dj + hXj)cj-l-(Dj + Dj+j + hXj+l)cj + Dj+lcj+1) = g(c-), 

j=1,...,N. 

It is now obvious that the numerical model (2) to the boundary value problem (1) 
discussed in the introduction is a special case of (8). Here, h = (N + 1)-1 and h -* 0 
which describes "convergence of (2) to the boundary value problem (1)" means for 
our discrete model that the length of the cells and the width of the membranes go to 
zero where, at the same time, the number of cells tends to infinity. 

Let us return to the general case of the system (8) supplemented by two linear 
equations for co and CN+1. The left-hand side describes an (N + 2 x N + 2)-matrix 
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(-A) and the right-hand side defines a diagonal mapping G of RN+2 into itself given 
by 

(10) (GC)1 = g(c1) (j = 1,...,N), 

(11) (Gc)J = yJ (j = 0, N + 1), 

where YJ denotes a constant given by the boundary constraints. Note that the jth 
equation of (8) is multiplied by hy1 (j = 1,... ,N). With this notation, the system 
(8) may be written as 

(12) Ac + Gc= 

where c = (c0,. ..,CN+l) E R 

2. First-Order Exothermic Reaction Term. To perform our numerical experiments 
we need a more specific situation. As to the boundary constraints we assume 
Dirichlet conditions 

(13) CN+1 = c0 > 0 (c0 = prescribed). 

This means that the concentration of the substrate S is kept on the constant level c0 
at both ends of the system. 

Next we turn to the function g. To this end we consider an exothermic first-order 
reaction going on in each of the cells ZJ. This leads to 

g(c1) = k(Tj)cj, k(Tj) = koexp(- R) 

where TJ is the absolute temperature and ko, Q, R are constants [2], [7b]. In many 
situations a linear relation TJ -To = t o(c0 - cj) is satisfied with a constant M0 > 0 
and the temperature To on both ends of the system. Following the normal procedure 
in the-literature we introduce the (dimensionless) constants 

3 = ttocoTo ', -y = QR-'T-' 

and the (dimensionless) variable 

(14) xJ = fiC-'(co - cJ) (j = 0,.. .,N + 1). 

The constraint (13) implies 

(15) x0 = XN+1 ? 

and the system (12) transforms into 

(16a) Ax = Fx + /3(A8 - 

(16b) (FX)O = (FX)N+l = 0, 

(16c) (Fx)J = ko(/3 - xj)exp(-y(l 
+ 

xJ)') (X = 1,... 

(16d) r = (1,0,...,0,1) e RN+2, 8 = (1,1,...,1) E RN+2 

(see also [7b]). Note that 

(A8)o = (A8)N+1 = 1, (A8)j = hJ'(X1? - xJ) (U = 1,...IN), 

so that AS - r = 0 if AJ+1 - xi = 0 (j = 1,.. ,N). In this case, the system (16) 
reduces to 

(17) Ax Fx. 
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3. Numerical Experiments. The basis of the following numerical experiments is the 
system (17) with 

(18a) N= 9, ko= 1012, 3= 1, 

(18b) kj = hi = 0.1, DJ = 1 + 0.1(j-O0.5)d, Aj = 0 ( j = 1, ... ,10). 
Hence, the system reads 

(19a) XO = 0, 

-(100 + 10(j - 0.5)d)xj1 +?(200 + 20jd)x. 

(19b) - (100 + 10(j + 0.5)d)xj+l 

- 1012(1 - xj)exp(--y(i + xj)1), (j = 1,...,9), 

(19c) Xio= 0, 

where d is the diffusion control parameter and y is the temperature control 
parameter (variation of y means variation of To, see [2], [7b]). We mention that 
ko= 1012 is chemically realistic (see [2], [7b]). 

We begin with symmetric diffusion and put d = 0, hence Dj = 1 (j = 1,. . . ,10). 
The resulting bifurcation diagram is given in Figure 2. All solutions are chemically 
relevant in the sense that they all meet the a priori bounds 

0 < xi ( -) < 1 (j = 0, ....,10) 

suggested by the transformation (14). Furthermore, the main branch consists of only 
symmetric solutions 
(20) x(y) =X10_1(y) (j =0,...,5). 

(p(y) v < 

1.0 

0.8- 

0.6 - 
BP 

BP 

0.4 B- 

0.2- 

0.0 z30 32 34 36 38 40 42 44 y 

FIGURE 2 
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This is no longer true for the bifurcating branches exhibiting the shape of a 
double-figure-eight, whose crossing points are not bifurcation points (all bifurcation 
points are marked as BP). It is a closed loop in the space R9 x R projected onto the 
plane R2 via the functional 

(21) y - 4(2x,(y) + x9(y)) =: (p(y). 

All branches have stable parts (solid lines, see Figure 3) and unstable parts (broken 
lines, see Figure 3). Here, stability of x(-y) means that the linearization of the system 
(19) at x(-y) has a nonnegative inverse which is equivalent to saying that x( y) is a 
stable steady state solution of the corresponding dynamical system (3). Note that the 
double-figure-eight structure shows up twice in Figure 2. 

(p (y) d -O0. 1 (0(y) d =O 

1.01 

0.9- 
; -I bBP 

0.8/7 

/ / _ / / 

/~~/ / / 

/ / 
t / z/~~~~ 

0.7 

0.6 -/' , 

BP- 

0.5 

57 58 59 40 41 7 5 8- 59 40 41 

pD(y) d = 0.1I 

37 38 39 40 41 y 

FIGUpRE 3 
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In the spirit of the interpretation of (19) as a model for 9 chemical cells, we find 
that these cells do not only operate in a symmetric way (see (20)) but they also can 
work together on nonsymmetric, stable steady states (see also [10] for further 
examples for this phenomenon). This property of the system (19) is not understanda- 
ble if we interpret (19) as finite-difference approximation to the continuous model 

(22a) - x= 1012(1 - x)exp(-y(1 + x) 1), 

(22b) x(0) = x(1) = 0, 

on the grid tj = 0.1j (j = 0,... ,10). It can be shown that (22) admits only 
symmetric solutions: x(s)= x(1 - s). Furthermore, the solution branch satisfying 
0 < x(y, s) < 1 (s E [0, 1]) has no bifurcation point (see [3]). As a result, the 
double-figure-eight of Figure 2 must disappear in the limit h -* 0. This limiting 
process means in the cell model that the number of cells becomes very large whereas 
the width of the cells and the intermediate membranes shrink to zero. 

Next, we want to study the effect of the "perturbation parameter" d in (19) on the 
bifurcation phenomenon in Figure 2. We put d = + 0.1 which amounts to a 
nonconstant diffusion activity of the membranes: DJ = 1 + 0.1(j - 0.5)d (j = 
1, ... , 10). The result is Figure 3, which is a close up of the upper part of Figure 2 in 
the perturbed situation. Both bifurcation points are resolved. A new main branch 
and a free figure-eight-branch is created out of the original situation shown in Figure 
2. The two separated branches have stable (solid lines) and unstable (broken lines) 
parts. The main branch shows an additional hysteresis loop which comes from 
unsymmetric parts of the unperturbed picture. For example, the point 

y = 39.2, p (y) = 0.7748 ... 

on the free figure-eight for d = 0.1 deforms for d -- 0 into 

y = 39.2, 9p(y) = 0.7674.... 

which is on the symmetric (main) branch of Figure 2. The continuation process 
d = 10-J for some j e N is shown in Table 1. A similar continuation process (see 
Table 2) deforms the point 

y = 38.2, p(y) = 0.756... 

on the free figure-eight into the point 

y= 38.2, T9(y)= 0.758..., 

which corresponds to an unsymmetric solution (see Table 2). This shows that, with 
the resolution of the bifurcation point, parts of the symmetric branch and of the 
unsymmetric branch in Figure 2 come together to form the new main branch of 
Figure 3. 
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TABLE 1. d = 10'J, y = 39.2 

xl(y) x9(y) 9p(y) 

1 0.7677 0.78 0.7748 
2 0.7674 0.7696 0.7682 
3 0.76747 0.7676 0.7675 
4 0.76747 0.76749 0.7674 
5 0.767476 0.767479 0.7674 
6 0.767476 0.767477 0.7674 
7 0.767476 0.767476 0.7674 
00 0.767476.. 0.767476.. 0.7674 

TABLE 2. d = 10 J, 7 = 38.2 

xl(y) x9(y) (p(y) 

1 0.6476 0.9735 0.7562 
2 0.6487 0.9760 0.7578 
3 0.6489 0.9763 0.7580 
00 0.6489.. 0.9763.. 0.7580 

4. Understanding the Results of Section 3. In this section we try to understand the 
phenomena described in Section 3. A glance at the figures of Tables 3 and 4 reveals 

that for 9p(y) > 0.56, the components x1(y) (j = 2,... , 8) are almost constant. Since 
xo(y) = x10(y) = 0, we find that only y, x1(y), xg(y) show substantial variations. 
Note that in the discrete cell model the cells in the middle show almost no 
concentration cj (see (14), recall /3 = 1 by (18a) and xj(y) = 0.99 forj = 2,.. .,8) at 
any symmetric or unsymmetric state. 

TABLE 3. d = 0, symmetric solutions (see (20)). 

y xl(y) X2(Y) X3(y) -X5(Y) 

39.807 0.884 0.995 0.999 
39.792 0.87 0.994 0.999 
37.895 0.6 0.993 0.999 
37.851 0.56 0.992 0.999 

TABLE 4. d = 0.1, unsymmetric solutions (main branch). 

y xl(7) X2(y) x3(y) - X7(y) X8(y) x9(y) p(y) 

37.831 0.981 0.999 0.999 0.992 0.573 0.845 
38.000 0.979 0.999 0.999 0.993 0.620 0.859 
38.573 0.97 0.999 0.999 0.992 0.694 0.878 
39.260 0.95 0.998 0.999 0.992 0.775 0.891 
39.792 0.87 0.994 0.999 0.995 0.898 0.879 
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In view of the system (19) our observation means that already the equations for 
j = 1 andj = 9 describe the situation. However, these are two uncoupled equations: 

(23a) (200 + 20d)xl = 1012(1 - xl)exp(-y(I + xl)1) +(100 + 15d)x2, 

(23b) (200 + 180d)x9 =1012(1- x9)exp(-y(I + x9) 1) +(100 + 85d)x8, 

note that x2 - x8 - 0.99 and xo =xo = 0. It is easily verified that any solution 
(y, xl) of (23a) and (y, xg) of (23b) (forx2X8 0.99) also solves an "explicit 
system" 

(24a) y = f(xl, d), y=g(x9 d), 

(24b) f(x,0) = g(x,0). 

This system may serve as a model for our full problem (19). The graph of the 
function f(x, 0) is given in Figure 4. Indeed, the general structure of this graph is the 
essential property to our analysis. Hence, instead of (24a), (24b) we may just as well 
consider any uncoupled system 

(25) y = f(x), y = g(y), 

where the graph of f and g is qualitatively given in Figure 4. The simplest example is 

(26) f(x) = x3 - ax + b, g(y) =y3-cy + e, a, b, c, e > 0. 

The set of solutions of (25) is in a qualitative way the same as the corresponding set 
for (24). 

y=f(x) x=f-1 () 

0.?5X2 0 xmf Mf A 

FIGURE 4a FIGURE 4b 

a ) b ) c ) d ) 

Mf < m f = m f < m< f mg =f 

(M9 <M mf) (mg = mf ) (m 9 <Mf < M9 
A . 

FIGURE 5 
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FIGuRE 6 

d1) d2) 

mf< m9 Mg=Mf m f<M lg Alg < Mf 

(mf = mg9 M9 < Mff 

FIGURE 7 

To describe all solutions of (25), we distinguish between the following two cases: 

(27) Mf-mf = Mg-mg, 

(28) Mf - mf > Mg- mg, 

where Mf, Mg or mf, mg denote the maximum or the minimum value of f or g as 
indicated in Figure 4b. Under the hypothesis (27) the structure of the set of all 
solutions of (25) is given in Figure 5: We have four essentially different sets of 
solutions depending upon the intersection of the intervals [mf, Mf], [mg, Mg]. The 
set consists of (see Figure 5!): 

(a) one branch with some hysteresis loops, 
(b) as in (a) with an additional point, 
(c) as in (a) with an additional closed branch separated from the one described in 

(a), 
(d) as in (c), but the two branches meet in two bifurcation points. 
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Figure 5 represents in a symbolic way the possible combinations of two hysteresis 
loops as shown in Figure 4b. The cases (a) and (b) of Figure 5 are given in more 
detail in Figure 6 as illustrative examples. 

Returning to (19) with d = 0, the upper part of Figure 2 shows the situation (d): 
the double-figure-eight is the closed branch which meets the branch of symmetric 
solutions in two bifurcation points. According to our model (see Figure 5), small 
perturbations must result in the situation c) of Figure 5. Indeed, Figure 3 shows the 
two separated branches, one of which (the figure-eight) is closed. 

We conclude with a brief discussion of the case (28). Here, case (d) of Figure 5 is 
split into the cases (d1), (d2) of Figure 7. (d1) describes two branches which meet in 
one bifurcation point. One of these branches is closed. (d2) results in just one 
branch which may have a complicated structure of many hysteresis loops. 
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