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Conjugate Gradient-Like Algorithms for 
Solving NonsymmetTic Linear Systems* 

By Youcef Saad and Martin H. Schultz 

Abstract. This paper presents a unified formulation of a class of the conjugate gradient-like 
algorithms for solving nonsymmetric linear systems. The common framework is the Petrov- 
Galerkin method on Krylov subspaces. We discuss some practical points concerning the 
methods and point out some of the interrelations between them. 

1. Introduction. In the recent few years, a large number of generalizations of the 
conjugate gradient and conjugate residual methods, which are very successful in 
solving symmetric positive-definite linear systems, have been proposed for solving 
nonsymmetric linear systems [3], [6], [5], [7], [12]. In this paper we present an 
abstract framework which includes most of these methods and many new ones. Our 
goal is to understand the relationships among the methods and to synthesize. 

Consider the general linear system: 

(1) Ax =f, 

where A is a large sparse nonsymmetric matrix. If x0 is an initial approxima- 
tion to x and ro = f - Axo, we define the mth Krylov subspace Km - 
span{ro, Ar0,...,A'- r0o}. For symmetric positive-definite systems, the conjugate 
gradient method and conjugate residual methods each compute approximations to x 
in the affine space x0 + Km. 

Two distinct points of view have been followed to develop methods for nonsym- 
metric problems. The first is a variational approach generalizing the conjugate 
residual method, which minimizes the norm of the residual vector over a Krylov 
subspace. This class of methods includes among others the algorithms ORTHOMIN 
[14], GCR, [6], ORTHODIR [7], Axelsson's method [3], and GMRES [13]. 

The second point of view is to regard the conjugate gradient method as a Galerkin 
process and to derive a generalization in this sense for nonsymmetric problems. This 
class includes the generalized conjugate gradient method (GCG) [4], [15], the full 
orthogonalization method [10], the ORTHORES algorithm [7], and the Axelsson- 
Galerkin method [2]. 

Users of these methods want to know which of them performs best. Unfor- 
tunately, it seems to us at present that none of these different generalizations 
emerges as a clear winner. A given method will perform better than the others on a 
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particular problem, sometimes by a wide margin, but when applied to other 
problems, it can be disappointingly slow or may diverge. However, many of the 
methods are mathematically equivalent in the sense that if they start with the same 
approximation and if they do not break down then they will produce the same 
sequence of approximations. Among these equivalent versions some can be more 
reliable or less expensive than others and this knowledge may facilitate the choice. 

2. The Petrov-Galerkin Methods for Solving Linear Systems. Many methods for 
solving large sparse linear systems can be regarded as Petrov-Galerkin methods or 
oblique projection methods [11]. Let (-,. ) be the 12-inner-product on RN and 11 11 be 
the corresponding /2-norm. Let Km and Lm be two subspaces of dimension m of RN 
and x0 any initial approximate solution to Problem (1). The Petrov-Galerkin method 
seeks an approximation to (1) of the form xo + z where z belongs to the subspace 
Km by imposing the condition that the residual vector of the approximation is 
orthogonal to the subspace Lm. In other words, the Petrov-Galerkin approximate 
problem can be defined as: 

find x = xo + z, where z E Km such that 

(f-Ax, v) = O forallv E Lm. 

Note that we can avoid referring to affine subspaces by simply observing that 
Problem (1) is equivalent to solving the system Az = ro for z E Kmi where ro = f - 

Axo is the initial residual. Then the corresponding Petrov-Galerkin problem for z 
becomes 

(2) findz E Km such that (ro-Az, v) = 0 for allv E Lm. 

Suppose now that we have a basis Vm [vl, V2,. ,vm ] of Km and a basis 
Wm- [wl, w2,... , wm] of Lm. Then in order to realize the Petrov-Galerkin approxi- 
mation (2), we may write the unknown z in the form z = Vmy and solve the linear 
system 

Wm'( ro - A Vmy) = 0. 

Assuming WmA Vm is nonsingular, this leads to the solution 

Y = [WmTA Vm]1 WmTrO 

and x = xo + Vmy = xo + [WmTA VmI Wmro 

The above Petrov-Galerkin approximation is well defined if and only if WmTA Vm is 
nonsingular. 

There are two important special cases. The first choice Lm = Km leads to the 
well-known Galerkin method. The second choice Lm = AKM leads to the least-squares 
method which finds the approximate solution to (1) of the form xo + z, having the 
smallest possible residual 12-norm. In fact this observation may be formalized as 
follows [8]. 

THEOREM 1. If Lm = AKm, x- is the approximate solution provided by the Petrov- 
Galerkin method if and only if it minimizes the 12-norm of the residual vector f - Ax, 
for all x in the affine subspace xo + Km. 
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Proof. Let x be any vector in x0 + Km, i.e., x = x0 + z, where z E Km. Then we 
have 

11f AXII2 =111- A[(x-) + x] 112 
= (f -A[(x - x) + x-],f - A[(x-x x] 

= (f f-Ax-, f-Ax-) -2(f f-Ax-, A(x -x)) + (A(x - x), A (x - x)). 

By the Petrov-Galerkin condition, the middle term in the above expression is equal 
to zero. Hence, 

Ilf- AxII2 = (f- Ax, f- Ax) + (A(x - x-), A(x - x)) > Ilf- Ax.2 

Conversely, if x = x? + z E 
x0 + Km.minimizes lf - Axll over x E xo + KM 

then for any z E Kmi the quadratic polynomial Q(a) = lro - Az + aAzII2 is mini- 
mized at a = 0. Setting dQ(O)/da = 0, we get the condition that (rO - Az, Az) = 0, 
for all z in KM9 which is the Petrov-Galerkin condition when Lm = AKM. ? 

An interesting question is whether a similar optimality property is also satisfied 
for the Galerkin method, i.e., when Lm = Km. The answer is known only in the case 
of a symmetric positive-definite matrix A. For a symmetric positive-definite matrix A 
we will denote by IIXIIA the A-norm of x, defined by IIXIIA = (Ax, x)1/2. 

THEOREM 2 [9]. If A is symmetric positive-definite and Lm = Km, x- is the approxi- 
mate solution produced by the Petrov-Galerkin method if and only if it minimizes the 
A-1-norm of the residual vector over xo + Km, i.e., we have 

lf- AXIIA-1 = min lf - AxIIA-1. 
XEXo+ Km 

Alternatively, x is the Petrov-Galerkin approximate solution if and only if it minimizes 
the A-norm of the error vector x - x- over the same affine space. 

The lack of an extension of Theorem 2 to the nonsymmetric case seems to be one 
of the main reasons for the interest in the least-squares methods. The optimality 
property of Theorem 1 is an important tool in theoretical analysis of the methods. 

On the practical side, for the above formulation of the Petrov-Galerkin method, 
several serious difficulties may occur for a general pair of bases Vm and Wm: 

* If m is large, the matrix WmA Vm may be dense and expensive to form; 
* The matrix W,,A Vm may be ill-conditioned; 
* The formation of the approximate solution x requires that all the vectors v, 

= 1, 2, ..., m, be saved. 
These difficulties usually occur if one attempts to use directly the above formula- 

tion when Km is the Krylov subspace span{ ro, Ar0,... ,Am-lr0). Nevertheless, there 
are a number of methods which use Krylov subspaces in a more elegant way, leading 
to some of the most successful techniques for solving nonsymmetric linear systems. 
A general formulation of these techniques is considered next. 

3. Petrov-Galerkin-Krylov Algorithms. Let b(-,. ) be a bilinear form on RN and 0 
be a monotonically increasing, integer-valued function defined on the nonnegative 
integers such that 0 < 0(i) < i + 1. We can define the following general class of 
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algorithms: 

Algorithm: PGK(b, 0). 
1. Start: Set po = ro ff- Axo. 
2. Iterate: For i = 0, 1, 2,... until convergence do: 

(a) Compute: 

(3) x,+ = xo + a a1)p1, 
j=O 

(4) r,+- ro - a a5')Ap-, 
J=O 

where { a5O) } are chosen so that either 

(5) (i) (r,PJ) = O, O < j i, 
or 

(6) (ii) (ri+,, Apj) = 0, O <j < i; 

(b) Compute pi+, by either of the following: 

(7) (i) P,+i = r,? + +E P PJ 
J =(i) 

or 

(8) (ii) 1,I+)lP1?+ = AP, ? E fi(,)P, J = 00) 
where { fBJ') } are chosen so that 

b(p1?, pJ) = 0, 0(i) < j < i. 

Clearly, (3) and (4) of PGK could be recast as 

(9) xi+1 = xi + j a5')pj and 
J=O 

(10) r,a1 = r,- E a5')Ap . 
J=O 

This opens the possibility of a truncated Petrov-Galerkin-Krylov method or TPGK 
method. More precisely, if 4 satisfies the same hypothesis as 0 we can define the 
following class of methods. 

Algorithm: TPGK(b, 0, 4). 
1. Start: Setpo = rO - Axo. 
2. Iterate: For i = 0,1, 2,..., until convergence do: 

(11) (a) x,+? =x, + a() 
j=4,(l) 

(12) a'= r,A- , 

where { a(') } are chosen so that either 
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(13) (i) (r+?,pO = 0, +)(i) j< i, 
or 

(14) (ii) (r1?1, ApJ) = 0, +(i) j < 

(b) same as before. 

We may also think of doing either PGK or TPGK for a fixed number, m, of 
iterations, then examining convergence, and then either stopping if the iteration has 
converged or restarting otherwise. We call these schemes either the restarted PGK 
(RPGK) or the restarted, truncated PGK (RTPGK). They may be simulated by an 
appropriate choice of 0 and 4 in TPGK(b, 0, 4). Thus the general form of RPGK is 
as follows. 

Algorithm: RPGK(b, 0). 
1. Start: Set p0 = ro = f- Axo. 
2. Iterate: Perform m steps of PGK. 
3. Restart: if lirmil is sufficiently small STOP else set 

x0 = xm, po = ro = rm andgotoSTEP2. 

Clearly, TPGK(b, 0,0) = PGK(b, 0). Furthermore, in PGK(b, 0) there is little 
reason for computing xi+, on each iteration. We compute it only after convergence. 
If we use the option 2-(b)-(ii) in PGK, then it is unnecessary to compute the residual 
at each step. Instead, we compute it in step 3 of RPGK to check for convergence 
after every m iterations. In TPGK(b, 0, ) we need not compute xi+1 (or ri+1 if 
option 2-(b)-(ii) is selected) on each iteration as long as we save the array of 
coefficients a(i) and direction vectors so that it can be computed at every lth step, 
where / is some fixed integer. Moreover, we may use the following form which 
generates the same Krylov subspace as 2-(b)-(ii): 

PI,+ i = Aip + E f/(l)p. 
j=9(i) 

This enables us to compute the direction vectors { A'po } all at once, which might be 
advantageous for some vector system architectures. 

In the next section we show that many published methods are examples of the 
general formulation presented in this section. By varying the bilinear form b and 
choosing among the restarted, truncated or restarted-truncated versions, we see that 
there are infinitely many possibilities. 

4. Some Classical Petrov-Galerkin-Krylov Methods. 
4.1. The Generalized Conjugate Residual, GCR, Method. This method proposed in 

[5], [6], is of the form PGK(b, 0) with formulation 2-a-(ii), 2-b-(i), 0(i) = 0, Vi, and 
the bilinear form 

(15) b(u, v) (Au, Av). 

The iterative form (9), (10) is the most common formulation. In that case it is 
known that a(') = 0 for j ? i. Clearly, the algorithm becomes costly as the step 
number i increases. Therefore, the restarted method is more realistic in practice. 

It can be shown by induction that r,+? is orthogonal to all the previous Arj's, 
j = 1,2,..., i. From Theorem 1, it is therefore clear that x,+1 minimizes the residual 
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norm over the affine subspace x0 + span{ro, Aro,... .,Ar0}. Elman [6] has used this 
property to derive convergence results for the case of matrices with positive-definite 
symmetric parts. 

4.2. ORTHOMIN. In its original version the ORTHOMIN algorithm presented 
by Vinsome [14] corresponds to TPGK(b, 0, 4), where b is the same as for GCR 
(i.e., definition (15)), k(i) = i, 0(i) = i - k + 1, where k is some fixed integer, with 
options 2-(a)-(ii), 2-(b)-(i). Thus, ORTHOMIN(k) is the truncated version of GCR. 
Again, it is possible to show that r, + is orthogonal to Arj, i - k <j < i. An 
interesting particular case is k = 0 which leads to the steepest descent algorithm for 
minimizing the function llf - Axll. 

4.3. ORTHODIR. This algorithm presented by Jea and Young [7] corresponds to 
PGK(b, 0) with b again defined by (15) and options 2-(a)-(ii), 2-(b)-(ii). In the 
original version f(3)/4= 1. This may lead to overflow situations and a scaling is 
sometimes necessary (although it need not be done at each step). 

The restarted ORTHODIR is mathematically equivalent to the restarted GCR [6]. 
However, the truncated algorithms ORTHOMIN(k) and ORTHODIR(k) are not 
mathematically equivalent. The truncated ORTHODIR may diverge [6]. 

4.4. The GMRES Algorithm. The Generalized Minimum Residual (GMRES) 
method introduced by Saad and Schultz [13], is a PGK(b, 0) method with the 
bilinear form b defined as the 12-inner-product, 0(i) = 0, for all i, and #I('), chosen to 
normalize Pi + 1l The vectors p1, i = 0, 1, ... , m, form an 12-orthonormal basis of the 
Krylov subspace. In this case (8) is the well-known Arnoldi process [1]. Once this 
orthonormal basis is generated, the approximate solution is computed from (3) by 
requiring that the a's yield the solution with minimum residual. According to 
Theorem 1, this corresponds to applying option 2-(a)-(ii) in the general formulation 
PGK(b, 0). 

The restarted GMRES method is mathematically equivalent to the restarted 
versions of both GCR and ORTHODIR [6]. GMRES has several advantages over 
these two methods, with respect to cost and reliability [13]. There has been no study 
of the truncated GMRES method. 

4.5. The Axelsson Least-Squares Method. Axelsson has proposed two generaliza- 
tions of the conjugate gradient method. One of them is a least-squares method,i.e., 
the solution minimizes the residual norm over a Krylov subspace. The Axelsson 
least-squares (Axel-LS) method is a PGK(b, 0) method with b(u, v) defined by (15) 
and option 2-(b)-(ii) with 0(i) = i. The a's in (3) are computed to minimize the 
residual norm Ilf - Axll, which corresponds to choosing option 2-(a)-(ii). This 
method is mathematically equivalent to GCR and to ORTHODIR [6]. The truncated 
version has been defined by Axelsson, but the restarted version was not given much 
consideration. 

4.6. The Axelsson-Galerkin Method. All of the methods described so far have the 
common feature that they minimize the residual norm in some subspace. In fact 
GCR, ORTHODIR, GMRES, and Axel-LS methods are equivalent for this reason. 
A second class of methods is more closely related to the Galerkin methods. 

The method proposed by Axelsson in [2] is an example. It corresponds to taking 
the bilinear form 
(16) b(u, v) = (u, Av) 
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which makes the direction vectors { pi } -semiconjugate. Again 0(i) is defined as 
0(i) = i. The coefficients a(') are defined so that ri+I is orthogonal to the vectorspj, 
j = 0,1,... ,i, i.e., option 2-(a)-(i) is used. It can then be shown that ri+1 is 
orthogonal to all previous pi's [2]. The truncated version of this algorithm has been 
mentioned by Axelsson but not studied. The restarted version has not been consid- 
ered. 

4.7. The Full Orthogonalization Method. This method introduced in [10] uses 
the 12-inner-product for b(.,.). As in GMRES, 0(i) = 0, for all i, and ,I.(+) is 
chosen to normalize pi+,' which leads to the Amoldi algorithm for constructing 
an orthonormal basis { pi}, i = 0,1,. . . ,m, of the Krylov subspace Km = 
span{ ro, Ar0,... ,Amr0}. Once this orthonormal basis is generated, the approximate 
solution is computed from (3) by imposing the condition 2-(a)-(i) on the a's. 

This method is equivalent to Axelsson-Galerkin's method, because the residual 
vectors satisfy the same condition for both methods. The restarted version was 
defined and tested in [10]. The truncated version of this method as defined by 
TPGK(b, 0) with the 12-inner-product for b(.,. ), 0(i) = :(i) = i - k + 1, and 

PGK 

b C.(A) b = ,) b (AA*.A) 

2-a-i 2-a-i 2-a-i i 2-a-i i 2-a-i i 2-a-i i 
2-b-i 2-b-ii 2-b-ii 2-b-i 2-b-i i,O(i)=O 2-b-i iO,(i)=i 

AXEL-G <=> FOM GMRES <=> GCR <=> ORTHODIR <=> AXEL-LS 

t r r r t r t r t 

R/AXEL-G <> R R/GMRES <= > <==== > R/ORTHODIR 

T/AXEL(k) ORTHOMIN(k) ORTHODIR(k) T/AXEL-LS 

<==> Mathematically equivalent methods. 
t Path corresponding to truncation. 
r Path corresponding to restarting. 
R/METHOD Restarted version of METHOD. 
T/METHOD Truncated version of METHOD. 

FIGURE 5-1 
The conjugate gradient-like methods for nonsymmetric problems 
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option 2-(a)-(i) has not been considered in the literature. It is not the incomplete 
orthogonalization method (IOM) introduced in [10], [12]. The incomplete ortho- 
gonalization method does not fit in the general framework described in Section 3. 

5. Synthesis. The chart shown in Figure 5-1 summarizes the derivations of the 
main methods from the general framework of Algorithm PGK. Note that some of 
the truncated methods have either been vaguely considered as a possibility by their 
authors or not been considered at all. Most often the restarted methods have been 
defined because the basic methods become expensive as the number of steps 
required for convergence increases. The combinations Restarted-Truncated have 
been omitted from the chart. 

Department of Computer Science 
Yale University 
New Haven, Connecticut 06520 

1. W. E. ARNOLDI, "The principle of minimized iteration in the solution of the matrix eigenvalue 
problem," Quart. Appl. Math., v. 9, 1951, pp. 17-29. 

2. 0. AXELSSON, "A generalized conjugate direction method and its application to a singular perturba- 
tion problem," in Proc. 8th biennial Numerical Analysis Conference (Dundee, Scotland, June 26-29, 1979), 
(G. A. Watson, ed.), Lecture Notes in Math., vol. 773, Springer-Verlag, Berlin, 1980, pp. 1-11. 

3. 0. AXELSSON, " Conjugate gradient type methods for unsymmetric and inconsistent systems of linear 
equations," Linear Algebra Appl., v. 29, 1980, pp. 1-16. 

4. P. CONCUS & G. H. GOLUB, A Generalized Conjugate Gradient Method for Nonsymmetric Systems of 
Linear Equations, Technical Report STAN-CS-76-535, Stanford University, 1976. 

5. S. C. EISENSTAT, H. C. ELMAN & M. H. SCHULTZ, "Variational iterative methods for nonsymmetric 
systems of linear equations," SIAMJ. Numer. Anal., v. 20, 1983, 345-357. 

6. H. C. ELMAN, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations, Ph.D. 
Thesis, Computer Science Dept., Yale University, 1982. 

7. D. M. YOUNG & K. C. JEA, "Generalized conjugate-gradient acceleration of nonsymmetrizable 
iterative methods," Linear Algebra Appl., v. 34, 1980, 159-194. 

8. M. A. KRASNOSELSKII et al., Approximate Solutions of Operator Equations, Wolters-Noordhoff, 
Groningen, 1972. 

9. D. G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, 
Mass., 1965. 

10. Y. SAAD, "Krylov subspace methods for solving large unsymmetric linear systems," Math. Comp., 
v. 37, 1981, pp. 105-126. 

11. Y. SAAD, "The Lanczos biorthogonalization algorithm and other oblique projection methods for 
solving large unsymmetric systems," SIAM J. Numer. A nal., v. 19, 1982, pp. 470-484. 

12. Y. SAAD, "Practical use of some Krylov subspace methods for solving indefinite and unsymmetric 
linear systems," SIAM J. Sci. Statist. Comput., v. 5, 1984, pp. 203-228. 

13. Y. SAAD & M. H. SCHULTZ, GMRES: A Generalized Minimal Residual Algorithm for Solving 
Nonsyvmmetric Linear Systems, Technical Report #254, Yale University, 1983. 

14. P. K. W. VINSOME, "ORTHOMIN, an iterative method for solving sparse sets of simultaneous 
linear equations," in Proc. Fourth Symposium on Reservoir Simulation, Society of Petroleum Engineers of 
AIME, 1976, pp. 149-159. 

15. 0. WIDLUND, "A Lanczos method for a class of non-symmetric systems of linear equations," SIA M 
J. Numer. Anlal., v. 15, 1978, pp. 801-812. 


