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On Polynomial Approximation 
in the Complex Plane with Application 

to Conformal Mapping 

By Lothar Reichel 

Abstract. We consider the selection of polynomial bases for polynomial approximation of 
analytic functions on bounded simply connected regions in the complex plane. While a 
monomial basis may be very ill-conditioned, we show that a basis of Lagrange polynomials 
with Fejer points as nodes is well-conditioned. Numerical examples, where we compute 
polynomial approximations of conformal mappings, conclude the paper. 

1. Introduction. Important for the success of any numerical method for polynomial 
approximation is the selection of a well-conditioned polynomial basis. For poly- 
nomial approximation on the real axis the numerical condition of various bases has 
been investigated by Gautschi [7], [8], [9]. We consider the numerical condition of 
polynomial bases for approximation on bounded simply connected regions Q of the 
complex plane C. The polynomials of a well-conditioned basis depend on the shape 
of U. For disks with radius p and center z = 0, the monomials Pk(Z) = (Z/p)k, 

k = 0, 1, 2,... are well-conditioned, see Example 2.1 below, but on flat ellipses this 
basis is severely ill-conditioned, see Example 2.2. We will show that a basis of 
Lagrange polynomials 

11 z - z. 

(1.1) lk(Z):= 17 , k = O(1)n, 
j=O Zk -ZJ 
j*k 

where the Zk are Fejer points on the boundary of the region, is well-conditioned and 
simple to compute. Fejer points are defined as follows, see also Gaier [6]. Denote by 
aQ the boundary of Q and assume that Ai2 is a Jordan curve. Let Q:= Q U aSi and 
2 C: = C \ Q. Let w = A (z) be a conformal map from Qc2 to Iw > 1 with A (oo) = x. 
4 can be continued continuously to a bijective map from Qc U aSi to lwl > 1. 4 is 
uniquely determined by the requirement 4(zl) = 1. The points {Zk}k= 1 are called 
Fejer points if they satisfy 

(1.2) 4'(Zk) = exp(2Ti (k - 1) /n), k = 1(1)n. 
Note that z1 is an arbitrary point on K2. To determine a set of Fejer points, we need 
the restriction of 4 to MI This restriction we compute by solving a modified Symm's 
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integral equation. The modification makes Symm's integral equation uniquely solva- 
ble. 

We next turn to our application, the polynomial approximation of conformal 
mappings from Q to the unit disk. Besides illustrating the good numerical condition 
of the Lagrange basis (1.1), polynomial approximants of conformal mappings are 
important in themselves. They provide an approximation of particularly simple 
form, easy to evaluate at interior as well as at boundary points. Assume from now 
on that Q is open and contains the origin. Let w = 4(z) denote a conformal 
mapping from Q to IwI < 1, such that 4(0) = 0. 4 can be continued continuously to 
a bijective map from Q to Iwl < 1. The restriction of 4 to ai we compute by a 
modified Symm's integral equation and determine a polynomial approximant of 4 
by interpolation in a set of Fejer points. The norm of this interpolation projection 
grows only logarithmically with the degree of the polynomial, see Theorem 2.1. The 
numerical scheme we present to compute the polynomial approximant requires only 
little computation once a set of Fejer points has been determined. 

The paper is organized as follows. Section 2 contains results on the numerical 
condition of some polynomial bases. In Section 3, we introduce the modified 
Symm's integral equation, and in Section 4, we present the numerical scheme for 
computing polynomial approximants to conformal mappings. This section also 
contains computed examples. 

2. Condition of Some Polynomial Bases. We consider the numerical condition of 
the Lagrange basis with Fejer nodes, the monomial basis and a basis of Newton 
polynomials with Fejer nodes. Let qj(z), j = 0(1)n be polynomials such that 

span{ qJ }) n = span{ ZJ _. We wish to investigate the sensitivity of 
n 

(2.1) Qn (Z) = ajqj(z), z E 
J=O 

with respect to perturbations in the coefficients a1. Following Gautschi [9], we 
introduce the map Mn: Cn+l ? -nI, mapping the coefficient space on the space of 

polynomials of degree < n. With a:= (ao, al, ... ,an ) E Cn'1, we define 
n 

(2.2) (Mna)(z):= E: akqk(Z), zEQ 
k=O 

For the inverse of Mn, we have Mny1Qn = a. In Cnll we introduce the maximum 
norm IlalJJK := maxO<k,<llakl. Also rIn we equip with the maximum norm 
IIQnIIa := supzEa IQn(z)I. Let IIMnII and IIMn-,II be the induced operator norms. Our 
interest of this section is how the condition of the map Mn, defined by 

(2.3) cond Mn:= IIMnll IlMn-1II 
grows with n for various choices of qJ. 

THEOREM 2.1. Let qk(z) be the Lagrange polynomials (1.1) with the Zk being Fejer 
points, and assume that ai is analytic. Then, for all n > 1, 

cond M < -ln n + a n IT 

where a is a constant depending on the shape of Q. 
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Proof. The theorem may be regarded as a corollary to Theorem B of Curtiss [2]. 
We first note that M;jII = 1 and therefore 

n 

cond Mn = IIMnll =E lk(Z)I 
k=O 

Curtiss [2] shows that when f is a function analytic in Q, continuous on Q and of 
bounded variation on aQ, then the interpolation projection 

n 

(2.4) (Lnf )(z):= f(Zk)l%k(z) 
k=O 

converges to f(z) in norm 1 II. Combining (3.3), (3.6), (4.2) and (4.6) of Curtiss 
[2], one obtains after some simplifications 

(2.5) IIL II < |ILdll + /3 + O(rn), n - , 

where 0 < r < 1, /3> 0 are constants depending on the location of the point set in Q 
on which no analytic continuation of the conformal map 4 can be defined. Ld 

denotes the interpolation projection for the case when Q is the unit disk. The 
theorem now follows from IILdll < (2/T) ln n + 0.08 + o(l); see Geddes and Mason 
[11]. a 

Remark 2.1. 11 Lnll has been computed numerically for ellipses (Geddes [10]), for 
polygons (Afolabi and Geddes [1]), and for a semidisk (Elliott [4]). Also for these 
latter contours with corners ILnll was found to grow like ln n, n -3 x. A survey of 
these and related results has recently been given by Mason [14]. a 

We next turn to the monomial basis 

(2.6) qj(z):= cjz', j=0,1,2,..., 

where we choose real positive coefficients cj so that IIqj1II8 = 1. 
Example 2.1. Let Q be the unit disk. Then 

n 

(2.7) IIMnII= max Ea1zi =n+1, 
lil. j=O 

(n 
IlMn 1ll = j min ) 1. 

lial 1 j=0 lg 

From 

IIQnIIoo > ( lj2 Qn(eie) dO) E laj ) 

we obtain 

n 1/2)-i 

1l n 11< +liall = 1 ( ?= 0 

Hence, cond M = n + 1, showing that the basis is fairly well-conditioned. a 

Example 2.2. Let a3 be the ellipse E(c, d):= {z = x + iy,(x/c)2 + (y/d )2 = 

where c, d are real constants, c > d. The scaling factors are Ck:= C- k which is the 
reason for introducing the new variable w:= z/c. Then w E E(1, d/c), an ellipse 
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with foci +f, where f= 1 - (d/c)2. The Chebyshev polynomials for E(1, d/c) 
with highest-order coefficient 1 are 

(2.8) T1(w,f)f f _ T (w= w + Fw2 f2) +(w- FW2 f2)n) 
2 n1 n f 2x n 

n =, 01, 2,... . 
where Tn (.) is the Chebyshev polynomial of the first kind. Write the points 
w E E(1, d/c) as 

W 
((1 + C e + I1-C e- '@ ) <, 0 < 2 , 

and substitute into (2.8). This yields 

T,1(w,f) = I + )) einO + ( - e-In + ) einO 

n - , 
and therefore, 

(2.9) T(1(w, f)E1d/C (( +c ))I n -> x. 

Let -r := ( in), rn),. . . n [/2]) denote the coefficient vector of Tn(w, f1) 
[nz/2] 

T,1(w, f) k(n)wn-2k, where [s ] denotes the largest integer < s. 
k =0 

For f= 0, one has in) -1, and in) = 0, k > 0. This corresponds to the ellipse 
being a circle, a case that has been treated in the previous example. Assumef > 0. A 
lower bound for IIMn-,i is obtained from 

(2.10) (AI min j- a E k I 1 ? IIr(n)II00 

Previously Gautschi [9, Eq. (2.2)] has used this bound to obtain estimates for the 
numerical condition of the monomial basis on intervals [-c, c]. We use the estimate 
for II(') II 0 derived in [9], 

(211 IiI 2- 
(I + ? 2)3/4 /(1? + 1? + f2 n 

7T f 2 ) 

Combining (2.9-11) and noting that IIMnlI = n + 1 yields 

I_111 > f?2)3/4 (1 
+ (12+ f 

2 n 
n x 

and 

cond M,1> 2 ( 2 )3/ 1 +d/ 
n 

n x, 

where > stands for asymptotically larger than or equal to. Introduce y := d/c and 
F(y), 

1 + ri ~+ I2 + F2 y 
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We find that 

F(O) = 1 ? 1, this corresponds to K2 being the interval [-c, ci. 

F(1)= 1 

F'( y ) < O, O y < 1. 

Hence, if the ellipse has not degenerated into a circle, the condition number grows 
exponentially with n, and the growth rate increases with the ratio c/d. O 

Examples 2.1 and 2.2 demonstrate that when using the monomial basis for 
approximation on regions not very disk-like, the ill-conditioning of the basis may 
cause numerical difficulties. 

3. A Modified Symm's Equation. Symm's integral equation and our modification 
of it differ in that 

(1) the modified equation is uniquely solvable for all scalings of the contour; 
(2) the modified integral equations for 4 Ia2 (= the restriction of 4 to ai2) and for 

I,,Q differ only in their right-hand sides. Therefore both restrictions can be com- 
puted to practically the cost of one. We need 4'1 , in order to allocate a set of Fejer 
points. 4 1 , is needed when determining polynomial approximants to 4. 

THEOREM 3.1. Let 0(z):= arg(4/(z)) for z E aQ, and let y denote the capacity of 
aQ. Then the unique solution {q*, a*}, where a* = a*(z) E L2(a3) and q* is a 
constant, of the modified Symm's equation 

[q +f lnIz - vIa(v)IdDI= 0, z E aua 
(3.1) 

a 
a 

f a(jdDj = 1, 

satisfies 

(3.2) @(z) = 27 f a*(T)Idtj, q* = -lny. 

Integration in (3.2) is along aQi in the positive direction. 

Proof. Introduce the parametric representation s -g c(s) of a, 0 < s < 1, (o) = 
z1, where s is the arclength of au For DE- ag we may regard 0(D) also as a function 
of s, 0(s) := 0&((s)). Gaier [5] shows that for rectifiable contours M2, and y ? 1, the 
integral equation 

(3.3) f lnlz - tjv(D)Jddj = 1 a.e. 
a 

has the unique, integrable solution 

vM( = 2 * I @'(s ), 04 (s) 

where differentiation of 0 is with respect to s. Therefore (3.1) has the unique solution 

(3.4) {a(9n2@s = 
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In [15] we showed that (3.1) has a unique solution for any scaling of 8Q, and that a* 
is invariant under scaling and q* varies continuously with the scaling. Therefore 
(3.4) is the unique solution also for -y = 1. L 

THEOREM 3.2. Let 01(z) := arg((p(z)) for z E aU with 01(z1) = 0. Then the unique 
solution { q*, a,* }, where q1* is a constant and a,* = a,*(z) E L2(a i), of the system of 
integral equations 

q, lnz - la1(D)Jdfl = lnlzl, z E M9 

(3.5) 
Q 

{ J u,(g)jldf= 1, 

satisfies 

(3.6) {t'0,(z) = mf a.*(')Id?j, 

q*~ = O. 

Integration is along aQ in the positive direction. 

Proof. As in the proof of Theorem 3.1, we use results of Gaier [5]. Let y be the 
capacity of K2 and assume that y # 1. By Gaier [5], 

(3.7) f lnlz - Djp(D)Jdj = lnlzl, z E r, 
Q 

has a unique solution p*(D) which, moreover, satisfies 

| p*(g)ldD = 1. 

Therefore a,*-p* and q* = 0 is a solution of (3.5). By [15], (3.5) has a unique 
solution, which is invariant under scaling. Therefore (3.6) also holds for curves with 
y=1. El 

In [16] we describe a fast Fourier-Galerkin method for the numerical solution of 
(3.1) and (3.5). 

4. Polynomial Approximation of the Mapping 0. The numerical scheme is as 
follows: 

1. Compute 0(z) and 01(z) defined in Theorems 3.1 and 3.2. 
2. Determine n + 1 Fejer points Zk by solving the equations 

0(Zk)= 2nr k = 0(1)n. 

3. Compute the images wk of Zk under 0 by evaluating 

Wk := exp(i@, (Zk)), k = 0(1) n. 

Determine a polynomial approximant pn(z) of k(z)/z of degree < n by inter- 
polating 0(z)/z at the Fejer points Zk, k = 0(1)n. An approximation of k(z) is 
given by 

(4.1) On+l(Z):= ZPn(Z). 
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The accuracy of 0,? depends on the accuracy of 0,(z), 9(z), and on the interpola- 
tion error. In the examples, the approximation error in On,? is generally determined 
by how accurately we have computed 91(z). The basis of Lagrange polynomials has 
not caused any problems due to ill-conditioning. We had no difficulty with poly- 
nomials of degree 80-100, despite the fact that all computations were carried out on 
a DEC-10 computer in single precision, i.e., with only 8 significant digits. For 
polynomials of such high degree the interpolation error was much smaller than the 
error in the computed 91(z). In the examples, we have computed 91(z) and chosen 
the degree of the polynomial so that the interpolation error and the error in 9, are of 
the same order of magnitude. 

When using a monomial basis, ill-conditioning caused difficulties. The monomial 
basis used is {(z/c)kj)7=O where c:= maxa8lzl. The condition number of the 
interpolation matrix 

(4.2) An [a,k], aJk = (Zk/C)', 0 < j, k < n, 
is measured in the maximum norm. 

Example 4.1. Let aQ = {z = 2cos(t) + i(sin(t) + 2cos3(t)),0 < t < 27T 

.0 

FIGURE 4.1 

Figure 4.1 shows ag and 32 Fejer points marked with dashes. 

n Basis* 1|)n(Z)lj- lla 
16 M 3 10-2 
32 M 3-10-3 

64 L 9. 10-6 

*M = monomial basis, L = Lagrange basis. 

The condition number of A32 was 5 . 109. To obtain a significantly smaller error, the 
use of a better-conditioned basis is necessary. 

Approximations of p(z) using polynomials have previously been computed by 
Ellacott [3], who determined polynomial approximants to ln(4(z)/z) by minimizing 
Illn z - Re(Enakzk)IIa0 w.r.t. the ak using the Lawson algorithm. The computations 
were carried out for different n, and the smallest error in the approximate conformal 
maps obtained was 3 - 10-2. O 
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Example 4.2. Let aQ = {z = cos(t) + ibsin(t),O < t < 2 7}, b is a constant, 
0 < b < 1. A conformal mapping 4 from Q to the unit disk, 4(0) = 0, is given by an 
elliptic sine, see Kober [12, p. 177], which shows that the singularities of p(z) closest 
to a are poles at '12 = ?i2b/(V1 - b2). As is shown in this and in the next 
example, it is sometimes possible to obtain good approximations of the singularities 
by locally approximating 4 by a M6bius transformation OM. In the present example, 
we consider the Mobius transformation that maps 0 -> 0, and the circle of curvature 
through ib onto the unit circle. It has a pole at 

1-'b2 

Note j = 0 + 0(b4) as b -O 0. We approximate p(z)(z - g *)(z - kl*) by poly- 
nomials. This reduces the error between a factor 5 and 10 in the following examples, 
compared to approximating 4(z) by polynomials. 

b n basis 1ln (z)I 
- 1 

1/4 8 M 1 10-4 

1/4 32 L 1 10-6 
1/8 16 M 8 10-5 

1/8 32 L 5 10-6 

When computations were done with a Lagrange basis, a monomial basis could not 
be used due to the ill-conditioning of the matrix (4.2). 

The introduction of "approximate singularities" appears quite useful in the 
approximation of analytic function. In a different conformal mapping method, 
which also uses polynomials to approximate 4, Levin et al. [13] reduced their 
approximation error by including extra basis functions with singularities at + tj or 
at ?*. 

FIGURE 4.2 

Figure 4.2 shows a for b = 1/8. The crosses mark + ty. z 

FIGURE 4.3 
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Example 4.3. Let ag = {z = x + iy, x4 + y4 = 1). Figure 4.3 shows a and 16 
Fejer points. 11 1016(Z)l- lilaH = 6 -10-4. aQ is circle-like enough to allow the 
power basis to be used even for 432 and 464* ? 
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