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Rational Approximations for the Fresnel Integrals 

By Mark A. Heald 

Abstract. A class of simple rational polynomial approximations for the Fresnel integrals is 
given with maximum errors from 1.7 x 10-3 down to 4 x 10-8. The domain [0, oo] is not 
subdivided. The format is particularly convenient for programmable hand calculators and 
microcomputer subroutines. 

The best-known algorithms for computer evaluation of the Fresnel integrals, 
(1) C(x) + iS(x) -J exp(iP,.t2) dt 

0 

are those of Hastings [1], [41 and of Boersma [2]. The former is of very limited 
precision. The latter is relatively cumbersome and is subject to nonobvious under- 
flow (subtraction) errors, as is direct evaluation of the standard Maclaurin and 
asymptotic series. An extensive set of rational polynomial approximations has been 
given by Cody [3]. These are efficient for very high-precision work, but tedious for 
intermediate levels of precision because the domain is subdivided into five intervals. 

Our approach follows Hastings but recasts the formulas into the polar form: 

(2) C(x) = 2- RI(x) sinF1Pr(AJk(x)-x2)I, 

(3) S(x) = 2 + Rim(x) cos[ 7T(Ajk(x) -X2)] 

where the RIm and Ajk functions are rational approximations of the form 

I M2 

(4) R,01 = L c1xi/ E dix% 
i=o i=0 

I k 
(S) Ajk = E a X'/ E b,x. 

,=o i=o 

The domain of x is positive real numbers from zero to infinity. 
We consider error functions of the form 

(6) SR=RIM -Ro, 

(7) SA = '7TRo(Ak - AO) 

where R0 and Ao are exact values. These functions represent orthogonal errors in the 
plane of the Cornu spiral, with the coefficient inserted in (7) to make the magnitudes 
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TABLE I 

R i A I em I 

Co=1 do = i =1 =2 b = 

I (I = 0.506 d, = 2.054 I = 2.524 1 1 

d b=1.79 = 1.886 i 1.7 x 10-3 

h3 = 0.803 I 

= 0.5083 d, = 2.1416 a 1 = 0.1765 b, = 2.915 i I 

: (n = 0.3569 d2 = 1.8515 b2 = 2.079 1.5 X104 

d3 = 1.1021 I 13= 1.519 1 1 

= 0.60427 d, = 2.26794 a1 = 0.08218 b, = 2.7097 I 

I = 0.41159 d = 2.15594 a 2 = 0.15108 bh = 2.3185 1 9 X 10-6 

1 63 = 0.1917 d3 = 1.26057 3 = 1.2389 I 

4= 0.60353 
I 

b4 = 0.6561 I I 

= 0.698773 di = 2.40251 a1 = 0.1446 b1 = 2.83577 I 

I = 0.537836 d, = 2.45425 a2 = 0.17182 h2 = 2.498595 I I 

I (3 = 0.246758 d3 = 1.647924 i a3 = 0.056405 b3 = 1.61391 i 6 X 10-7 

1 (4 = 0.09458 d4 = 0.77829 b4 = 0.69638 I 

d5 = 0.297058 b h5 = 0.28781 I I 

1I = 0.7769507 d, = 2.5129806 a1 = 0.1945161 b, = 2.9355041 I 

I = 0.6460117 d, = 2.7196741 a a2 = 0.2363641 b, = 2.7570246 I I 

I (= 0.3460509 d3 = 1.9840524 a3 = 0.068324 b3 = 1.875721 1 4 X 10 o 
= 0.1339259 d4 = 1.0917325 a4 = 0.0241212 b4 = 0.978113 I 

(5 = 0.0433995 d5 = 0.4205217 b h5 = 0.356681 I I 

6= 0.13634704 I 6 = 0.118247 1 1 

comparable. An overall index of error is the Pythagorean sum 

(8) ? = [( )2 + (A )2]1/2. 

The error function e(x) of (8) is therefore the diagonal distance between approxi- 
mated and exact points in the Cornu (C, S) plane. 

We force these errors to go asymptotically to zero as x -O 0 by using fixed values 
of the coefficients co/do = 1/ 11 and ao/bo = 1/2. Likewise, the errors go asymp- 
totically to zero as x -s oc for m > I and k > j. 

The coefficient values were determined by a numerical procedure, as follows. For 
an array of 100-plus "exact" data points RO(x) [forA0(x), independently] uniformly 
spanning the folded domain 0 < x < 1 and 1 > (1/x) > 0, computed from the 
Boersma subroutine, we used an iterative linearized least-squares routine to adjust 
crude initial values of the coefficients for a given choice of the indices 1, m [orj, k]. 
A subsequent routine located the I + m + 1 [or j + k + 1] extrema of the error 
curve, computed the first derivatives of the extrema magnitudes with respect to each 
adjustable coefficient by numerical perturbation, and then solved for (linear) incre- 
ments to the coefficient values that should equalize the extrema magnitudes. This 
routine was iterated a few times, as necessary, until the error curve (6) [or (7)] was 
indeed leveled in the minimax or Chebyshev sense. The Pythagorean error curve (8), 
computed for independent error curves (6) and (7) of comparable accuracy, has 
nearly leveled maxima. 

This procedure was begun with the low-order cases (e.g., 1, m = 1, 2), for which 
convergence difficulties were minimal. Adjusted coefficient values from one order 
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were then used as input values for the initial least-squares adjustment of the next 
higher order. The final results were checked by recomputing the error curves using a 
subroutine based on the standard Maclaurin and asymptotic series, and by spot 
checks against the tables in Abramowitz and Stegun [1]. 

Table I lists the coefficients for five different orders of precision. Since all 
coefficients are positive, there are no difficulties with underflow. A number of other 
choices of order 1, m and j, k were investigated, those listed in Table I being optimal 
in the sense of having the least error for a given number of adjustable coefficients. 
Graphs of the error functions (6)-(8) and listings of the APL computer routines are 
available from the author. 

In the course of this work we recomputed Hastings' algorithm as given by 
Abramowitz and Stegun [1]. The precision is somewhat improved with revised 
coefficients as follows: 

(9) f1(x) =2 1? 0.882x 
2 + 1.722x + 3.017X2 

(10) g(x) = 1 
2 + 4.167x + 3.274x2 + 6.890x3 

The maximum (leveled) errors are 1.2 x 10-3 and 1.0 X 10-3 in the f and g 
functions, respectively. The maximum Pythagorean error in the Cornu plane, com- 
parable to Eq. (8), is 2.2 x 10-3 for Hastings' original coefficients and 1.6 x 10-3 

for our revision. Higher-order rational polynomials for the f, g functions were found 
to give somewhat inferior precision compared to corresponding orders of polynomi- 
als for the R, A functions. 

This work was supported by Swarthmore College. 

Department of Physics 
Swarthmore College 
Swarthmore, Pennsylvania 19081 

1. M. ABRAMOWITZ & I. A. STEGUN, Editors, Handbook of Mathematical Functions, Dover, New York, 
1965. See ??7.3.32-33 and Tables 7.7-8. 

2. J. BOERSMA, "Computation of Fresnel integrals," Math. Comp., v. 14, 1960, p. 380. 
3. W. J. CODY, "Chebyshev approximations for the Fresnel integrals," Math. Comp., v. 22, 1968, pp. 

450-453. 
4. C. HASTINGS, JR., "Approximations for calculating Fresnel integrals," Math. Comp. [MTA C], v. 10, 

1956, p. 173. 


