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Rational Approximations for the Fresnel Integrals

By Mark A. Heald

Abstract. A class of simple rational polynomial approximations for the Fresnel integrals is
given with maximum errors from 1.7 X 107% down to 4 X 10~%. The domain [0, c0] is not
subdivided. The format is particularly convenient for programmable hand calculators and
microcomputer subroutines.

The best-known algorithms for computer evaluation of the Fresnel integrals,
(1) C(x) + iS(x) =/ exp(idmr?) dr
0

are those of Hastings [1], [4] and of Boersma [2]. The former is of very limited

precision. The latter is relatively cumbersome and is subject to nonobvious under-

flow (subtraction) errors, as is direct evaluation of the standard Maclaurin and

asymptotic series. An extensive set of rational polynomial approximations has been

given by Cody [3]. These are efficient for very high-precision work, but tedious for

intermediate levels of precision because the domain is subdivided into five intervals.
Our approach follows Hastings but recasts the formulas into the polar form:

2) C(x) =4 = Ry (x) sin[47(4,,(x) = x?)].
(3) S(x) =3+ Ry, (x) cos 3m( 4, (x) = x?)].
where the R, and 4, functions are rational approximations of the form
! m
(4) le = E c'xi/ E dix”
i=0 i=0
J k
(5) A= Yax'/ Y bx'
1=0 i=0

The domain of x is positive real numbers from zero to infinity.
We consider error functions of the form

(6) 8R = R/m - RO’
(7) 04 = %WRO(Ajk - Ao)’

where R, and A4, are exact values. These functions represent orthogonal errors in the
plane of the Cornu spiral, with the coefficient inserted in (7) to make the magnitudes

Received May 2, 1983; revised January 9, 1984.
1980 Mathematics Subject Classification. Primary 65D20; Secondary 33A20, 41A50, 78A50.
Key words and phrases. Rational Chebyshev approximations, Fresnel integrals.

©1985 American Mathematical Society
0025-5718 /85 $1.00 + $.25 per page

459



460 MARK A. HEALD

TABLE I

| R H A |r €max j|
| |
!('0=1 d0=‘/§ La()=1 by =12 ; ,:
I ¢, = 0.506 d, = 2.054 | b, = 2.524 ! !
I dy =179 | b, = 1.886 |17 %107
! ! by = 0.803 ! !
| ¢, = 0.5083 d, = 21416 1 a4, = 01765 b, = 2915 | |
I ey =0.3569 d, = 1.8515 : b, = 2.079 I 15 x107% |
! dy = 11021 ! by = 1.519 ! |

- ]
I ¢ = 0.60427 dy = 226794 | 4, = 008218 by = 27097 | !
I ¢ = 0.41159 dy=215594 | a, = 0.15108 by =23185 1 9x107% |
| - 2 | 2 - | |
| ¢ =01917 dy=126057 | by =12389 | \
! dy = 060353 | by = 0.6561 ! !
| ¢, = 0.698773 d, = 2.40251 | a, = 0.1446 b, = 283577 | :
| ¢, = 0537836 d,=245425 | 4, =0.17182 by = 2498595 | !
I ¢y = 0.246758 dy = 1.647924 | a, = 0.056405 by =161391 | 6x1077 |
| ¢y = 0.09458 dy=077829 | by = 0.69638 | !
! ds = 0297058 | bs = 028781 ! !
e = 07769507 dy = 25129806 | a; = 01945161 b, = 29355041 |
| ¢ = 0.6460117  dy = 27196741 | @, = 02363641 b, = 27570246 | !
I ¢; = 03460509  dy = 19840524 | a, = 0068324 b, =1875721 | 4 x10°%
g =01339259  dy =1.0917325 | a, =00241212 b, = 0978113 | |
| c5=00433995  dy = 04205217 | bs = 0356681 | !
| dg = 013634704 | by = 0.118247 | |
L I 1 |

comparable. An overall index of error is the Pythagorean sum
(8) e = [(8R)* +(84)]"".

The error function &(x) of (8) is therefore the diagonal distance between approxi-
mated and exact points in the Cornu (C, S) plane.

We force these errors to go asymptotically to zero as x — 0 by using fixed values
of the coefficients ¢,/d, = 1/ V2 and a,/b, = 1/2. Likewise, the errors go asymp-
totically to zero as x — oo form > land k > j.

The coefficient values were determined by a numerical procedure, as follows. For
an array of 100-plus “exact” data points R ,(x) [for A,(x), independently] uniformly
spanning the folded domain 0 < x <1 and 1> (1/x) = 0, computed from the
Boersma subroutine, we used an iterative linearized least-squares routine to adjust
crude initial values of the coefficients for a given choice of the indices /, m [or j, k].
A subsequent routine located the / + m + 1 [or j + k + 1] extrema of the error
curve, computed the first derivatives of the extrema magnitudes with respect to each
adjustable coefficient by numerical perturbation, and then solved for (linear) incre-
ments to the coefficient values that should equalize the extrema magnitudes. This
routine was iterated a few times, as necessary, until the error curve (6) [or (7)] was
indeed leveled in the minimax or Chebyshev sense. The Pythagorean error curve (8),
computed for independent error curves (6) and (7) of comparable accuracy, has
nearly leveled maxima.

This procedure was begun with the low-order cases (e.g., /, m = 1,2), for which
convergence difficulties were minimal. Adjusted coefficient values from one order
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were then used as input values for the initial least-squares adjustment of the next
higher order. The final results were checked by recomputing the error curves using a
subroutine based on the standard Maclaurin and asymptotic series, and by spot
checks against the tables in Abramowitz and Stegun [1].

Table I lists the coefficients for five different orders of precision. Since all
coefficients are positive, there are no difficulties with underflow. A number of other
choices of order /, m and j, k were investigated, those listed in Table I being optimal
in the sense of having the least error for a given number of adjustable coefficients.
Graphs of the error functions (6)—(8) and listings of the APL computer routines are
available from the author.

In the course of this work we recomputed Hastings’ algorithm as given by
Abramowitz and Stegun [1]. The precision is somewhat improved with revised
coefficients as follows:

1+ 0.882x

9 - ,

©) F) = T 7mx 1 3017
1

(10) g(x) =

2 4 4.167x + 3.274x% + 6.890x>

The maximum (leveled) errors are 1.2 X 1073 and 1.0 X 103 in the f and g
functions, respectively. The maximum Pythagorean error in the Cornu plane, com-
parable to Eq. (8), is 2.2 X 103 for Hastings’ original coefficients and 1.6 X 103
for our revision. Higher-order rational polynomials for the f, g functions were found
to give somewhat inferior precision compared to corresponding orders of polynomi-
als for the R, A functions.
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