
MATHEMATICS OF COMPUTATION
VOI.UME 44. NUMBER 170
APRIL, 1985. PAGES 463-471

Improved Methods for Calculating Vectors
of Short Length in a Lattice, Including

a Complexity Analysis

By U. Fincke and M. Pohst

Abstract. The standard methods for calculating vectors of short length in a lattice use a
reduction procedure followed by enumerating all vectors of Z'.. in a suitable box. However, it
suffices to consider those x E Z'" which lie in a suitable ellipsoid having a much smaller
volume than the box. We show in this paper that searching through that ellipsoid is in many
cases much more efficient. If combined with an appropriate reduction procedure our method
allows to do computations in lattices of much higher dimensions. Several randomly con-
structed numerical examples illustrate the superiority of our new method over the known
ones.

1. Introduction. In this paper we develop a new and efficient method for
determining vectors b of short Euclidean length llbll in a lattice A of rank m,

(1.1) A =Zbl + * +Zbm,

for linearly independent vectors b1, . . , b,,2 of R". The standard algorithms for solving
this task (see, for example, [4] in the case m = n) compute all x E Zm \ {0) subject
to

(1.2) xtrBtrBx C C
for suitable C E R'0, where B denotes the n X m matrix with columns b1,.. ., bin. If
we just want to find a vector of shortest length in A, we must determine

(1.3) min{xtrBtrBx 10 O x E Z"I}.

This can also be done by the methods for solving (1.2). As initial value for C we
choose the length of an arbitrary (short) vector of A, and each time a vector of
shorter length is obtained, C is decreased suitably.

We note that BtrB =:A is a positive-definite matrix. On the other hand, each
positive-definite matrix A E Rm x m can be considered as the inner product matrix of
the basis vectors b1,.. . ,bn1 of some lattice A of rank m. Hence, it suffices to discuss

(1.4) xtrAx < C

instead of (1.2) in the sequel.
In Section 2, we describe the new algorithm for solving (1.4) which is based on

reduction theory and Cholesky's method. Section 3 contains a complexity analysis

Received April 12, 1983; revised February 2, 1984 and April 10, 1984.
1980 Mathematics Subject Classification. Primary 10E20, 10E25, 68C25.

qc1985 American Mathematical Society

0025-5718/85 $1 .00 + $.25 per page

463

464 U. FINCKE AND M. POHST

proving the superiority of our algorithm over known methods, and in Section 4 we
present some numerical results for randomly generated examples.

All machine computations were carried out on the CDC Cyber 76 of the
Rechenzentrum der Universitat zu Koln.

2. A New Algorithm. Our new algorithm uses Cholesky's method which is an
efficient procedure of decomposing a positive-definite quadratic matrix A E Rm"X
into the product of an upper triangular matrix R and its transpose. The method
combines the advantage of a comparatively low number of arithmetic operations
with high numerical stability.

We shall use Cholesky's method for transforming the positive-definite quadratic
form

(2.1) xtrAx (x E Rmxl)

for A = BtrB of (1.2) into a sum of full squares, a procedure which we call quadratic
completion. Namely, xtrAx = ,m a becomes

"I m 2

(2.2) Q(x):= Yq,, xI+ + q,jxj
i=1 J='+1

by carrying out the computations

Set qij <- aij (I < i < j < m).

(2.3) Fori = 1,2 ...,IM - 1, set

qj <- qlj, qlj <- (i + < j < m)

and for each i and k = i + 1,.. .,m, set

qkl ,qkl -qkl qll (k < I < m) .

We note that the output R of Cholesky's method which satisfies RtrR = A slightly
differs from the output q,j (1 < i < j < m) of (2.3). The entries rij of R E GL(m, R)
can easily be recovered by

r,j(=)0 (Il<j<i<m), ri.= q>l2 (liM),

(2.4) r~~~~i; riiq,j (I < i < j < m)

(and vice versa, of course). Generally, we are interested in the q,j because of the
applicability of (2.2). Namely, (2.2) makes it simple to compute all solutions x E Zm

of

(2.5) xtrAx = Q(x) < C

where C is a positive constant. This is a problem occurring in many disciplines of
mathematics, for example in integer mathematical programming [3] and algebraic
number theory [2], also in connection with the generation of pseudo-random
numbers [4] and breaking public cryptosystems [6]. We already noted in the
introduction that (2.5) is equivalent to determining all lattice vectors b of length

llb112 < C in an m-dimensional lattice A = E m 1 Zb, for which the inner product of
two basis vectors bj, bj (1 < i < j < m) is given by the entry aij of A. Also, (2.5) can
be interpreted as the task of computing all points of zm in an ellipsoid.

METHODS FOR CALCULATING VECTORS OF SHORT LENGTH IN A LATTICE 465

The following procedure of solving (2.5) is suggested by (2.2). Clearly, IxmJ is
bounded by [(C/qmm)l/2J. For each possible value of xm we obtain

qm-1 M-1(xM-1 + qm_ mx Tm_1 for Tm := C -qmm4,

hence bounds

LB(xmi,):= [<q Tm)1/2_ qm l,mXml

UB (xmi):= [(qjmi;1l2 - l~,mxm]

such that LB(xmi) < xm_I < UB((x m). Proceeding to Xm-2, Xm-3 *... we obtain

for fixed xm9 xm-l_... *Xk+. 1
k m 2

(2.6) ?',qi, xi+ ? qi,x, < Tk
1=1 j=i+1

with
n1 ~~~~2

(2.7) Tk = Tk+l qk+l, k+l Xk+1 + Eqk+l,X)

j = k + 2

(Tm = C; k = m-1, m-2, 1).

These considerations lead to the following algorithm.

(2.8) Algorithm for Solving Q(x) < C.

Input. Entries q,J (1 < i < j < m) of Q(x) of (2.2) and a positive constant C.

Output. All x e Zm subject to x * 0 and Q(x) < C as well as Q(x).

Step 1. (Initialization) Set i <- m, T, -C, Ui -O.

Step 2.(Bounds for xi) Set Z <- (T1/ql)l/2, UB(x,) [Z-
S <t [.-Z - Uvj-1.

Step 3. (Increase x,) Set x, <- xi + 1. For x, < UB(x,) go to 5, else to 4.

Step 4. (Increase i) Set i <- i + 1 and go to 3.

Step 5. (Decrease i) For i = 1 go to 6. Else set i <- i - 1, U, <- E m_I+ q,xj

Ti T+1 -qi+, i+,(x,+, + UJ+1)2 and go to 2.

Step 6. (Solution found) For x = 0 terminate, else print x, - x, Q(x) = C - T1 +

q,1(x, + U1)2 and go to 3.

Remark. We note that the highest nonvanishing coordinate of x is restricted to be

negative, and we terminate in case x = 0 is obtained. By then we know all solutions

because of Q(x) = Q(- x). If we modify the task and want to obtain only those

solutions x of (2.5) which additionally satisfy Q(x) > C'> 0, we just need to change

the bounds for the coordinate xl adequately. Unfortunately, this does not have a

considerable effect on the computation time.

A preliminary version of (2.8) was already given in [7]. A comparison with the

methods of U. Dieter [1] and D. Knuth [4], however, lead to a further improvement

of (2.8). Namely, denoting the ith columns of R, (R-1)tr by ri, re', respectively, we

obtain for the ith coordinate x1 of a solution x E Zmx '1 of (1.2)

(2.9) x2 = (rtr(L xkrk < r r1'(xtRtRx) <| r'll 2C (1 l i < m).

466 U. FINCKE AND M. POHST

Hence, it is clear that reducing the rows of the matrix R-1 with respect to their
length usually diminishes the range for the coordinates of possible candidates
drastically. Common reduction methods are described in [1], [4], [5], [7]. We note
that the reduction of Knuth [4] essentially coincides with the pair reduction
algorithm of [7]. In any case the reduced version is obtained from R - 1 by multiply-
ing R - 1 with a suitable unimodular matrix U- 1 from the left to obtain
S - 1 := U- 'R Then, instead of solving xtrRtrRx < C, we solve

(2.10) ytrstrsy < C

by (2.8) and recover x from y via

(2.11) x = Uy.

A further improvement is obtained by reordering the columns of S, i.e., the order
of the elimination process (2.3), adequately. Namely, in (2.8) it should be avoided
that some segment (Xm,... ,xk?1) cannot be extended to a solution (xm,...,x1).
And the probability for this phenomenon decreases, if the range for xk,... ,x

derived from (2.9) increases.
After these observations the following algorithm is immediate.

(2.12) Improved Algorithm for Solving xtrAx < C.
Input. A E Rm x m positive-definite, C E R>'.
Output. All x E Z"1 subject to x = 0 and xtrAx < C.
Step 1. (Cholesky decomposition of A) Compute the upper triangular matrices R,

R - 1 from A by (2.3), (2.4).
Step 2. (Reduction) Compute a row-reduced version S-1 of R1 as well as

U` E GL(m, Z) subject to S-i = U-1R -. Compute S = RU.
Step 3. (Reorder columns of S) Determine a permutation ST E ym such that

IIS,1T()II > 11s17(2)l > ..> lls'7(m) l). Let S be the matrix with columns
Sq-((< i< m)

Step 4. (Cholesky decomposition of S tS) Compute the upper triangular matrix
Q = (qlJ) from StrS by (2.3).

Step 5. (Application of (2.8)) Compute all solutions y E Zm, y = 0, of Q(y) < C
by(2.8) andprintx = U(yq_Il(l),...,y"_ l(m))trforeachy.

The algorithm can easily be modified such that it computes all solutions x of
C, < xtrAx < C or a solution of (1.3).

Finally, we note that a similar algorithm for the solution of (1.2) can be developed
starting from the computation of orthogonal vectors bt, . . ., bm from b1, . . ., bm by the
Gram-Schmidt-orthogonalization procedure. This was pointed out to us by the
referee whom we thank for useful hints.

3. Complexity Analysis. In this section we compare the enumeration techniques of
[1], [4] with our algorithm (2.12) by estimating the number of arithmetic operations
in both cases. We count each addition, multiplication, and extraction of a square-root
as one operation.

Algorithm (2.12) produces at most as many lattice points as the enumeration
techniques. This is an immediate consequence of (2.9). Whereas (2.12), respectively
(2.8), needs at most O(m2) arithmetic operations to proceed from one vector x (or

METHODS FOR CALCULATING VECTORS OF SHORT LENGTH IN A LATTICE 467

part of it) to the next (by decreasing or increasing i and because of Step 5 of (2.8)),
the enumeration method requires O(m2) arithmetic operations for computing Q(x)
for each x. Hence, the complexity of both techniques is at most

(3.1) O(m211(2[JJriiQC + 1)).

(For the enumeration method this can eventually be improved by a factor m -1 using
refined storing techniques.) However, (3.1) suggests that both algorithms are ex-
ponential in the input data, a disadvantage which is inherent in the problem itself.
Namely, in case A = Im (the m-dimensional unit matrix) the solutions of (2.5) are
the- lattice points of Zm in the m-dimensional ball centered at the origin of radius
fC. It is well-known that the number of those lattice points is proportional to the
volume of the ball and therefore increases with VUm.

But what happens, if we keep C fixed and just increase m? Then the enumeration
method is still exponential whereas-somewhat surprisingly-(2.12) is polynomial
time, if we additionally require that the lengths of the rows of R1 for the matrix R
of the Cholesky decomposition A = RtrR stay bounded.

To prove this, we first derive an upper bound for the number of tuples (xi, .. , xm)
generated by Algorithm (2.8) under the assumption that the input data q,"" satisfy

qfi,J,u > I (I < ,u < m). We define

r"I m 2

(3.2) Qi(xi,...,xm):= Yquu xu+ ? quvxv (1 i m.
,u =i ,,= ,u+ 1

We know from (2.8) that for fixed xi+1 ,. ... ,xm E Z subject to Qi+1(xij1,...,xm) < C
there are at most

(3.3) [2(Ti/qii)1|2 + 1

possibilities for xi E Z, say xil,. ...,.xi, such that Qi(xi,.. .,x,m) < C. We order the

xi according to

(3.4) ix+ L1 x1 + .. + l

where Ui = _m_i+ I qi x as in Step 5 of (2.8). Then it is easily seen that

(3.5) (j - 1)/2 < Ixi + Ui < j/2 (1 < j < k).

This leads to an important recursive estimate for the numbers

(3.6) Pi(r):= #{(xi,...,xm) E Zm?llI Qi(Xi,...,Xrn) < r}

for arbitrary r E R 0.

Indeed, (3.5) and q,> 1(1 t < m) yield

12#i *2 14r]

(3.7) Pi(r)< E Pi+,- J4) < P1+,(r-j/4).
,j=O ,=

We point out that (2.8) can produce segments (xi+,...,x,) E Z-i'' subject to

Qi+I(xi+P ...,Xm) < C for which no xi E Z with Qi(xi, . . x,,,) < C exists. How-
ever, the total number of tuples generated by the algorithm is bounded by P1(C),

468 U. FINCKE AND M. POHST

where the numbers Pi(r) are defined by
m

(3.8) Pi (r):= ?,Pj(r) (I < i < m)
I=i

Obviously, inequality (3.7) also holds for the P,(r). This enables us to obtain an
upper bound for P1 in terms of Pm by computing coefficients f3j such that

14C]

(3.9) PI(C) E /P,J,(C - j/4) (I < i < m)
J=O

As initial values we get

(3.10) /3o=1, flj = 0 for j > 0,

and if the flij (0 < j < [4C|) are known for fixed i, then (3.7) applied to Pi(r) yields
the recursive formula

(3.11) =li+ =j 1Pk (0 <j < [4C]).
k=O

Hence, we can compute the 8ij row by row.

(3.12) LEMMA. The numbers flJ Ee Z>0 defined by (3.10) and (3.11) satisfy

+1,J =k- 1 k (i E Nj E Z`?)

Proof. We show the lemma by induction on i. For i = 1 we have

rI j k =1 flk = f2j
k=1 k=O

For fixed i > 1, we obtain
I

k + 1 - + k

k=O k=O 1=1 k=1 k
because of

i 1-1 1

But the last equation is valid for arbitrary j E Z >, i E N and is itself proved by
induction onj. El

Using Lemma (3.12) and (3.3) we easily obtain the following upper bound for

P,(C) from (3.8):

iP1(c) < ?
1

]mjPm(C-j/4) = (Hj k)(2[(C j/4) 1/2] + i)
j=O 0k1

14C] m-2 j + k
s(2 [C 1/21 + 1) r, H k

j=O k=1

By the usual relations for binomial coefficients, we get

(3.13) [4C) I+m-1< C112 + 1) [4C] + m -
(3.13) PI 1(c) (2[c12 +[4C1 I

METHODS FOR CALCULATING VECTORS OF SHORT LENGTH IN A LATTICE 469

and, for large m, Stirling's formula yields that P1(C) increases at most like

(3.14) ((1 _) L4C)

Now it is easy to give an upper bound for the total number of arithmetic operations
used by (2.12).

(3.15) THEOREM. Let C E R'? and A E Rmxm be positive-definite. Let d-' be a
lower bound for the entries q,EJE (1 < 4 < m) computed from A by (2.3). Then Algorithm
(2.12) (without Steps 1, 2, 3) uses at most

(3.16) 6 (2m3 + 3m2 - Sm)

+ 2(m2 + 12m-7)((2[V] + 1)([4Cdl) + 1

arithmetic operations for computing all x E Zm subject to xtrAx < C.

Proof. The computation of the qij (1 < i < j < m) in (2.3) requires

1 (2m3 + 3m2 - Sm)

arithmetic operations. The number of tuples obtained by Algorithm (2.8) was
estimated under the premise q,, > 1 (1 < y < m). However, the case minf q,, I 1 <
,u < m } = 1/d < 1 is tantamount to this situation if we only replace the constant C
by Cd. During the execution of Step 5 of (2.12), i.e., of Algorithm (2.8), we obtain at
most 2(P1(Cd) + 1) vectors (x1,...,xm) Ee Zm (or segments of such vectors), since
the highest nonvanishing coefficient is restricted to be negative. The transition from
one vector (or segment) to the next requires at most m2 + 12m - 12 arithmetic
operations (in Steps 2 to 5 of (2.8)). For admissible vectors x E Zm, the computation
of Q(x) consists of 5 arithmetic operations (though the computation of Q(x) is
actually not necessary since Q(x) < C is guaranteed by the algorithm). a

(3.17) COROLLARY. Let C E R>0 and A E Rmxm be positive-definite. Let A = RtrR
be the Cholesky decomposition of A and d > 0 be an upper bound for the square of the
norms of the rows of R' . Then (3.16) is an upper bound for the number of arithmetic
operations for computing all x E Zm subject to xtrAx < C by (2.12) (without Steps
1 to 3).

Proof. We denote the rows of R -1 by r/tr as in the preceding section. Multiplying
all entries of R by d1/2 then implies llr,'ll < 1 (1 < i < m) for the row-vectors r:tr of
the scaled matrix R-1. If ri, is the ith diagonal entry of R, then I/rit is the ith
diagonal entry of R-1. Hence, qii > 1 is equivalent to I/rit < 1 because of (2.5). But
the latter is certainly correct because of l/rii < IIri'lI < 1. a

We note that the corollary remains valid if we replace the Cholesky decomposition
A = RtrR by any decomposition A = BtrB (B E Rrx`m) and Vd by an upper bound
for the norms of the rows of B- 1.

The upper bound (3.16) for the number of arithmetic operations does not contain
those operations carried out in Steps 1 to 3 of Algorithm (2.12). We note that the

470 U. FINCKE AND M. POHST

algorithm works also without those steps (and is then essentially (2.8)). The opera-
tions of Steps 1 and 3 are comparable to those of computing the q,, from A in (2.3)
and are therefore negligible. The number of operations required by the reduction
Step 2 of course depends on the method applied. If we use the reduction algorithm
of Lenstra, Lenstra and Lovasz, for example, it can be estimated without difficulties.
That algorithm also turned out to be the best reduction method for our numerical
examples in the next section.

4. Numerical Investigations. The two lists presented in this section show that our
method of combining a reduction algorithm with a (2.8)-type procedure is indeed
very efficient. We introduce several suggestive abbreviations:

RLLL: Reduction algorithm of Lenstra, Lenstra and Lovasz [5].
RDIE: Reduction algorithm of U. Dieter [1].
RKNU: Reduction algorithm of D. E. Knuth [4].

We consider numerical examples for problems of type (1.2). The input consists of a
randomly generated matrix B E R11"'Xm and a positive constant C. In a first step B-1
is computed. Optionally, one of the reduction procedures RLLL, RDIE, RKNU is
then applied to the rows of B-1. The routine RENU "enumerates" all lexicographi-
cally negative vectors of Zm subject to (2.9) (with B in place of R) and tests whether
they solve (1.2). The routine RCHO carries out Steps 3 to 5 of (2.12) with B in place
of S.

The numbers in the two lists below are the CPU-time for ten examples of
dimension m each. The symbol "-" means that no computations were carried out
since nio results could be expected in a reasonable amount of time. " > t" means
that in t seconds not all ten examples could be computed. " >> t" finally means that
in t seconds no solution vector of the first example was obtained. (All examples
considered had nontrivial solutions because of the choice of C.)

(4.1) List. The entries b1J (1 < i, j < m) of the matrix B of (1.2) are independent,
uniformly distributed variables in the interval [0, 1]; C:= 0.2 + 0.07(m - 5); CPU-
time in seconds.

m= 5 m= 10 m= 15 m=20 m=25

RENU > 4000. - - -

RKNU + RENU 0.056 5.736 - - -

RDIE + RENU 0.059 7.515 - - -

RLLL + RENU 0.057 4.873 > 16000. - -
RCHO 0.046 0.133 1.048 2.071 70.025
RKNU + RCHO 0.044 0.144 0.646 1.768 64.562
RDIE + RCHO 0.047 0.158 0.589 1.432 56.112
RLLL + RCHO 0.043 0.129 0.464 1.086 16.544

(4.2) List. The entries b1j (1 < i, j < m) of the matrix B of (1.2) are independent,
randomly generated variables, where the b,J (2 < i < m - 1) are uniformly distrib-
uted in [0,1] and the bj,1 bmj are uniformly distributed in [0,1/m] (1 < j < m);
C := 0.05 + 0.04(m - 5); CPU-time in seconds.

METHODS FOR CALCULATING VECTORS OF SHORT LENGTH IN A LATTICE 471

m = 5 m =10 m =15 m =20

RENU >> 254.
RKNU + RENU 0.040 8.580 >> 254. -

RDIE + RENU 0.045 14.563 >> 254. -

RLLL + RENU 0.043 6.558 >> 254. -

RCHO 0.043 0.404 5.063 13.602
RKNU + RCHO 0.040 0.205 1.134 2.626
RDIE + RCHO 0.045 0.218 0.735 1.548
RLLL + RCHO 0.039 0.188 0.573 0.909

Our computational investigations show that the enumeration strategy RENU
favored by U. Dieter and-implicitly-by D. E. Knuth yields acceptable results in
comparison with algorithm RCHO only if a preceding reduction procedure succeeds
in reducing the initial box into a box of very small volume. But this is not possible in
general. It turned out that the combination of the Lenstra, Lenstra and Lovasz
algorithm with routine RCHO was the fastest of the algorithms considered and also
produced the smallest boxes. This was a little surprising since the theoretical results
on RLLL are not very strong except for the polynomial time behavior. Clearly, we
recommend to use RLLL + RCHO for solving problems of type (1.2). The amount
of computation time, however, hardly depends on the choice of the reduction
subroutine but mainly on the use of RCHO instead of RENU. RCHO is obviously
the only method among the ones considered which is suited for handling problems in
higher dimensions.

Mathematisches Institut
Universitat Dusseldorf
Universitatsstr. 1
4 Dusseldorf 12, Federal Republic of Germany

1. U. DIETER, "How to calculate shortest vectors in a lattice," Math. Comp., v. 29, 1975, pp. 827-833.
2. U. FINCKE & M. POHST, "Some applications of a Cholesky-type method in algebraic number

theory." (To appear.)
3. U. FINCKE & M. POHST, On Reduction Algorithms in Non Linear Integer Mathematical Programming,

DGOR-Operations Research Proceedings 83, Springer-Verlag, Berlin and New York, 1983, pp. 289-295.
4. D. E. KNUTH, The Art of Computer Programming, Vol. II, 2nd ed., Addison-Wesley, Reading, Mass.,

1981, pp. 95-97.
5. A. K. LENSTRA, H. W. LENSTRA, JR. & L. LOVASZ, "Factoring polynomials with rational coefficients,"

Math. Ann., v. 261, 1982, pp. 515-534.
6. A. ODLYZKO, " Cryptoanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir's

fast signature system." Preprint, 1983.
7. M. POHST, " On the computation of lattice vectors of minimal length, successive minima and reduced

bases with applications," ACM SIGSAM Bull., v. 15, 1981, pp. 37-44.

	Cit r188_c194:

