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On Totally Real Cubic Fields 

By Veikko Ennola and Reino Turunen 

Abstract. The authors have constructed a table of the 26440 nonconjugate totally real cubic 
number fields of discriminant D < 500000 thereby extending the existing table of fields with 
D < 100000 by I. 0. Angell [1]. Serious defects in Angell's table are pointed out. For each 
field, running number, discriminant, coefficients of a generating polynomial, integral basis, 
class number, and a fundamental pair of units are listed. The article contains statistics about 
the following subjects: distribution of class numbers; fields in which every norm-positive unit 
is totally positive; nonconjugate fields with the same discriminant; fields with noncyclic class 
group. The fields are tabulated by means of a method due to Davenport and Heilbronn [7], [8] 
which leads to a unique normalized generating polynomial. The given units are chosen so that 
the fundamental parallelogram of the unit lattice determined by the corresponding vectors in 
the logarithmic space is reduced. 

1. Introduction. A table of totally real cubic fields of discriminant D < 100000 has 
previously been constructed by I. 0. Angell [1]. In this article we shall describe the 
construction of an extended table for D < 500000. It has been deposited in the 
Mathematics of Computation's UMT-depository. 

The motive for this work stems firstly as a by-product from the first author's wish 
to investigate certain parametric families of totally real cubic fields with small 
fundamental pairs of units and large class number, and secondly from the fact that 
serious defects have been discovered in Angell's table. A list of such defects which 
have come to our attention is as follows. 

(1) There are 11 fields missing. These fields have discriminants 25717, 32404, 
35996, 37108, 37133, 38905, 39992, 43165, 43173, 43176, 95484. The omission of the 
first field has been discovered by Franz Halter-Koch and has evidently been 
corrected in later versions of the table. The omission of the other ten fields has 
previously been independently discovered by Llorente and Oneto [15]. 

(2) The field with discriminant 88588 appears twice. 
(3) In "Appendix of units with large coefficients" there are two errors. For 

D = 81377, the first number, and for D = 82657, the second one are not units: they 
both have norms divisible by 10. 

(4) In the statistics referring to the class numbers [1, p. 186] there are several 
mistakes as discovered by Llorente and Oneto [15]. They give a revised version of 
these statistics which, however, is not fully in accordance with our results (see 
Section 7 below for details). 
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(5) Angell's adaptation of the Voronoi algorithm does not necessarily produce a 
fundamental pair of units (e.g., in the case D = 39601 = 1992, the given units 
together with -1 generate a subgroup of index 3 in the group of units). This 
observation was made by M. N. Gras. 

The method we have used in order to tabulate the fields is due to Davenport and 
Heilbronn [7], [8]. It is different from that of Angell, but a somewhat similar 
approach has previously been used by Llorente and Oneto [15]. As was shown by 
Davenport and Heilbronn, there exists a bijective discriminant-preserving map of 
the set of triplets of conjugate totally real cubic fields onto a subset M of the set of 
reduced integral primitive irreducible binary cubic forms. Here we have to modify 
slightly the classical concept of a reduced cubic form [10, Chapter XII] in order to 
have just a single one contained in each equivalence class. The local conditions of 
Davenport and Heilbronn, which are necessary and sufficient for a reduced form to 
belong to , are given below in a simplified form. 

In the search for all forms in M with discriminants in a given range it is useful to 
have stringent limitations for their coefficients. We therefore present a collection of 
best possible inequalities satisfied by those coefficients. 

From a form in M we construct a monic cubic polynomial with integral coeffi- 
cients in an obvious manner. A polynomial obtained in that way is called a 
normalized cubic polynomial (NCP) and its zeros are termed normalized primitive 
elements (NPE). Hence, a noncyclic field is generated by a unique naturally defined 
NPE, while a cyclic field contains three such elements. We show that if a is an NPE 
of a field K, the conjugates of a have least standard deviation among all irrational 
algebraic integers ,8 of K, and that this property is shared only by certain particular 
,B 's naturally related with a. If K is cyclic then, apart from sign, the NPE's are equal 
to the Gaussian periods for a generating cubic character of K. 

Our method thus leads automatically to a complete set of different fields: in 
particular, no Tschirnhausen transformation or any other means are needed to test 
the fields for being distinct. Moreover, an integral basis of K and the value of the 
discriminant are readily at hand. 

In order to compute the class number (class group structure) and a fundamental 
pair of units, we have used the classical Voronoi algorithm [9, Chapter IV]. It works 
very efficiently, the only drawback being the rather high degree of precision needed 
in a few cases due to the largeness of the units produced by the algorithm. In the 
unit lattice we have performed a reduction process to the effect that the final units to 
be listed in the table (called reduced units) are so chosen that the fundamental 
parallelogram of the lattice determined by the corresponding vectors in the logarith- 
mic space is reduced. In this way we find a naturally defined fundamental pair of 
units, the choice of which is optimal in a certain sense. 

For the extended range we give similar statistics as the one in [1] and [15] already 
discussed. The total number of nonconjugate fields with discriminants less than 
500000 is 26440 giving the empirical density 0.05288, whereas Davenport and 
Heilbronn [8] proved that the asymptotic value is (12 '(3))-' = 0.06933. So the 
convergence is very slow as noted in [17]. 

At the end of the article, there are tables of fields in which every unit is totally 
positive or totally negative, of nonconjugate fields with the same discriminant, and 
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of fields with noncyclic class group. The last property is a very rare one; we have 
encountered only 35 such cases. 

All of the computations were done on the DEC-20 computer at the University of 
Turku, Finland. 

We would like to thank Mme. M. N. Gras, Dr. Jukka Pihko, and Professors 
Harvey Cohn, H. J. Godwin, Franz Halter-Koch, and Jacques Martinet for their 
assistance and helpful comments. We are especially indebted to the members of the 
staff of the Computer Centre at the University of Turku for their cooperation. The 
work has been supported financially by the Academy of Finland. 

For any cubic field K we denote by (9 = K the ring of integers of K. If 3 Ee K, its 
conjugates are denoted either by /3, /3', /3" or by /3(') (i = 0, 1, 2; /3(0) = /3). The trace 
and norm of /3 are Tr(/3) = /3 + /3' + /3" and N(/3) = /3/3'/3". We also write N(I) 
for the norm of a nonzero fractional ideal W of K. The symbol M indicates the end of 
a proof. 

2. Reduction of Binary Cubic Forms. We shall assume in the sequel that the binary 
cubic forms 

(2.1) F(x, y) = ax3 + bx2y + cxy2 + dy3 
which we are dealing with are (i) integral, i.e., a, b, c, d E Z; (ii) primitive, i.e., 
gcd(a, b, c, d) = 1; (iii) irreducible in the ring Q[x, y]; and (iv) have positive 
discriminant 

(2.2) D(F) = b2c2 - 4ac3 - 4b3d - 27a2d2 + 18abcd. 
Accordingly, when speaking simply of cubic forms we always assume that the form 
is binary and that these conditions are satisfied. Equivalence of forms (both cubic 
and quadratic) and equivalence class are understood in the wide sense, i.e., homoge- 
neous linear substitutions with integral coefficients and determinant = + 1 are 
admitted. If determinant = +1 is required, we expressly speak of proper equiva- 
lence and proper class. The cubic form (2.1) has the quadratic covariant 

(2.3) H(x, y) = Tx2 + Uxy + Vy2, 

where 

(2.4) T= b2 -3ac, U= bc - 9ad, V= C2 - 3bd. 
It is well-known that the quadratic form (2.3) is positive definite and its discriminant 
is 

(2.5) U2 - 4TV= -3D(F) < 0. 
According to the classical reduction theory of Arndt [2] and Hermite [13] the form 
(2.1) is called reduced iff (2.3) is a reduced quadratic form, i.e., either -T < U < T 
< V or 0 < U < T = V. In the following theorem we introduce a slightly modified 
concept in order to obtain a unique representative for each class. 

THEOREM 1. Every equivalence class % of binary cubic forms contains exactly one 
REDUCED FORM F(x, y) = F.(x, y) satisfying one of the following conditions: 

(i)-T< U< T< V,a > 0,andeitherb > Oorb = Oandd > 0, 
(ii) 0 < U = T < V, a > 0, and b > 3a/2, 

(iii) 0 < U< T= V,a > 0,andldl > a, 
(iv) 0 = U< T= V,a > 0,andd < -a, 
(v) 0< U= T= V,a>0,andb >3a/2. 
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Proof. Let %' be given. By the classical theory referred to above, we can pick a 
form F(x, y) e %such that -T < U < T < V or 0 < U < T = V. Applying the 
substitution x = -x', y =-y' if necessary, we may suppose that a > 0. 

Case 1. -T < U < T < V. Clearly, either F(x, y) or F(x, -y) satisfies the condi- 
tions (i) and is thus the required Fw(x, y). Let H,(x, y) denote the quadratic 
covariant of F,(x, y). Suppose that F1(x, y) is another form in %'satisfying (i) and 
let Hj(x, y) denote its quadratic covariant. Since F1 and Fw are equivalent, so are 
their quadratic covariants, and hence H1(x, y) is properly equivalent to H,(x, y) or 
to H,(x, -y). Since all thtee quadratic forms are reduced, either H1(x, y) = HW(x, y) 
or H1(x, y) = Hw(x, -y). Let T denote a substitution with determinant = +1 
transforming F1(x, y) correspondingly into Fw(x, y) or Fw(x, -y) so that T is an 
automorph of H1(x, y). By [11, p. 72, Theorem 57] T is either the identity or 
[x = -x', y = -y']. The latter alternative is impossible because the leading coeffi- 
cients are positive, and therefore F1(x, y) = Fw(x, y) or Fw(x, -y). However, 

Fw(x, -y) does not satisfy (i). This proves the uniqueness of F. 
Case 2. U = T < V. The quadratic covariant of the form Fj(x, y) = F(x, -y) is 

H1(x, y)= Tx2-Txy +Vy2. Then, H1(x + y, y) = Tx2 +Txy+Vy is a re- 
duced quadratic form. Consider therefore the corresponding cubic form 

F2(x, y) = F(x + y, -y) = ax3 + (3a - b)x2y 

+(3a - 2b + C)Xy2 +(a - b + c -d )y3. 

Suppose that b = 3a/2. From U = T, we then have d = -a/4 + c/2 so that 
F2(x, y) = F(x, y). However, it is easy to see that F(x, y) would be divisible by 
2x + y in the ring Q[x, y]. Therefore, b # 3a/2 and either F(x, y) or F2(x, y) 
satisfies (ii) depending upon whether b > 3a/2 or b < 3a/2. 

The same argument as ih the preceding case shows that any form contained in % 
and satisfying (ii) must coincide with Fw(x, y) or with Fw(x + y, -y). Since the 
latter form does not satisfy (ii) the uniqueness of F. follows. 

Case 3. 0 < U < T = V. In this case H(x, y) = Tx2 + Uxy + Ty2. Consider the 
transformed cubic form 

F1(x, y) = F((sgn d)y, (sgn d)x) 

= (sgn d)(dx3 + cx2y + bxy2 + ay3) 

the quadratic covariant of which coincides with H(x, y). 
Suppose first that d a. From T = V it then follows that (b - c)(3a + b + c) = 

0. We cannot have b c otherwise F(x, y) would be divisible by x + y. From 
3a + b + c = 0 we infer U = -9a2 - 3ab - b2 < 0 contrary to the assumption. 

Suppose next that at: -a. From T = V we get (b + c)(3a - b + c) = 0. We 
cannot have b - -c othtwise F(x, y) would be divisible by x - y. From 3a - b + 
c = 0 it follows that U 9a2 - 3ab + b2 = T, contradicting the assumption. 

Therefore, Id I # a and either F(x, y) or F1(x, y) satisfies (iii). The uniqueness of 

Fw(x, y) is proved-as before. 
Case 4. 0 = U < T= V. The following general identities are valid in each case 

(2.6) cT- bU+ 3aV= 0, 

(2.7) 3dT- cU+ bV= 0. 
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In Case 4 we find from these identities that c = -3a, b = -3d. Therefore, F(x, y) is 
of the form 

F(x, y) = ax3 - 3dx2y - 3axy2 + dy3. 

Clearly d # + a because F(x, y) is irreducible in Q[x, y]. Now the cubic forms 

F(x, y) = ax3 - 3dx2y - 3axy2 + dy3, 

(2.8) F(x,-y)=ax3 + 3dx2y-3axy2 - dy3, 
F((sgn d)y, (sgn d)x) = (sgn d)(dx3 - 3ax2y - 3dxy2 + ay3), 

F(-(sgn d)y, (sgn d)x) = (sgn d)(dx3 + 3ax2y - 3dxy2 -y3), 

are contained in Wand exactly one of them satisfies (iv). By changing the notation if 
necessary we may assume that this form is F(x, y). We have thus found F,(x, y) = 

F(x, y) with quadratic covariant H(x, y) = T(x2 + y2). 

Suppose now that F1(x, y) is another form in ' satisfying (iv) and let H1(x, y) 
denote its quadratic covariant. Since H1(x, y) and H(x, y) are equivalent reduced 
quadratic forms and H(x, y) is improperly equivalent to it$elf, we must have 

Hl(x, y) = H(x, y). Let T denote a substitution with determinant +1 transfor- 
ming Fl(x, y) into F(x, y) or F(x, -y). Then T is an automorph of H(x, y) and by 
[11, loc.cit.] T is one of the following four substitutions: 

[x-xI',I y-=y'], [x = -x', y = -y'], [x = y', y = -x'], 

[x = -y', y = x']. 

Taking into account that the leading coefficients of Fl(x, y) and F(x, y) are 
positive, it is easy to see that Fl(x, y) must be one of the forms (2.8). However, only 
one of them satisfies (iv) and therefore Fl(x, y) = F(x, y). 

Case 5. U = T = V. From (2.6) and (2.7) we have 

.c - b + 3a = 3d - c + b = 0 
implying d = -a, c = b - 3a. Hence, F(x, y) is of the form 

F(x, y) = ax3 + bx2y +(b - 3a)xy2 - ay3 

We must have b # 3a/2, otherwise F(x, y) would be divisible by x - y. Further, 

F(-y,-x) = ax3 +(-b + 3a)x2y - bxy2 - aty3, 

and either F(x, y) or F(-y, -x) satisfies (v), i.e., is the required FW(x, y). Choose 
the notation so that this form is F(x, y). Its quadratic covariant is H(x, y) = 

T(X2 + Xy + y2). Suppose that Fl(x, y) is another form in 6 satisfying (v). As in 
Case 4, we find that the quadratic covariant of Fl(x, y) must coincide with H(x, y). 
Again let T denote a substitution of determinant = + 1 transforming Fl(x, y) into 
F(x, y) or F(-y, -x). By [11, loc.cit.] T must be one of the following six substitu- 
tions: 

[x-x', y = y'], [x--x'-y', y = x'], [x = y' y = -y x'-y'], 
[x = -xI I y -- 3, [x = x' + y s y = -x ]' [x = -yt, y = x' + y'l. 

However, simple computations show that for such T the substitution T-1 transforms 
F(x, y) and F(-y, -x) into themselves or into identically opposite forms. Since only 
one of these four forms satisfies (v), we have Fl(x, y) = F(x, y). C 
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3. Inequalities Concerning Reduced Cubic Forms. A table of minimal polynomials 
was produced by first tabulating the relevant cubic forms. For that purpose precise 
estimates for the coefficients of these forms in terms of the discriminant are 
valuable. In the following theorem we shall present a collection of such estimates all 
of which are best possible. The first four are classical [3], [14], but for the 
convenience of the reader we give a complete proof. In a less accurate form these 
results are contained in [6, p. 185, Lemma 1]. 

THEOREM 2. Let F(x, y) = ax3 + bx2y + cxy2 + dy3 be a reduced binary cubic 
form with discriminant D = D(F). Then the following estimates are valid: 

(3.1) 0 < a < 2D14//277, lbl < 2D1143 

(3.2) ladl < 4D""2/27, Ibcl < D 

(3.3) max{|ac31, lb3dl} < (35 + 13V3Y)D/216. 

Remark. The example a = 1, b = 6, c = 3, d = -1 shows that equality can occur 
in (3.1). 

To show that the first inequalities in (3.1) and (3.2) are best possible take 
a = 4m - 2, b = 6m, c = -6m, d = -4m + 1, where m is a (large) positive integer. 
Then F(x, y) is clearly primitive and it is irreducible in Q[x, y] by Eisenstein's 
criterion. We have 

T = 108m2 - 36m, U = 108m2 - 108m + 18, V = 108m2 - 18m 
so that 0 < U < T < V and F(x, y) is reduced. Since D1/2 = 108m2 + 0(m) we 
have aD-1/4 = 2/ /27 + 0(m'-), IadID-7/2 = 4/27 + O(m'). 

Next, take a = 1, b = 2m + 4, c = 2m, d = -2, where again m is a (large) 
positive integer. Then, 

T= 4m2 + 10m+ 16, U=4m2 ?8m + 18, V= 4m2 + 12m + 24, 
whence F(x, y) is reduced. We have D1/2 = 4m2 + 0(m) and bcD-'/2 = 1 + 

(m -') so that the second inequality (3.2) is best possible. 
The fact that (3.3) is best possible will be obvious from the subsequent proof. 
Proof of Theorem 2. The following general identities are easily seen to be true: 

(3.4) (2bT- 3aU)2 + 27a2D = 4T3, 

(3.5) (2cT - bU)2 + 3b2D = 4T2V, 

(3.6) (2bV- cU)2 + 3c2D = 4TV2, 

(3.7) (2cV - 3dU )2 + 27d2D = 4V3. 

Since the form is reduced, we have 

(3.8) D = (4TV- U2 )/3 > TV > T 2. 

From (3.4), (3.5), (3.8) we immediately obtain (3.1) with the reservation that the 
upper estimate of a might not be a strict inequality. However, in the case of equality 
we must also have equality in (3.8) and 2bT - 3aU = 0. This would imply T = U = 

V and 2b = 3a contrary to the proof of Theorem 1, Case 5. 
On combining (3.4), (3.7), (3.8), we have 

(27adD) < 16(TV)3 < 16D3 

implying lad I < 4D1/2/27 because equality cannot occur. 
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Using the identity 

(3.9) b2V - bcU + c2T = TV, 

we find 

2(TV)"/2Ibcl < b2V + c2T = TV + bcU < TV + IbcU|, 

whence, by (3.8), 

3DIbcl = (2(TV )1/12 + I UI) (2(TV )1/2 - I UI) Ibcl 

< (2(TV)/2 +?IU)TV 3(TV)/"2 < 3D3/2 

so that Ibcl < D'72. If equality occurs then T = U = V and b = c. But in the proof 
of Theorem 1, Case 5 we saw that c = b - 3a, a contradiction. We have thus proved 
(3.2) and it remains to prove (3.3). 

Put K = (35 + 13413 )/216. We shall show first that Jac31 < KD. From (2.4) and 
(3.4) we find 

(3.10) ac3/D = (b2 - T)3/(4T3-(2bT- 3aU)2). 

We have the identity 

(3.11) 9a2V- 3abU+ b2T = T2. 

Put 

x = 3aV'12T-' y = 3aUT 3/2 z = 2bT-/2 - 3aUT-3/2 

From (3.11) and from the conditions of reduction we get 

(3.12) x>0, jyjx, 4x2-y2+z2=4 

and the right-hand side of (3.10) takes the form 

y( X , z) = ((y + Z)2 - 4)3/(64(4x2 _ y2)) 

We have to study the function gp(x, y, z) subject to the constraints (3.12). We may 
suppose that z > 0 because the change of the signs of y and z leaves qp and (3.12) 
unaltered. It follows, in particular, from (3.12) that 3X2 + z2 < 4, and thus 

(3.13) lyI x<2/3, 0< z<2. 

If (x, y, z) -- (0, yo, zo) subject to (3.12) and (3.13), then yo = 0, zo = 2, and it is 
easy to see that limq4p(x, y, z) = 0. We may therefore assume that a point (x, y, z) 
satisfying (3.12) and (3.13) is so chosen that the function I4PI subject to these 
constraints attains its maximum at that point. 

Suppose first that IY + zI > 2. From (3.13) we havey > 0. Since 

kp(x, y, z)l = (y +(4- 4X2 + Y2)1/2)2 - 4) /(64(4x2 _ y2)) 

is an increasing function of y we must have y = x so that 

(3.14) kp(x, y, z)l = ((x +(4 - 3X2)'1//2)2 - 4)3/(192x2) 

= (x(4 - 3x2)'/2 - 3x2 + 2x4)/6. 
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Since x + (4 - 3x2)'/2 = y + z > 2 implies x < 1, we have to compute the maxi- 
mum of the function (3.14) in the interval (0, 1]. This is a trivial task, the maximum 
is (-35 + 13VL3)/216 attained at the point x = ((5 - V13)/12)'/2. 

Suppose next that IY + z I < 2. For z < 1 we have 

I< (XI y, z)I= (4 -(Y + Z)2)3/(64(4 _ z2)) 

< 1/(4 - 9) 1/3 < K. 

Suppose therefore that z > 1. Then (3.12) implies IYI < x < 1 so that 0 < y + z < 2. 
From the choice of the point (x, y, z) it now follows that we must have y = -x; 
otherwise we could either change the sign of y or diminish y slightly and change x 
correspondingly in order to keep z fixed, which would give us a larger value of 
IT(x, y, z)I. Therefore, 

(3.15) kp(x, Y, z) = (4 - (-x + (4 - 3X2)1/2)2)3/(192x2) 

= (x(4 - 3x2)'/2 + 3x2 - 2x4)/6, 

and on computing the maximum value of the function (3.15) in the interval (0, 1) we 
obtain IT(x, y, z)l K for 

(x, y, z) = (((5 + v3T)/12)1I2, -((5 + Vi3 )/12) I, ((II _ )/4)- 

Hence lac31 < KD as asserted. 
The proof of Ib3dl < KD is similar. We start from the expression 

b3d/D = (c2 - V)3/(4V3 -(2cV- 3dU)2) 

which is a consequence of (2.4) and (3.7), and use the identity 

9d 2T- 3cdU+ c2V= V2. 

This time we write 

x = 3ldIT'72V-, y = 3dUV-3/2, z 2cV-1/2 - 3dUV-3/2, 

and the proof proceeds exactly as before. Ol 

4. Normalized Cubic Polynomial. Let F(x, y) = ax3 + bx2y + cxy2 + dy3 be a 
reduced cubic form of discriminant D = D(F). The polynomial f(x) associated with 
the form F(x, y) is defined as 

(4.1) f(x) = a 1F(x +(eb - s)/3,-ea), 

where 

(4.2) =J 1 if bOmod3, e f 1 ifb-lmod3, 
* 0O if b--Omod3; t-1 if b I1mod3. 

Clearly f(x) is a monic cubic polynomial with integral coefficients in which -s is the 
coefficient of x2. Writing 

(4.3) f(x) = X3-SX2 + qx-n, 
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'we have 

(4.4) q = ac -(b2- s)/3 = (s -T)3, 

(4.5) n = (2eb + s)(eb - s)2/27 - ac(eb - s)/3 + ea2d 

since 52 = s and e2 = 1. The discriminant of the polynomialf(x) is 

(4.6) sq2 - 4q3 - 4sn - 27n2 + 18sqn = a2D 

= 4T3/27 - 3(3n - sq + 2s/9)2. 

We note that the reduced form F(x, y) is not uniquely determined by its 
associated polynomial. This is seen trivially by considering the forms ax3 + cxy2 + 

dy3 and x3 + acxy2 + a2dy3 where c < -3a < -3, 0 < d < -c/(3a), and 
gcd(a, c, d) = 1. (In order to ensure the required irreducibility assume, e.g., that 
there exists a prime p such that p + a, p l c, p ld, p2 + d.) Then the forms are reduced 
and they both have associated polynomial x3 + acx + a 2d. 

It is more difficult to find examples of a pair of reduced cubic forms both having 
the same leading coefficient and the same associated polynomial. One such pair is 

k3x3- 3k2(k + 1)xy2 +(k3 + k2 - 3)y3 

k3x3 + 3k2(k - I)x2y - 3k(3k - 1)xy2-(k3 + 2k2 - 6k + 4)y3, 

where k is a positive integer = -1 mod 18. Both forms have associated polynomial 

x3 -3k5(k + I)x + k8(k + 1)-3k6. 

Suppose now that K is a totally real cubic field of discriminant D and let 
AR = {1, a, X } be an integral basis for 7 containing 1 (caled unitary in [9, Section 
15]). Following Davenport and Heilbronn [7], [8] we assign to a the cubic form 

F(x, y; -) = D-1/2((a' -a")x +(t,' - W")y)((a" a)x +((" - )y) 

x((a - a')x +( - ')y) 

It is easily seen that the equivalence class containing The form F(x, y; .4) is 
independent of the choice of . and thus depends only on K. We denote this class by 
qp(K). By an abuse of notation write FK(X, Y) = FW(K)(X, Y) for the reduced form 
in the class W(K) and let R be the set of all forms FK(x, y), K ranging over the set 
of all totally real cubic fields. From [8, p. 418, Proposition 41 we have 

THEOREM 3. The assignment K -4 FK(x, y) induces a bijective discriminant-preserv- 
ing map of the set of triplets of conjugate totally real cubic fields onto M. 

Here, of course, the triplet is coalescent if K is cyclic. From [8] it is easy to derive 
the following result which is fundamental in the search of all totally real cubic fields 
with discriminants in a given range. 

THEOREM 4. Let F(x, y) = ax3 + bx2y + cxy2 + dy3 be a reduced cubic form of 
discriminant D. We have F(x, y) E RP if and only if the following Davenport-Heilbronn 
conditions are satisfied: 

(DH2) D V O mod 16; if D 4 mod 16 then b c mod 2. 
(DH3) If D Omod9 then b c -Omod3 and ad(a2 -d2 - ac + bd)=3 or 

6 mod 9. 
(DHp) For every prime p > 5 such that D 0 mod p2 we have D i 0 mod p3, 

a % Omodp2 T= b2 - 3ac Omodp. 
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Proof. Prime p = 2. By [8, p. 407] the local condition at the prime 2 is equivalent 
to the following one: If D 0 or 4mod 16, then F(x, y) (ax + dy)3 mod 2, and 
the congruence F(x, y) 2 mod 4 has a solution. 

Suppose first that this condition holds. Clearly b c ad mod 2. If ad is even we 
may suppose, e.g., that a is even and d is odd. The solution of F(x, y) 2 mod 4 
must be (x, y) = (1,0) whence a 2mod4 and D a2d2 4mod 16. If adis odd 
apply first the substitution x = x' + y', y = y'. Hence, (DH2) holds. 

Suppose conversely that (DH2) is true. Let D 4 mod 16, otherwise there is 
nothing to prove. If b c Omod2 we see from (2.2) that D = 5a2d2 + 
2abcd mod 16. Thus ad is even and D a2d2 mod 16 (e.g., let a be even and d odd). 
Since D t 0 mod 16 we have a 2 mod 4 so that F(x, y) y3 mod 2, F(1, O) 
2 mod 4. If b c 1 mod 2 we get from (2.2) that ad is odd. Apply the same 
substitution as above. 

Prime p = 3. The local condition in [8] at the prime 3 can be written as follows: If 
D Omod9 then F(x, y) (ax + dy)3mod3, and the congruence F(x, y) 
3e mod 9 has a solution for e = 1 or 2. 

Suppose first that this condition holds and that D 0 mod 9. Clearly b c 
Omod3. If 31a the solvability of F(x, y) 3emod9 plainly implies 9 + a, whence 
ad(a2 - d2 - ac + bd) -ad3 3 or 6 mod 9. The same conclusion holds if 31d. 
Therefore, let ad t Omod 3. Then a2 - d2 - ac + bd Omod 3. We may assume 
that the solution of F(x, y) 3emod9 is (x, y) = (1,1) or (1,-1). Accordingly 
either a + b + c + d or a - b + c - d is 3 or 6mod9. In the first case, we have 
a + d Omod 3 and 

a2 - d2 - ac + bd a2 - d2 +(a - d)c +(a - d)b 

(a - d)(a + b + c + d) 3 or 6mod9, 

and similarly, in the other case. Hence (DH3) is true. 
Suppose conversely that (DH3) holds and D 0 mod 9. From b c 0 mod 3 

we immediately have F(x, y) (ax + dy)3 mod 3. If 31a then 9 + a by (DH3), so 
that F(1, 0) 3 or 6 mod 9. If 3 I d, we similarly have F(O, 1) = 3 or 6 mod 9. Let 
ad $ O mod 3. From (DH3), (a + d)(a - d) Omod 3, and one may reverse the 
argument above. 

Prime p > 5. The condition from [8] is the following one: If D 0 mod p2 then 
F(x, y) r(hx + ky)3 mod p for some integers r, h, k, and the congruence F(x, y) 

ep mod p2 has a solution for some e t 0 mod p. 
Suppose first that this condition is true and D 0 mod p2. From [8, p. 410, 

Lemma 6] we have D E O mod p3. Further T- (3rh 2k) - 3h3rhk2 mod p, 
and similarly U- V mod p. Ifp2a, then from T = V = O mod p we would 
have b c 0 mod p and from (2.2), D 0 mod p3, a contradiction. Thus (DHp) 
holds. 

Suppose conversely that (DHp) is true, and that D 0 mod p2. If p + a, we find 
from T U 0 mod p that c b2/(3a) mod p and d = b3/(27a2) mod p, and so 
F(x, y) (3ax + by)3/(27a2)mod p. If pla it follows from T- Omodp that pIb 
and hence D -4ac3 modp2 by (2.2). Sincep2 + a we get pIc and thus F(x, y) 
dy3 mod p. The rest now follows from [8, p. 410, Lemma 6]. 0 
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A polynomial f(x) is said to be a normalized cubic polynomial (abbreviated NCP) 
iff there is a totally real cubic field K such that f(x) is the polynomial associated 
with the form FK(x, y). Obviously K = Q(a), where f(a) = 0. We shall call a a 
normalized primitive element (abbreviated NPE) of K over Q. Thus, every noncyclic 
K has a unique naturally defined NPE, whereas a cyclic K contains a triplet of such 
elements. 

5. Properties of Normalized Cubic Polynomials. In the following theorem we shall 
prove first that for an NPE, the conjugates have least standard deviation among all 
irrational algebraic integers of the cubic field in question. Later on in this section we 
shall see that this property almost characterizes an NPE of given trace. In the 
foregoing section we saw that two reduced cubic forms may have the same leading 
coefficient and the same associated polynomial. Here, we shall see that this is not 
possible if the polynomial is an NCP. We shall also construct an algorithm by means 
of which the corresponding form in R can be computed when the polynomial is 
given. 

THEOREM 5. Let a be an NPE of a totally real cubic field K and put Irr( a, Q) = f (x) 
=x _-sx2 + qx-n.Foranyt E K,write 

R ( () = , 
( ( _ (,)2 + (/ (!_(2 + ( 

o 
2). 

(i) We have R(a) = s - 3q = min{R(()}, the minimum being taken over all 
irrational algebraic integers ( of K. 

(ii) For any given positive integer k, there exists at most one reduced cubic form 
F(x, y) with leading coefficient k, such that f(x) is the polynomial associated with 
F(x, y). 

(iii) Denote FK(x, y) = ax3 + bx2y + cxy2 + dy3 E W. The form FK(x, y) can be 
traced back from the polynomialf (x) by means of the following algorithm. 

(I) The leading coefficient a is the largest positive integer for which an integer t can 
be found such that 

(5.1) f (t)--0mod a2 f '(t)-0 mod a. 

We have b2 - 3ac = T = s - 3q = R(a). 

(II) If s = 0, then 

b = 3t + 3a[I- t/a - 9n/(2aT)], 

c = (b2 -T)(3a), 

d = (b3- 3bT - 27n)/(27a 2). 

(III) If s = 1, determine first 

g = - t/a - (T - 1)/(6aT) - 9n/(2aT), 
b* = 3t - 1 + 3a[g]. 

(111.1) If g E Z, then 

b = max{b*,3a -b*, 

c = (b2 -T)/(3a), 

d = (bc - T)/(9a). 
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(111.2) If g ? Z, then writing 

d* = (b3 + 1 - 3(b* + 1)T- 27n)/(27a2), 

we have c = (b2 - T)/(3a), (b, d) = (b*, d*) or (-b*, -d*), chosen so that the 
condition (i) or (iii) in Theorem 1 is satisfied. 

Proof. (i) By definition, f(x) is the polynomial associated with the form FK(x, y). 
From (4.4), T = b2 - 3ac = s - 3q, and on the other hand, clearly, R(a) = s 2- 3q 
= s - 3q. Let H(x, y) denote the quadratic covariant of FK(x, y). Choose an 
irrational algebraic integer /3 of K so that R(/3) is least possible. By the minimality 
of R(/3), (/3 - h)/k cannot be an algebraic integer for any pair of rational inte- 
gers h, k with k > 1. It follows that ( has an integral basis d of the form {1, /3, 
(u + v/3 + /32)/w} for some integers u, v, w with w > 0. Since w = [(: Z[/3]], we 
find that w is equal to the leading coefficient (/3' - 3")(/3" - /3)(/3 - /3')D-1"/2 of 
the form F(x, y; 2), provided that the order of the conjugates of /3 is suitably 
chosen. Here, D = D(FK) denotes the discriminant of K. Therefore, 

(5.2) F(x, y; 4)= w(x + yy)(x + y'y)(x + y"Y), 

y = (v + Tr(/3)-/3)/w. 
A simple computation now shows that the first quantity (2.4) for the form F(x, y; A@) 

equals R(/3). Since F(x, y; !6) and FK(x, y) are equivalent, so are their quadratic 
covariants, and therefore R(/3), being the leading coefficient of the former covariant, 
is an integer represented by the reduced quadratic form H(x, y). Since T is the least 
nonzero integer represented by H(x, y), R(/3) > T, and thus necessarily R(/3) = T. 

(ii) Let F(x, y) be a reduced cubic form with leading coefficient k such that f(x) 
is the polynomial associated with F(x, y). By (4.1), f(x) = k-1F(x - t, ?k) for 
some integer t. Hence 

(5.3) f(t) Omodk2, f'(t) Omodk. 

It is easy to see that an integer t satisfying (5.3) is unique mod k. Suppose, indeed, 
that t' is another such integer. It follows from a theorem of Voronoi [9, p.111, 
Theorem I] that the numbers 

(U2 - su + q +(u - s)a + a 2)/k, u = t or t', 

are algebraic integers. Their difference is (t - t')(t + t' - s + a)/k. However, as 
was seen above, a number of this type can be integral only for t - t' 0 mod k. The 
argument in the subsequent proof of (iii) now gives the uniqueness of F(x, y). We 
observe that (ii) is true under the weaker assumption that no number of the form 
(a - h)/k with h, k E Z, k > 1 is an algebraic integer, which is equivalent to the 
fact that there exists an integral basis for ( containing 1 and a. 

(iii) Since the discriminant of the polynomial f(x) equals a 2D, it follows im- 
mediately from the theorem of Voronoi cited above that (I) is true. From the 
foregoing proof of (ii) we have t (s - eb)/3 mod a. 

Consider first the case s = 0. Then e = -1 and t b/3 mod a. Putting b/3 = t + 
ra, we have from (4.5) 

aU = abc - 9a2d = 2(t + ra)T + 9n. 

Since -T< U < T, we infer 

-aT < 2(t + ra)T + 9n < aT, 
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so that r = - t/a - 9n/(2aT)], which gives the value of b in (II). The rest of (II) 
is clearly true, the expression for d being a consequence of (4.5). 

Suppose now that s = 1. In this case the argument is slightly more complicated 
because we do not know beforehand whether b 1 or -1 mod 3. Writing (1 - eb)/3 
= t + ra, we have this time from (4.5) 

-eaU= 2(t + ra)T+(T- 1)/3 + 9n, 

so that 

r = -eU/(2T) - t/a -(T- 1)/(6aT) - 9n/(2aT). 

It follows from the inequality -T < U < T that g - 1 < r < g. 
If g E Z then r = g or g - 1, which is possible only for U = T. If b -1 mod 3, 

then e = -1 and r = g so that ( + b)/3= t + ra implies b = b. If b lmod3, 
then e = 1 and r = g - 1 so that (1 - b)/3 = t + ra implies b = 3a - b,. On the 
other hand, we have b > 3a/2 by Theorem 1, (ii) and (v), and therefore b = 

max{b*, 3a - b*} in both cases. The assertion (111.1) now follows, the value of d 
being obtained from the equation U = T. 

If g 0 Z, then r = [g], -eb = b*, and from (4.5), -ed = d*. Clearly (111.2) is true. 

The practical implementation of the algorithm in order to compute FK(x, y) is 
facilitated by the fact that the computer listings contain the number a and the 
residue class of t - s mod a. For future reference we record here the obvious 
equality 

(5.4) a= [C:Z[a]]. 
THEOREM 6. Let K be a given totally real cubic field. Put FK(x, y) = ax3 + bx 2y + 

2+yX 2an e + U + coaian 
CXy + dy3 and let H(x, y) = Tx2 Uxy Vy2 denote the quadratic covariant of 
FK(x, y). Then K is cyclic over Q if and only if T = U = V. If this is the case, then 
c = b - 3a, d = -a, the conductor of K is equal to T, and we have 

(5.5) T = (u2 + 3v2)/4 

for u = ?r(2b - 3a), v = 3a. Assuming that the sign of u is suitably chosen, u and v 
satisfy the conditions 

u 2mod3,v Ormod3, v > O for 3 + T, 
(5.6) u=6mod9,v=3or6mod9,v>O for3lT 

introduced by Hasse [12, p. 12]. The set { a, a', a"} of the NPE 's of K coincides, apart 
from sign, with the set of the Gaussian periods for a generating cubic character of K. 

Proof. If T = U = V, then by (2.5) the discriminant of K equals T2 so that K is 
cyclic over Q with conductor T. Suppose therefore, conversely for the rest of the 
proof, that K is cyclic over Q. From the results of Hasse, it follows that we can write 
the conductor T of K in the form (5.5), where u and v satisfy (5.6). Take a = v/3, 
b = v/2 + I u 1/2 and consider the form 

F(x, y) = ax3 + bx2y +(b - 3a)xy2 - ay3. 

It is well-known that either T or T/9 is a square-free integer. Since T = 9a2 -3ab 

+ b2 and 3 + gcd(a, b) by (5.6), it follows that gcd(a, b) = 1 so that F(x, y) is 
primitive. We have 

a -1F(3x - by, 3 ay) = 27x3 - 9Txy2 + IUITy 3, 
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so that F(x, y) is irreducible in the ring Q[x, y] by Eisenstein's criterion if T 0 9. 
The same is clearly also true for T = 9. The quadratic covariant of F(x, y) is 
T(x2 + xy + y2), whence F(x, y) is reduced. It is easy to see that the DH-condi- 
tions in Theorem 4 are satisfied so that F(x, y) E R. Using the notation (4.2) the 
polynomial associated with the form F(x, y) is 

f(x) = X3- sx2 +((s - T)/3)x -(e(2b - 3a)T- 3sT + s)/27 

X3=-x2+((1 - T)/3)x -(T(u - 3) + 1)/27 if 3 + T, 

{x3 -(T/3)x + IuIT/27 if 31 T. 

Let 9, 9', 9" denote the Gaussian periods for a generating character of K multiplied 
by ? 1 as in [16, p. 7] and let a, a', a" denote the zeros of f(x). Now, comparing 
f(x) with the minimal polynomial of 9 [16, pp. 8-9], we see that a = +9(') for some 
i. Therefore, F(x, y) must be FK(x, y), i.e., the image of K under the bijective 
Davenport-Heilbronn mapping. O 

THEOREM 7. Let a be an NPE of a totally real cubic field K, f(x) = Irr(a, Q) = x3 

-SX2 + qx - n the polynomial associated with FK(x, y) = ax3 + bx2y + cxy2 + 
dy3, and let H(x, y) = Tx2 + UXY + VY2 denote the quadratic covariant of FK(x, y). 
For any /3 E O we have R(13) = R(a) if and only if /B is of the following form: 

(i) If T< V, f = ?a + h, where h e Z. 
(ii) If U = T = V, either / = a + h or 

/3 = ?(t2 s st + q +(t - s)a + a 2)/a + h, 

where h E Z and t = (s - eb)/3, e being defined by (4.2). 
(iii) If U = T = V, / = ? a(') + h, where i E {O, 1, 2} and h E Z. 

Proof. It is easy to check that if /3 is of one of the particular types in the theorem, 
then 3 E (9 and R(/3) = R(a). Suppose, therefore conversely, that /3 E (9 and 
R(/3) = R(a). Denote Irr(/3, Q) = f1(x) = x3 - sIx2 + qlx - nl. As in the proof of 
Theorem 5 we conclude from the minimality of R(/3), using Voronoi's theorem, that 
(9 has an integral basis of the form d = { 1, /3, p }, where 

p = (tj2 - s1t + q1 + ( tl1 _ S) + 32 )/a1. 

Here t1 is determined mod a, by 

f1 (tl) Omod al , f1'(tl) O mod a1, 

and a, is the largest natural number for which these congruences have a solution. 
Denote F1(x, y) = F(x, y; p6). Arranging the conjugates of /3 suitably, we have by 
(5.2), 

(5.7) F1 (x, y) = a, (x + ((t1 - /)/a,) y) (x + ((t1 y-)')/a1)y) 

X (x + ((tl - )la,)y). 

From (4.1) we obtain a similar factorization 

(5.8) FK(x, y) = a(x-(e(t- a)/a)y)(x-(e(t- a')/a)y) 

X(x -(e(t -a")1a)y), 
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where t = (s - eb)/3. Let H1(x, y) denote the quadratic covariant of F1(x, y). In 
the proof of Theorem 5 we saw that the leading coefficient of H1(x, y) is R(,B) = 
R (a) = T. Let (hi.) denote the two-by-two matrix of a unimodular integral homoge- 
neous linear substitution transforming FK(x, y) into F1(x, y), i.e., 

F,(x, y) = FK(hllx + h12y, h2Ix + h22y). 

Then, correspondingly, 

H1(x, y) = H(hIIx + h12y, h2Ix + h22y) 

and, in particular, 

(5.9) T= Thl2 + Uh1lh21 + Vh21. 

Consider first the case T < V. It is well-known (and easy to see) that (5.9) holds 
only for h1I = ?1, h21 = 0. From the unimodularity of the substitution it follows 
that h22 = + 1. Since a and a1 are positive, we must have h,, = 1 and a = a1. From 
Theorem 6 we know that the conjugate fields of K are distinct and, therefore, we 
conclude from the factorizations (5.7) and (5.8), that 

x + h12y ?((t-a)/a)y = x + -((t -3)/a)y. 

Thus (i) is true. 
Consider next the case U 0 T = V. In this case (5.9) has the additional solution 

h1i = O, h21 = ? 1. Then h12 =? 1, and from (5.7) and (5.8) we obtain 

(5.10) h12y -(e(t - a)/a)(h2lx + h22y) = C(x +((t1 - 1)/a1)y), 

where C is a constant. The leading coefficient of F1(x, y) is 

(5.11) a, = -eh2I(t- a)(t - a')(t -a")Ia 

From (5.10) and (5.11) we have by a simple computation 

?/3 = (t - a')(t - a")/a + h = (t2 - t(s - a) + a'a")/a + h 

= (t2 _ st + q +(t - s)a + a 2)/a + h 

for some integer h. Hence (ii) holds. 
Consider finally the cyclic case U = T = V. In this case the number a in the 

previous expressions is replaceable by any of its conjugates. This gives us first of all 
the possibility /3 = ?a(') + h. In the proof of the foregoing theorem we saw that 
FK(x, y) is of the form ax3 + bx2y + (b - 3a)xy2 - ay3. We shall compute the 
minimal polynomial of the number 

(5.12) 9? = (t2 - st + q +(t - s)a + a(2)/a = (t - a')(t -cx")/a 

appearing in (ii). We have Irr(a, Q) = a-'FK(x - t, -ea) so that 

N(t - a(')) = a-1FK(O,-ea) = ea3 

for each i and hence N(13o) = a3. A straightforward computation gives Tr(f3o)= 
b - 3a. From the condition R(13o) = T = 9a 2- 3ab + b2 we get the missing coeffi- 
cient and the result is 

Irr(3, ,Q) = X3 -(b - 3a)x2 -abx - a3 = a -FK(x + a,-a). 
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Comparing the two minimal polynomials, we find 

(5 .13) PBo = ea(') -a -et ( i = I or 2) 

because it is obvious that (5.13) cannot hold for i = 0. Therefore, the numbers 
resulting from (ii) by replacing a by any of its conjugates are of the form + a(j) + h 
where h E Z. 

In the present case, (5.9) has the further solution hll = -1, h2l = 1. The solution 
with signs reversed is not acceptable because the leading coefficient a, (= a) of the 
form F1(x, y) must be positive. Since the substitution is unimodular, we have 
h12 + h22 = + 1. By interchanging conjugates of a if need be, we may take 

-x + h12Y -(e(t- a)/a)(x + h22y) = C(x +((t1 - 8)a)y), 

where C is a constant. It follows that /3 = ? I + h where h E Z and 

P, = -a2/(a + e(t - a)). 

We have 

N(a + e(t - a)) = eN(ea + t - a) = ea-1FK(ea,-ea) = -a3, 

so that 

= (ea + t - a')(ea + t - a")/a. 

Comparing this expression with (5.12) and using (5.13) we find 

91 = 30? + e + a + e(2t-s) = -ea(1) + et (j = I or 2). 

This proves (iii). L 

For practical purposes it is useful to know the approximate size of the coefficients 
of an NCP. The following theorem contains estimates to that effect. Numerical 
examples show that these estimates are rather accurate. 

THEOREM 8. Let f(x) = x3- SX2 + qx - n be an NCP and let D denote the 
discriminant of the corresponding field K. Then 

(5.14) s = O or 1, 

(5.15) -D1/2/3 + s/3 < q < -(D/4)"1/3 + s/3, 

(5.16) -(2/27) D3/4 - sD1/2/9 < n < (2/27) D 3/4. 

Proof. The equality (5.14) holds trivially. Write FK(x, y) = ax3 + bx2y + cxy2 + 
dy3. From (4.4) and (3.8) we obtain the lower estimate (5.15). From (4.6) we have 
27D < 4T3, so that the upper estimate (5.15) also follows from (4.4). It is now easy 
to deduce (5.16) from (4.6) and (5.15). 0 

6. The Algorithm. We shall now describe our algorithm which allows one to 

determine a complete set of NCP's whose zeros generate all totally real cubic fields 
of discriminant D satisfying XO < D < X, where XO and X are given bounds. We 
start the algorithm by making a search for the relevant reduced forms. Following the 
classification in Theorem 1, we first determine all integral vectors (a, b, c, d) with 

gcd(a, b, c, d) = 1 which satisfy one of the following systems of conditions (where 
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K = (35 + 131-3 )/216 as in the proof of Theorem 2): 

(i.l) 1~~~ < a < 2 XI/4/V,/-7, I < b <- 2 X1/4/4/- 

max{ -Xl/2/b, _(KX/a)l/3, (b2 _ X1/2 )/(3a) } < C 

< min{ X112/b, (KX/a)1/3, (b2 - (27XOa2/4) /3 )/(3a)}, 

max{ (bc - T)/(9a), (C2 -(3X + T2)/(4T))/(3b)} < d 

< min{ (bc + T)/(9a), (c2 - T)/(3b), ( C2- 3XO/(4T))/(3b)}; 

(i.2) 1 < a < 2X1/4/27, b = O, 

max { -( KX/a )1/3 , -XI121(3a ) } < C < mint{ -3a, -( XO/(4a ))1/3 }, 

1 < d < -c/3; 

(ii) 1~~~ <, a < 2 XI1/41V2 3 a /2 < b 2 2X1/4/43 

max{ X1/2/b,-(KX/a)l/3. (b2_ X1/2)/(3a)} < c 

< min b - 3a, X1/2/b, (KX/a)l/3, (b2 (27XOa2/4) /3 )/(3a)}, 

d = (bc -T)(9a); 

(iii.1) < a < 2 XI/4/~27, 3a/2 < b < 2 X1/4/4, 

max{-3a,-b} < c < b - 3a, d= (C2 - b2 + 3ac)/(3b); 

(iii.2) 1 < a < 2XI14/ 27, -2X1/V41 < b < -3a, b < c < -3a, 

d = (c2 - b2 + 3ac)/(3b); 

(iv) 1 < a < 2X174/ 27, 3a < b s< 2X1/4/4J, c = -3a, d= -b/3; 

(v) 1< a < 2X1/4/27, 3a/2 < b < 2X1/4/, c= b-3a, d= -a. 

In deriving these conditions frequent use is made of (2.4), (2.5), (2.6) and (2.7). All 
bounds involving X or XO are consequences of (3.1), (3.2), (3.3), (3.4) and (3.8). All 
other inequalities and equalities with two exceptions are critical in the sense that 
their validity is necessary and sufficient for the conditions of reduction to hold in 
each respective case. The exceptional ones are the bounds for b in terms of a in (iii.1) 
and (iii.2), which are consequences of the bounds for c. If a fractional expression 
appears in an equality it is of course stipulated that the numerator is divisible by the 
denominator. An overwhelming majority of reduced forms belongs to Case (i). It is 
therefore of minor practical importance to include all the possible alternative bounds 
for the various quantities in the above estimates in other cases, and we have not 
always done so. 

The next step is to compute the value of the discriminant D and to discard all 
forms which do not satisfy XO < D < X or the conditions (DH2), (DH3), (DHp) in 
Theorem 4. We then determine the associated polynomial f(x) from (4.1) and (4.2) 
and compute its zeros. If any of these zeros is a rational integer, f(x) is rejected. 

In this way we have found the required complete set of NCP's. Let f(x) = X - 

sx2 + qx - n be any of these and let K be the cubic field generated by a zero a of 

f(x). As mentioned in the Introduction, in addition to leading to a naturally defined 
NCP, our approach has also practical advantages compared with the usual one. 
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Firstly, there is no need to check whether fields of the same discriminant are the 
same or not. Secondly, we know that the discriminant D of the form FK(x, y) 
computed above is also the discriminant of the field K. Furthermore, the leading 
coefficient a of the form FK(x, y) satisfies (5.4) and (9 has an integral basis {1, a, co 
where 

= (1 + ma + a2)/a, 

(6 .1 ) I-t-2 -st + q mod a, m-t - s mod a, t = (s - eb)/3, 
0 1 < a, 0 < m <a, 

in the notation (4.2). 
Let J31... ,r denote the first degree prime ideals of (9 with norm less than 

D1/2/9.1. These ideals are calculated and stored in a list. It follows from a result of 
Davenport [5] that every ideal class of K contains a product of nonnegative powers 
of the ideals $,. Here one has to take into account that there are only two cubic 
fields with discriminants < 81 which are exceptional and they both have class 
number = 1. By virtue of the results of H. P. F. Swinnerton-Dyer [19] one could 
replace the constant 9.1 by a larger one, possibly at the cost of supplementary 
exceptional fields. 

Applying the Voronoi algorithm, we determine the class number and the structure 
of the class group G of the field K inductively as follows. Suppose that for some j 
(1 < j < r) we already know the subgroup HJ -1 of G generated by the classes 
represented by (9 and I1. '. . We choose a representative for each element of 

HJ -1 consider it in a natural way as a lattice 2f in R3, compute a y-chain of relative 
minima for 2f [9, Section 54], and calculate the lattices obtained by division of 2f by 
elements of the y-chain within the bounds of one period. All these lattices are stored 
in a list called the comparison list. We then determine the smallest positive exponent 
k such that there is a lattice obtained in a similar way from an x-chain for w k which 
is already contained in the comparison list [9, p. 258, Theorem 7]. If k = 1, we have 

HJ = HJ-> If k > 1, then HJ is generated by HJI> and the classes containing 
B j... k 1. The enlarged comparison list is computed in an obvious way. In order 

to avoid lattices with large generators we replace any ideal by an equivalent one 
encountered in the course of the computation if the latter has smaller norm than the 
previous one. 

Let 2f be any nonzero integral ideal of K. Suppose that the coordinate axes in R3 
are chosen so that the vector corresponding to any number q of K is (ii, q', ii"). (We 
shall use the same notation for such a vector and its x-coordinate). Let qo be a 
relative minimum in 2f and let i0, q1,. . . be a chain of relative minima starting from 

'q. For definiteness, suppose it is an x-chain. Write IN(,q)I = r,1N(92) and take 
2n = (r9,fq)2. Obviously, rn is a relative minimum in the lattice f ,S, and if (n ? 

denotes the minimum point in this lattice adjacent to r, on the x-axis [9, p. 247], then 

'qn+l 
= 

?qJn+11rn (n = 0, , ) 

This is, of course, the principle on which the application of the Voronoi algorithm is 
based. At each step the computation is concerned with the determination of At nand 
the relative minimum n +?1 adjacent to a given lattice point rn with equal conjugates. 

Let {1, a, co } be the integral basis satisfying (6.1). It is of substantial practical 
importance to know the order of magnitude of the integer coordinates of (n,1 with 
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respect to this basis, i.e., the solution xo, xl, x2 of 

(6.2) xo + xla + 
X2CO = {n?+1 X0 

+ x1a + 
X2C' = n'+1 

xo + x1a + X2@" = n+l 

It follows directly from Minkowski's theorem that rn < D1 2. Since (n+1 is adjacent 
to r,, on the x-axis, we have 1tn+l1 < rn, 1'fl < r", and a repeated application of 
Minkowski's theorem gives 1tn+ll < D"'2 because N(f) = rn2. Using Schwarz's 
inequality we get from (6.2) 

D1/2IxOI = - n+l(ja'" - a"co') ?+ l(a"iw - acw") + l (acw' - al) 

< V1D1/2((/2 - J,)2 ?( `c" 2 )2 (1 - 22)1/2 D 1/2 IX11 = |(n+lGo - 'o) + {n'+J0"-a ') + (n"+Jl - 
)1I 

<. V3D 1/2 ( (, _t-lw 12 + (I Of _ ol )2 + ( Of _ IW)2) 1/2 D1/2I IX2 = I&ni(a" - a') + ~'1(a - a") + ~'"1(a, - a)I 

<. V3iD 1"2((a" - a')2 +(a - a" )2 +(a, _-))12 

Calculating the expressions for the symmetric functions in terms of s, q, n, a, 1, m 
and using (5.14), (5.15), (5.16), (6.1) we obtain, after a trivial but somewhat messy 
computation, 

Ixol < Va-1(12(2s - 6q) + 21(-sq + 4q2 - 3sn) 

+(s - 4q)(q2 - 2sn) + 2sqn -9n2)/ 

< (2/3)D3/4 

lxIi < FYa-l((m + s)2(2s - 6q) - 2(m + s)(sq - 9n) + 2q2 - 6sn)1/2 

< 6(D1/2/3 + D1/4 

lX21 < (6s - 18q)/2 < VD1/4. 

In conclusion, we shall briefly sketch the determination of a fundamental pair of 
units by Voronoi's method. Take 92 = 0, qo = 1 and consider the x-chain q0, 1,... 
in SC as above. Let % k be the first repeating lattice, i.e., %tk = W for some O < j < k. 
Then '* 1 = iksj iS the first fundamental unit. Next let t0, n,,. . . denote the y-chain 
in the lattice %j- starting from t0 = (j in the above notation. (If j = 0 we take 

SC-1 = c and t0 = 1.) Let p be the smallest positive index for which an h E { j,..., 
k - 1) can be found such that there is an equality of lattices (l/'P)%j1 = 

(l/%)%. Then E*2 = (jp)/(Ah%O) iS the second fundamental unit. 
The two-dimensional unit lattice in the logarithmic space is generated by the 

vectors (logljE* J, loglj'4 il, logle'* ii) (i = 1, 2). We compute a reduced fundamental 
parallelogram of this lattice by the usual process, i.e., we determine a fundamental 
pair of units c1, c2, called reduced units, so that the form 

(x logIc1I ? y logIcI)2 + (x log,l, + y log k|I)2 + (X log,c, I + y log,Ej|)2 

is a (semi) reduced positive definite binary quadratic form. There still is a free choice 
between + e + 1. The choice is made so that N(ci) = + 1 and two of the conjugates of 
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ci have absolute value > 1. Presumably the order of magnitude of the coordinates of 
the pair Ej, E2 with respect to the above basis {1, a, co } is near the least possible. 

7. Tables and Statistics. The table containing the 26440 nonconjugate totally real 
cubic fields with discriminants less than 500000 has been deposited in the Mathe- 
matics of Computation's UMT-depository. It consists of 10 parts, the kth part 
containing the fields with discriminants between 50000(k - 1) and 50000k. For 
each field K = Q(a), where a is an NPE the following data are listed: 

- running number r 
- discriminant D of K 
- coefficients s, q, n of the polynomial Irr(a, Q) = X- sx2 + qx - n 
- index a satisfying (5.4) 
- numbers 1, m satisfying (6.1) so that {1, a, co} with co = (I + ma + a2)/a 

is an integral basis for (9 
- class number h of K 
- coefficients a1j (i = 1, 2; j = 0, 1, 2) of the reduced units 

El= a10 + aila + ai2w 
- TP indicates that every norm-positive unit is totally positive. 
The data are listed in the format 

r D s q n a / m h a1j (TP) 

where the numbers ai are arranged in the form of one of the following three 
matrices depending on the space occupied by them: 

A = (a1loal al2a20a21 a22), a2oal a2a), AT(transpose of A). 

The program was constructed in FORTRAN 5A for the DEC-20 system at the 
Computer Centre of the University of Turku. The total CPU time required was 
about 55 hours. Most of the calculations were performed either in integral arithmetic 
or double-precision arithmetic with 18 significant digits. However, when computing 
the units one needs a precision of much higher order of magnitude. To begin with, 
we used an accuracy of 120 digits. The program contained various reliability checks. 
The sufficiency of the space reserved for the numbers was tested, and integers being 
expressed as a decimal were tested to have either 00000 or 99999 as first digits after 
the decimal point. Finally, the norms of the reduced units were checked for actually 
having the value 1. If the field K under consideration failed to pass the test, a 
warning index in the corresponding record was given a positive value. Afterwards, 
we gathered together all such faulty cases and repeated the computation using 250 
digits. This was found to be sufficient with the exception of three large cases 
requiring about 300 digits. The necessary multi-precision routines were constructed 
by ourselves. 

The table below gives statistics referring to the class numbers. The numbers at the 
top of each column are the bounds on the discriminant. 

As remarked in the Introduction the corresponding table in [1] is erroneous and a 
revised version has been given by Llorente and Oneto [15]. However, even the latter 
is not fully in accordance with our results. In fact there are six differences; we have 
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found the following numbers of occurrences: 

for 20001 < D < 30000 and class number = I no. = 474 

for 30001 < D < 40000 and class number = f4 no. = 3 

{ no. = 33 
for 60001 < D < 70000 and class number = 2 no. = 33 

Class 1 50001 100001 150001 200001 
.number 50000 100000 150000 200000 250000 

1 2023 2169 2204 2204 2258 

2 109 181 193 199 230 

3 112 155 143 162 163 

4 11 10 17 20 29 

5 6 12 12 11 11 

6 1 6 11 12 17 

7 l6 23 3 

8 2 1 4 3 2 

9 2 1 4 4 2 

10 -- 2 - 

11 2 238 2 2 

12 ----- 

13 - - 1 - 

Total no 
of fields 2263 2 541 2 591 2620 2715 

Class 250001 300001 3501 400001 450001 
number 300000 350000 kooooo 450000 50000() 

1 ~~~22,61 2244 2278 2309 2270 

2 216 232 238 229 232 

3 156 199 155 154 193 

4 26 24 26 29 32 

5 12 i4 14 12 21 

6 10 16 9 17 11 

7 52 6 

8 1 2 3 2 

9 3 3 5 3 2 

10 - 3 1 3 1 

11 I - - - 

12 1 1 -5 3 

13 - -1-1 

i6 ~- ---1 

Total no 
of fields 20691 27246 27131 2766 27176 
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The following tables contain statistics about TP-cases and about nonconjugate 
fields with the same discriminant. Both these phenomena are of considerable 
theoretical interest. 

DTSCRIMINANTS OF FIELDS IN WHICH FVERY NORM-POSITtVE UNIT IS 
TOTALLY POSITIVE. IN THE CASES MARKED WITH AN ASTERISK THERE 
ARE SEVERAL NONCONJUGATF FIELDS HAVING THE SAME DISCRIMINANT 
ONLY ONE OF THEM POSSESSING THE TOTAL POSITIVITY PROPERTY 

15529 25717 25961 28669 29813 37229 53121 57077 
59749 66536 74708 82661 86321 88289 94441 95992* 
97997 99732 104153 109048 109621 114973 119369 124745 

126857 142877 147788 148700 149189 150049 152737 154708 
155917 166877 167333 171805 174829 176665 184761 189817 
194549 194581 197513 206456 206764 215828 219196 225369 
225653 221065 228237 230773 230825 236197 2.37469 241553 
241556 242881 244756 249737 260117 270737 276788 277268 
282593 283932 285865 289048 292088 294977 295329 297781 
303156 305684 307817 313108 317620 318277 321516 324692 
325153 328013 330452 333617 336517 336745 338441 341832 
344065 345332 345656 348949 349693 350108 353777 353885 
357656 362837 364492 375917 377780 380869 386013 387381 
392881 393244 403572 404033 405528 415657 420393 420757 
424505 426188 426357 428212* 429529 429569 430796 433111 
437677 458344 439397 446284 448904 450353 451845 458260* 
458477 464485 474952 479733 482825 485717 488201 494177 
494209* 496865 

DISCRIMINANTS WITH N ASSOCIATED NONCONJUJGATE FIELDS FOR N > I 

Nis 2 

3969 8281 13689 17689 29241 37300 38612 45684 
46548 47089 55700 61009 66825 67081 69012 77841 
83700 90601 92340 110889 113940 115668 138996 148372 

149769 155412 157300 162324 162409 164052 168372 173556 
181300 182329 182868 185652 186516 189972 191700 208980 
213300 215700 215892 219961 223668 231361 235224 238140 
248724 255636 257556 259700 261121 262964 263277 275700 
278964 284148 296325 299700 301401 302292 305809 312481 
323028 327668 331425 334260 34020n 346921 348948 359100 
363609 367956 370548 372276 374868 379700 391284 393012 
393492 395604 399924 419796 428436 431325 431649 435348 
441396 442260 452925 456948 457652 458325 46037? 460404 
461041 465588 470988 473300 489300 494209 

N8 3 

22356 28212 31425 413.32 47860 54324 57588 58077 
62004 62644 63028 65908 77844 82484 86485 86828 
89073 95992 97844 98132 99860 101876 105192 108729 

109396 119604 122300 123860 129164 136628 138388 144212 
144532 146452 150164 152212 153981 156244 161844 177741 
180549 189777 198045 202932 205748 210708 214925 215796 
217012 223540 223604 224084 225716 226580 235953 23627? 
239124 239476 240692 263196 270292 270405 275604 279284 
293876 295284 302612 303220 304925 305268 313492 313620 
314577 314772 317300 321364 323956 324308 325620 325809 
326281 326516 327537 335732 3s9348 344568 344884 345716 
350612 354772 358425 360948 378228 380884 383668 384404 
392468 394292 397300 405965 407528 408244 41n913 414108 
418324 419688 424148 425493 428212 430228 438484 439124 
444756 444852 448092 448929 452084 456425 456980 458260 
458356 459892 462537 465988 464212 469233 469773 470569 
471325 476820 47?981 478521 486708 492212 492700 493925 
498428 

N 4 

32009 42817 62501 72329 94636 103809 114889 130397 
142097 151141 152949 153949 172252 173944 184137 189237 
206776 209765 213915 214028 214712 219461 220217 250748 
252977 255973 259653 265245 275881 282461 283673 298849 
32n785 321053 326945 333656 335229 341724 342664 358285 
363397 371965 384369 390876 400369 412277 415432 422573 
424236 431761 449797 459964 46081? 468472 471057 471713 
476124 476152 486221 486581 494236 
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The notable increase in local density of these N = 3, 4 fields as D increases, is 
discussed at length in [17] and is said to account for the increase in overall local 
density toward the theoretical limit (12 t(3)) 1 that was mentioned above. 

Our final table gives a list of discriminants D and class numbers h of fields with 
noncyclic class group. Each of these groups is generated by two elements. For the 
four cases with h = 12 in the table there is more than one field with these D, but 
only one with a noncyclic group. On the other hand, both fields of D = 431649 have 
noncyclic groups so they are listed twice. The frequency of occurrence of a noncyclic 
class group is 35 out of 26440 so that the phenomenon is a very uncommon one 
indeed. This is in conformity with the comprehensive results of Buell [4] on class 
groups of imaginary quadratic fields. 

D h D h D h 
26569 4 35537 4 76729 4 

121801 4 128357 8 146853 9 
151717 4 157609 4 210649 4 
229577 4 240149 9 277429 4 
299209 4 312709 8 314369 4 
347485 4 368449 4 376712 9 
394609 4 395177 4 409533 4 
412277 12 424148 12 428657 8 
431649 9 431649 9 442489 4 
444412 8 455700 9 461041 12 
468892 8 474949 4 476249 4 
494209 12 496129 4 

Note added in March, 1984. After the completion of this work we have computed a 
supplementary table containing the values of the regulators up to D < 200000. A 
table of unit signatures is in preparation. 
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