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On Totally Real Cubic Fields
By Veikko Ennola and Reino Turunen

Abstract. The authors have constructed a table of the 26440 nonconjugate totally real cubic
number fields of discriminant D < 500000 thereby extending the existing table of fields with
D < 100000 by I. O. Angell [1]. Serious defects in Angell’s table are pointed out. For each
field, running number, discriminant, coefficients of a generating polynomial, integral basis,
class number, and a fundamental pair of units are listed. The article contains statistics about
the following subjects: distribution of class numbers; fields in which every norm-positive unit
is totally positive; nonconjugate fields with the same discriminant; fields with noncyclic class
group. The fields are tabulated by means of a method due to Davenport and Heilbronn [7], [8]
which leads to a unique normalized generating polynomial. The given units are chosen so that
the fundamental parallelogram of the unit lattice determined by the corresponding vectors in
the logarithmic space is reduced.

1. Introduction. A table of totally real cubic fields of discriminant D < 100000 has
previously been constructed by I. O. Angell [1]. In this article we shall describe the
construction of an extended table for D < 500000. It has been deposited in the
Mathematics of Computation’s UMT-depository.

The motive for this work stems firstly as a by-product from the first author’s wish
to investigate certain parametric families of totally real cubic fields with small
fundamental pairs of units and large class number, and secondly from the fact that
serious defects have been discovered in Angell’s table. A list of such defects which
have come to our attention is as follows.

(1) There are 11 fields missing. These fields have discriminants 25717, 32404,
35996, 37108, 37133, 38905, 39992, 43165, 43173, 43176, 95484. The omission of the
first field has been discovered by Franz Halter-Koch and has evidently been
corrected in later versions of the table. The omission of the other ten fields has
previously been independently discovered by Llorente and Oneto [15].

(2) The field with discriminant 88588 appears twice.

(3) In “Appendix of units with large coefficients” there are two errors. For
D = 81377, the first number, and for D = 82657, the second one are not units: they
both have norms divisible by 10.

(4) In the statistics referring to the class numbers [1, p. 186] there are several
mistakes as discovered by Llorente and Oneto [15]. They give a revised version of
these statistics which, however, is not fully in accordance with our results (see
Section 7 below for details).
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(5) Angell’s adaptation of the Voronoi algorithm does not necessarily produce a
fundamental pair of units (e.g., in the case D = 39601 = 1992, the given units
together with -1 generate a subgroup of index 3 in the group of units). This
observation was made by M. N. Gras.

The method we have used in order to tabulate the fields is due to Davenport and
Heilbronn [7], [8]. It is different from that of Angell, but a somewhat similar
approach has previously been used by Llorente and Oneto [15]. As was shown by
Davenport and Heilbronn, there exists a bijective discriminant-preserving map of
the set of triplets of conjugate totally real cubic fields onto a subset Z of the set of
reduced integral primitive irreducible binary cubic forms. Here we have to modify
slightly the classical concept of a reduced cubic form [10, Chapter XII] in order to
have just a single one contained in each equivalence class. The local conditions of
Davenport and Heilbronn, which are necessary and sufficient for a reduced form to
belong to %, are given below in a simplified form.

In the search for all forms in % with discriminants in a given range it is useful to
have stringent limitations for their coefficients. We therefore present a collection of
best possible inequalities satisfied by those coefficients.

From a form in # we construct a monic cubic polynomial with integral coeffi-
cients in an obvious manner. A polynomial obtained in that way is called a
normalized cubic polynomial (NCP) and its zeros are termed normalized primitive
elements (NPE). Hence, a noncyclic field is generated by a unique naturally defined
NPE, while a cyclic field contains three such elements. We show that if « is an NPE
of a field K, the conjugates of a have least standard deviation among all irrational
algebraic integers 8 of K, and that this property is shared only by certain particular
B’s naturally related with a. If K is cyclic then, apart from sign, the NPE’s are equal
to the Gaussian periods for a generating cubic character of K.

Our method thus leads automatically to a complete set of different fields: in
particular, no Tschirnhausen transformation or any other means are needed to test
the fields for being distinct. Moreover, an integral basis of K and the value of the
discriminant are readily at hand.

In order to compute the class number (class group structure) and a fundamental
pair of units, we have used the classical Voronoi algorithm [9, Chapter IV]. It works
very efficiently, the only drawback being the rather high degree of precision needed
in a few cases due to the largeness of the units produced by the algorithm. In the
unit lattice we have performed a reduction process to the effect that the final units to
be listed in the table (called reduced units) are so chosen that the fundamental
parallelogram of the lattice determined by the corresponding vectors in the logarith-
mic space is reduced. In this way we find a naturally defined fundamental pair of
units, the choice of which is optimal in a certain sense.

For the extended range we give similar statistics as the one in [1] and [15] already
discussed. The total number of nonconjugate fields with discriminants less than
500000 is 26440 giving the empirical density 0.05288, whereas Davenport and
Heilbronn [8] proved that the asymptotic value is (12 {(3))™' = 0.06933. So the
convergence is very slow as noted in [17].

At the end of the article, there are tables of fields in which every unit is totally
positive or totally negative, of nonconjugate fields with the same discriminant, and
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of fields with noncyclic class group. The last property is a very rare one; we have
encountered only 35 such cases.

All of the computations were done on the DEC-20 computer at the University of
Turku, Finland.

We would like to thank Mme. M. N. Gras, Dr. Jukka Pihko, and Professors
Harvey Cohn, H. J. Godwin, Franz Halter-Koch, and Jacques Martinet for their
assistance and helpful comments. We are especially indebted to the members of the
staff of the Computer Centre at the University of Turku for their cooperation. The
work has been supported financially by the Academy of Finland.

For any cubic field K we denote by @ = 0 the ring of integers of K. If 8 € K, its
conjugates are denoted either by 8, 8/, 8 or by 8¢ (i = 0,1,2; B© = B). The trace
and norm of B8 are Tr(8) = B8+ B’ + B” and N(B) = BBB”. We also write N(N)
for the norm of a nonzero fractional ideal % of K. The symbol O indicates the end of
a proof.

2. Reduction of Binary Cubic Forms. We shall assume in the sequel that the binary
cubic forms
(2.1) F(x,y) =ax® + bx*y + cxy* + dy?
which we are dealing with are (i) integral, ie., a, b, c,d € Z; (ii) primitive, i.e.,
ged(a, b, c,d) = 1; (i) irreducible in the ring Q[x, y]; and (iv) have positive
discriminant
(2.2) D(F) = b%?* — 4ac® — 4b°d — 27a’d? + 18abcd.
Accordingly, when speaking simply of cubic forms we always assume that the form
is binary and that these conditions are satisfied. Equivalence of forms (both cubic
and quadratic) and equivalence class are understood in the wide sense, i.e., homoge-
neous linear substitutions with integral coefficients and determinant = +1 are
admitted. If determinant = +1 is required, we expressly speak of proper equiva-
lence and proper class. The cubic form (2.1) has the quadratic covariant

(2.3) H(x,y)=Tx>+ Uxy + Vy2,
where
(2.4) T=0b*—3ac, U=bc—9ad, V=c?>—3bd.

It is well-known that the quadratic form (2.3) is positive definite and its discriminant
is

(2.5) U? — 4TV = -3D(F) < 0.

According to the classical reduction theory of Arndt [2] and Hermite [13] the form
(2.1) is called reduced iff (2.3) is a reduced quadratic form, i.e., either -T < U< T
< Vor0< U<xT=V.In the following theorem we introduce a slightly modified
concept in order to obtain a unique representative for each class.

THEOREM 1. Every equivalence class € of binary cubic forms contains exactly one
REDUCED FORM F(x, y) = Fy(x, y) satisfying one of the following conditions:

() -T<U<T<V,a>0,andeitherb>0o0rb=0andd > 0,

i) 0<U=T<V,a>0,andb > 3a/2,

(i) 0<U<T=V,a>0,and|d|> a,

(iv) 0=U<T=V,a>0,andd < -a,

v) 0<U=T=V,a>0,andb > 3a/2.
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Proof. Let € be given. By the classical theory referred to above, we can pick a
form F(x, y) € ¥ such that -T< U< T<Vor 0 U<T-=YV. Applying the
substitution x = —x’, y = -y’ if necessary, we may suppose that a > 0.

Case 1. -T < U < T < V. Clearly, either F(x, y) or F(x, —y) satisfies the condi-
tions (i) and is thus the required F,(x, y). Let H,(x, y) denote the quadratic
covariant of F(x, y). Suppose that F)(x, y) is another form in € satisfying (i) and
let H,(x, y) denote its quadratic covariant. Since F; and F, are equivalent, so are
their quadratic covariants, and hence H,(x, y) is properly equivalent to H (x, y) or
to H,(x, —y). Since all three quadratic forms are reduced, either H,(x, y) = H (x, y)
or Hi(x,y)= Hg(x,—y). Let 7 denote a substitution with determinant = +1
transforming F,(x, y) correspondingly into F (x, y) or Fy(x,-y) so that 7 is an
automorph of H,(x, y). By [11, p. 72, Theorem 57] 7 is either the identity or
[x = —x’, y = —y’]. The latter alternative is impossible because the leading coeffi-
cients are positive, and therefore Fi(x, y) = Fy(x, y) or Fy(x,-y). However,
F,(x, —y) does not satisfy (i). This proves the uniqueness of F.

Case 2. U = T < V. The quadratic covariant of the form F(x, y) = F(x,-y) is
H(x, y)= Tx> — Txy + Vy% Then, H\(x +y, y)=Tx>+ Txy + Vy? is a re-
duced quadratic form. Consider therefore the corresponding cubic form

Fy(x,y)=F(x+y,-y)=ax®+(3a— b)x?%
+(Ba—-2b+c)xy?+(a—b+c—d)y’.
Suppose that b = 3a/2. From U = T, we then have d = -a/4 + ¢/2 so that
F,(x, y) = F(x, y). However, it is easy to see that F(x, y) would be divisible by
2x + y in the ring Q[x, y]. Therefore, b # 3a/2 and either F(x, y) or F,(x, y)
satisfies (ii) depending upon whether b > 3a/2 or b < 3a/2.

The same argument as in the preceding case shows that any form contained in ¢
and satisfying (ii) must coincide with Fg(x, y) or with Fy(x + y,-y). Since the
latter form does not satisfy (ii) the uniqueness of F follows.

Case 3.0 < U < T = V. In this case H(x, y) = Tx? + Uxy + Ty>. Consider the
transformed cubic form

Fy(x,y) = F((sgnd)y,(sgnd)x)
= (sgnd)(dx® + cx?y + bxy? + ay?)

the quadratic covariant of which coincides with H(x, y).

Suppose first that d = a. From T = Vit then follows that (b — ¢)B3a + b + ¢) =
0. We cannot have b = ¢ otherwise F(x, y) would be divisible by x + y. From
3a + b+ ¢ = 0weinfer U= -9a% — 3ab — b < 0 contrary to the assumption.

Suppose next that d = —a. From T =V we get (b + ¢)B3a — b +¢)=0. We
cannot have b = —c otherwise F(x, y) would be divisible by x — y. From 3a — b +
¢ = 0 it follows that U = 9a2 — 3ab + b* = T, contradicting the assumption.

Therefore, |d| # a and either F(x, y) or F(x, y) satisfies (iii). The uniqueness of
Fy(x, y) is proved as before.

Case 4.0 = U < T = V. The following general identities are valid in each case

(2.6) ¢T — bU + 3aV =0,
(2.7) 3dT — U + bV = 0.



ON TOTALLY REAL CUBIC FIELDS 499

In Case 4 we find from these identities that ¢ = —3a, b = —3d. Therefore, F(x, y) is
of the form

F(x,y) = ax?® — 3dx?y — 3axy? + dy°.
Clearly d # +a because F(x, y) is irreducible in Q[x, y]. Now the cubic forms
F(x, y) = ax® — 3dx%y — 3axy? + dy?,
F(x,-y) = ax’ + 3dx?y — 3axy? — dy*,
F((sgnd)y,(sgnd)x) = (sgn d)(dx> — 3ax?y — 3dxy? + ay*),
F(—(sgnd)y,(sgnd)x) = (sgn d)(dx’ + 3ax’y — 3dxy” — ay*),

are contained in € and exactly one of them satisfies (iv). By changing the notation if
necessary we may assume that this form is F(x, y). We have thus found F (x, y) =
F(x, y) with quadratic covariant H(x, y) = T(x? + y?).

Suppose now that F;(x, y) is another form in € satisfying (iv) and let H(x, y)
denote its quadratic covariant. Since H,(x, y) and H(x, y) are equivalent reduced
quadratic forms and H(x, y) is improperly equivalent to itself, we must have
H,(x, y) = H(x, y). Let 7 denote a substitution with determinant = +1 transfor-
ming F;(x, y) into F(x, y) or F(x,-y). Then 7 is an automorph of H(x, y) and by
[11, loc.cit.] 7 is one of the following four substitutions:

(2.8)

[x=x"y=y] [x=-x,y=>1 [x=y,y=-x]
[x=-",y=x]

Taking into account that the leading coefficients of F,(x, y) and F(x, y) are
positive, it is easy to see that F,(x, y) must be one of the forms (2.8). However, only
one of them satisfies (iv) and therefore F;(x, y) = F(x, y).

Case 5. U = T = V. From (2.6) and (2.7) we have

c—b+3a=3d-—c+b=0
implying d = —a, ¢ = b — 3a. Hence, F(x, y) is of the form
F(x, y) = ax® + bx% +(b — 3a)xy* — ay’.
We must have b # 3a/2, otherwise F(x, y) would be divisible by x — y. Further,
F(-y,-x) = ax® +(-b + 3a)x? — bxy? — ay’,

and either F(x, y) or F(-y,-x) satisfies (v), i.e., is the required F (x, y). Choose
the notation so that this form is F(x, y). Its quadratic covariant is H(x, y) =
T(x? + xy + y?). Suppose that F,(x, y) is another form in ¥ satisfying (v). As in
Case 4, we find that the quadratic covariant of F;(x, y) must coincide with H(x, y).
Again let T denote a substitution of determinant = +1 transforming F;(x, y) into

F(x, y) or F(-y,-x). By [11, loc.cit.] 7 must be one of the following six substitu-
tions:
[x=x,y=y1 [x=-x"=y,y=x1] [x=y,y=-x -yl
[x=-x,y=1 [x=x+y,y=-x] [x=~"y=x+y]
However, simple computations show that for such 7 the substitution 7! transforms

F(x, y) and F(-y, —x) into themselves or into identically opposite forms. Since only
one of these four forms satisfies (v), we have Fi(x, y) = F(x, y). O
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3. Inequalities Concerning Reduced Cubic Forms. A table of minimal polynomials
was produced by first tabulating the relevant cubic forms. For that purpose precise
estimates for the coefficients of these forms in terms of the discriminant are
valuable. In the following theorem we shall present a collection of such estimates all
of which are best possible. The first four are classical [3], [14], but for the
convenience of the reader we give a complete proof. In a less accurate form these
results are contained in [6, p. 185, Lemma 1].

THEOREM 2. Let F(x, y) = ax® + bx%y + cxy? + dy> be a reduced binary cubic
form with discriminant D = D(F). Then the following estimates are valid:

(3.1) 0<a<2DY*/27, |b|<2DY*//3,
(3.2) lad| < 4DY2/27,  |bc| < D'/?,
(3.3) max{|ac®|,|p%d|} < (35 + 13/13) D/216.

Remark. The example a = 1, b = 6, ¢ = 3, d = -1 shows that equality can occur
in (3.1).

To show that the first inequalities in (3.1) and (3.2) are best possible take
a=4m —2,b=6m,c = -6m,d = —-4m + 1, where m is a (large) positive integer.
Then F(x, y) is clearly primitive and it is irreducible in Q[x, y] by Eisenstein’s
criterion. We have

T = 108m? — 36m, U =108m? — 108m + 18, V = 108m? — 18m
so that 0 < U < T < V and F(x, y) is reduced. Since D'/? = 108m? + O(m) we
have aD™'* = 2/V27 + O(m™),|ad|D~V? = 4/27 + O(m™).
Next, take a=1, b=2m + 4, ¢ =2m, d = -2, where again m is a (large)
positive integer. Then,

T=4m?>+ 10m+ 16, U=4m>+8m + 18, V =4m>+ 12m + 24,
whence F(x, y) is reduced. We have D'/? = 4m? + O(m) and bcDV/?* =1+
O(m™1) so that the second inequality (3.2) is best possible.

The fact that (3.3) is best possible will be obvious from the subsequent proof.
Proof of Theorem 2. The following general identities are easily seen to be true:

(3.4) (2bT — 3aU)* + 274D = 4T?,
(3.5) (2¢T — bU)? + 362D = 4TV,
(3.6) (2bV — cU)* + 3¢*D = 4TV?,
(3.7) (2¢V — 3dU)* + 27d*D = 4v°,
Since the form is reduced, we have

(3.8) D= (4TV - U?)/3>TV > T2

From (3.4), (3.5), (3.8) we immediately obtain (3.1) with the reservation that the
upper estimate of a might not be a strict inequality. However, in the case of equality
we must also have equality in (3.8) and 26T — 3aU = 0. This would imply 7 = U =
V and 2b = 3a contrary to the proof of Theorem 1, Case 5.

On combining (3.4), (3.7), (3.8), we have

(27adD)* < 16(TV)’ < 16D3
implying |ad| < 4D'/? /27 because equality cannot occur.



ON TOTALLY REAL CUBIC FIELDS 501

Using the identity
(3.9) B2V — beU + ¢*T = TV,
we find
2TV)?|be| < b2V + 2T = TV + beU < TV + |beU|,
whence, by (3.8),
3D|be| = (2(TV)"? +|U)(2TV)"? = |U]) |be]
< (2A1v)? +|U|)TV < 3(TV)*? < 3D

so that |bc| < D'/2. If equality occurs then T = U = V and b = c. But in the proof
of Theorem 1, Case 5 we saw that ¢ = b — 3a, a contradiction. We have thus proved
(3.2) and it remains to prove (3.3).

Put k = (35 + 13V/13)/216. We shall show first that lac®| < kD. From (2.4) and
(3.4) we find

(3.10) ac’/D = (b*> — T)’ /(4T — (2bT - 3aU)?).
We have the identity

(3.11) 94V — 3abU + b*T = T2

Put

x =3aVV?T™', y=3aUT 2, z=2bT"'?-3aUT"*2
From (3.11) and from the conditions of reduction we get
(3.12) x>0, |yl<x, 4x*—y?+z:*=4
and the right-hand side of (3.10) takes the form

o(x, v, 2) = ((y + 2)* = 4) /(64(4x> - »?)).

We have to study the function ¢(x, y, z) subject to the constraints (3.12). We may
suppose that z > 0 because the change of the signs of y and z leaves ¢ and (3.12)
unaltered. It follows, in particular, from (3.12) that 3x2 + z% < 4, and thus

(3.13) l<x<2/V3, 0<z<2.

If (x, y,2z) > (0, y,, z,) subject to (3.12) and (3.13), then y, = 0, z, = 2, and it is
easy to see that limg(x, y, z) = 0. We may therefore assume that a point (x, y, z)
satisfying (3.12) and (3.13) is so chosen that the function |p| subject to these
constraints attains its maximum at that point.

Suppose first that |y + z| > 2. From (3.13) we have y > 0. Since

3
lo(x, 3, 2)] = ([ +(4 = 4x? + 7)) = 4] /(6a(4x2 - y?))
is an increasing function of y we must have y = x so that
3
(3.14) o (x, 3, 2)l = ((x +(4 = 3x2)%)° = 4) /(192x?)

= (x(4 —3x2)V? = 3x2 + 2x4)/6.
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Since x + (4 — 3x?)/?2 =y + z > 2 implies x < 1, we have to compute the maxi-
mum of the function (3.14) in the interval (0, 1]. This is a trivial task, the maximum
is (-35 + 13V13),/216 attained at the point x = ((5 — V13)/12)"/
Suppose next that |y + z| < 2. For z < 1 we have
3
|<P(X, Vs z)| = (4 _(y + 2)2) /(64(4 - 22))
<1l/(4-z*)<1/3 <«

Suppose therefore that z > 1. Then (3.12) implies |y| < x < 1sothat0 <y + z < 2.
From the choice of the point (x, y, z) it now follows that we must have y = —x;
otherwise we could either change the sign of y or diminish y slightly and change x
correspondingly in order to keep z fixed, which would give us a larger value of
lo(x, v, z)| Therefore,

(3.15) lo(x. y )] = (4 = (=x + (4 = 3x2))) /(19252

= (x(4 —3x2)? 4 3x2 - 2x4)/6,

and on computing the maximum value of the function (3.15) in the interval (0, 1) we
obtain |@(x, y, z)| = « for

(x, 3, 2) = (((5 + V13),/12)"%, ~((5 + V13)/12)" %, (11 - V13) /4)' 7).

Hence |ac®| < kD as asserted.
The proof of |b°d| < kD is similar. We start from the expression

b’d/D = (2 — V)’ /(4V? —(2¢V — 3dU)’)
which is a consequence of (2.4) and (3.7), and use the identity
9d2T — 3cdU + ¢V = V2.
This time we write
x =3|d|TV?V"Y, y=3dUV->32, z=2cV V2-3dUV 32,
and the proof proceeds exactly as before. O

4. Normalized Cubic Polynomial. Let F(x, y) = ax® + bx2y + cxy? + dy® be a
reduced cubic form of discriminant D = D(F). The polynomial f(x) associated with
the form F(x, y) is defined as

(4.1) f(x)=a'F(x +(eb—s)/3,-ea),
where

(1 ifb%0mod3, _ [ 1 ifb=1mod3,
(4.2) s‘{o ifh=0mod3: € {-1 if b = 1mod3.

Clearly f(x) is a monic cubic polynomial with integral coefficients in which —s is the
coefficient of x2. Writing

(4.3) f(x)=x3—sx*+qx—n,
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we have
(4.4) g=ac—(b2—5)/3=(s—T)/3,
(4.5) n=2eb+s)(eb—s)/27—ac(eb—s)/3 + ea’d

since s = s and e? = 1. The discriminant of the polynomial f(x) is
sq® — 4¢3 — 4sn — 27n? + 18sqn = a*D
= 4T%/27 — 3(3n — sq + 25/9).

We note that the reduced form F(x, y) is not uniquely determined by its
associated polynomial. This is seen trivially by considering the forms ax?® + cxy? +
dy® and x* + acxy® + a’dy® where ¢ < -3a < -3, 0 <d < -¢/(3a), and
ged(a, ¢, d) = 1. (In order to ensure the required irreducibility assume, e.g., that
there exists a prime p such that p t a, p|c, p|d, p* t d.) Then the forms are reduced
and they both have associated polynomial x> + acx + a’d.

It is more difficult to find examples of a pair of reduced cubic forms both having
the same leading coefficient and the same associated polynomial. One such pair is

k3x3 = 3k2(k + 1)xp? + (k3 + k2 — 3) 3,
k3% + 3k%(k — 1)x% — 3k(3k — 1)xy? —(k® + 2k? — 6k + 4)y3,
where k is a positive integer = —1 mod 18. Both forms have associated polynomial
x3 = 3Kk3(k + 1)x + k¥(k + 1) — 3kS.

Suppose now that K is a totally real cubic field of discriminant D and let
% = {1, a, w} be an integral basis for ¢ containing 1 (called unitary in [9, Section
15]). Following Davenport and Heilbronn [7], [8] we assign to % the cubic form

F(x, y: @) = DV2((of = a)x + (o = &))((a = @)x +(o” = @)y)
X((a—a)x +(w—w)y).
It is easily seen that the equivalence class containing the form F(x, y; #) is
independent of the choice of % and thus depends only on X. We denote this class by
% (K ). By an abuse of notation write Fi(x, y) = Fy(ky(x, ) for the reduced form

in the class €(K) and let # be the set of all forms Fy(x, y), K ranging over the set
of all totally real cubic fields. From [8, p. 418, Proposition 4] we have

(4.6)

THEOREM 3. The assignment K — Fy(x, y) induces a bijective discriminant-preserv-
ing map of the set of triplets of conjugate totally real cubic fields onto .

Here, of course, the triplet is coalescent if K is cyclic. From [8] it is easy to derive
the following result which is fundamental in the search of all totally real cubic fields
with discriminants in a given range.

THEOREM 4. Let F(x, y) = ax® + bx?y + cxy? + dy* be a reduced cubic form of
discriminant D. We have F(x, y) € R if and only if the following Davenport-Heilbronn
conditions are satisfied:

(DH2) D #= 0mod 16; if D = 4 mod 16 then b = cmod 2.

(DH3) If D = 0mod9 then b = ¢ = Omod 3 and ad(a® — d*> — ac + bd) = 3 or
6mod9.

(DHp) For every prime p > 5 such that D = 0mod p? we have D %= Omod p°,
a = 0mod p%, T = b*> — 3ac = Omod p.
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Proof. Prime p = 2. By [8, p. 407] the local condition at the prime 2 is equivalent
to the foliowing one: If D = 0 or 4mod 16, then F(x, y) = (ax + dy)>mod 2, and
the congruence F(x, y) = 2mod 4 has a solution.

Suppose first that this condition holds. Clearly b = ¢ = admod 2. If ad is even we
may suppose, e.g., that a is even and d is odd. The solution of F(x, y) = 2mod4
must be (x, y) = (1,0) whence a = 2mod4 and D = q¢?d? = 4mod 16. If ad is odd
apply first the substitution x = x” + y’, y = y’. Hence, (DH2) holds.

Suppose conversely that (DH2) is true. Let D = 4mod 16, otherwise there is
nothing to prove. If b=c=0mod2 we see from (2.2) that D = 5a%d? +
2abcdmod 16. Thus ad is even and D = a’d?mod 16 (e.g., let a be even and d odd).
Since D # 0 mod16 we have a = 2mod4 so that F(x, y) = y*mod2, F(1,0) =
2mod4. If b=c=1mod2 we get from (2.2) that ad is odd. Apply the same
substitution as above.

Prime p = 3. The local condition in [8] at the prime 3 can be written as follows: If
D =0mod9 then F(x, y)= (ax + dy)>mod3, and the congruence F(x, y)=
3e mod 9 has a solution fore = 1 or 2.

Suppose first that this condition holds and that D = Omod9. Clearly b = ¢ =
0mod 3. If 3|a the solvability of F(x, y) = 3emod9 plainly implies 9 + a, whence
ad(a’* — d* — ac + bd) = —ad® = 3 or 6mod 9. The same conclusion holds if 3|d.
Therefore, let ad # 0mod 3. Then a? — d? — ac + bd = Omod 3. We may assume
that the solution of F(x, y) = 3emod9 is (x, y) = (1,1) or (1,-1). Accordingly
eithera+ b+ c+dora—b+ c—dis =3 or 6mod9. In the first case, we have
a + d=0mod3 and

a’—d*—ac+bd=a*—-d*+(a—d)c+(a—d)b

(a—d)(a+b+c+d)=3o0or6mod9,

and similarly, in the other case. Hence (DH3) is true.

Suppose conversely that (DH3) holds and D = O0mod9. From b = ¢ = Omod 3
we immediately have F(x, y) = (ax + dy)*mod3. If 3|a then 9 t+ a by (DH3), so
that F(1,0) = 3 or 6mod9. If 3|d, we similarly have F(0,1) = 3 or 6 mod9. Let
ad = 0mod 3. From (DH3), (a + d)(a — d) = Omod 3, and one may reverse the
argument above.

Prime p > 5. The condition from [8] is the following one: If D = O0mod p? then
F(x, y) = r(hx + ky)>mod p for some integers r, h, k, and the congruence F(x, y)
= epmod p? has a solution for some e = Omod p.

Suppose first that this condition is true and D = O mod p%. From [8, p. 410,
Lemma 6] we have D # O0mod p?. Further T = (3rh%k)? — 3rh33rhk? = Omod p,
and similarly U= V = 0mod p. If p?|a, then from T = V = 0mod p we would
have b = ¢ = 0mod p and from (2.2), D = Omod p?, a contradiction. Thus (DH p)
holds.

Suppose conversely that (DHp) is true, and that D = Omod p2. If p + a, we find
from T = U = 0mod p that ¢ = b*>/(3a)mod p and d = b*/(27a*) mod p, and so
F(x, y) = (3ax + by)?/(27a*)mod p. If p|a it follows from T = O mod p that p|b
and hence D = —4ac*mod p? by (2.2). Since p? + a we get p|c and thus F(x, y) =
dy*mod p. The rest now follows from [8, p. 410, Lemma 6]. O
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A polynomial f(x) is said to be a normalized cubic polynomial (abbreviated NCP)
iff there is a totally real cubic field K such that f(x) is the polynomial associated
with the form Fy(x, y). Obviously K = Q(a), where f(a) = 0. We shall call a a
normalized primitive element (abbreviated NPE) of K over Q. Thus, every noncyclic
K has a unique naturally defined NPE, whereas a cyclic K contains a triplet of such
elements.

5. Properties of Normalized Cubic Polynomials. In the following theorem we shall
prove first that for an NPE, the conjugates have least standard deviation among all
irrational algebraic integers of the cubic field in question. Later on in this section we
shall see that this property almost characterizes an NPE of given trace. In the
foregoing section we saw that two reduced cubic forms may have the same leading
coefficient and the same associated polynomial. Here, we shall see that this is not
possible if the polynomial is an NCP. We shall also construct an algorithm by means
of which the corresponding form in # can be computed when the polynomial is
given.

THEOREM 5. Let a be an NPE of a totally real cubic field K and put Irt(a, Q) = f(x)

= x> —sx2+ qx — n. Forany ¢ € K, write
R(£) =3¢ =€) +(& — ) +(¢" —9))).

(i) We have R(a)=s — 3q = min{R(§)}, the minimum being taken over all
irrational algebraic integers & of K.

(ii) For any given positive integer k, there exists at most one reduced cubic form
F(x, y) with leading coefficient k, such that f(x) is the polynomial associated with
F(x, y).

(iii) Denote Fy(x, y) = ax® + bx*y + cxy* + dy® € R. The form Fy(x, y) can be
traced back from the polynomial f(x) by means of the following algorithm.

(1) The leading coefficient a is the largest positive integer for which an integer t can
be found such that

(5.1) f(¢)=0moda?,  f'(t)=0moda.

We have b* — 3ac = T = s — 3q = R(«a).
(D) If s = 0, then

=3t + 3a[t—t/a — 9n/(2aT)],
c=(b>=T)/(3a),
d = (b3 = 3bT — 27n) /(27a%).
(III) If s = 1, determine first
g=14-t/a—(T —1)/(6aT) - 9n/(2aT),
be=3t—1+ 3alg].
(IL1) If g € Z, then
b = max{b,,3a — b,},
c=(b>-T)/(3a),
d=(bc—T)/(9a).
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(111.2) If g & Z, then writing
dy= (b3 +1—=3(by + 1)T — 27n)/(27a%),

we have ¢ = (b3 — T)/(3a), (b,d) = (by, dy) or (-by,—dy), chosen so that the
condition (i) or (iil) in Theorem 1 is satisfied.

Proof. (i) By definition, f(x) is the polynomial associated with the form Fg(x, y).
From (4.4), T = b? — 3ac = s — 3q, and on the other hand, clearly, R(a) = s> — 3q
= s — 3q. Let H(x, y) denote the quadratic covariant of Fg(x, y). Choose an
irrational algebraic integer 8 of K so that R(f) is least possible. By the minimality
of R(B), (B — h)/k cannot be an algebraic integer for any pair of rational inte-
gers h, k with k > 1. It follows that ¢ has an integral basis # of the form {1, 8,
(u + vB + B?)/w) for some integers u, v, w with w > 0. Since w = [0: Z[B]], we
find that w is equal to the leading coefficient (8’ — B8”)8” — B) B8 — B)D /2 of
the form F(x, y; #), provided that the order of the conjugates of B is suitably
chosen. Here, D = D(Fy) denotes the discriminant of K. Therefore,

F(x, p; 8) = wlx + yy)(x +vy)(x +v"y),
vy = (v+Tr(B) - B)/w.

A simple computation now shows that the first quantity (2.4) for the form F(x, y; %)
equals R(B). Since F(x, y; #) and Fy(x, y) are equivalent, so are their quadratic
covariants, and therefore R( ), being the leading coefficient of the former covariant,
is an integer represented by the reduced quadratic form H(x, y). Since T is the least
nonzero integer represented by H(x, y), R(B8) = T, and thus necessarily R(8) = T.

(ii) Let F(x, y) be a reduced cubic form with leading coefficient k such that f(x)
is the polynomial associated with F(x, y). By (4.1), f(x) = k"'F(x — t, + k) for
some integer ¢. Hence
(5.3) f(¢)=0mod k%,  f'(t) = O0mod k.
It is easy to see that an integer ¢ satisfying (5.3) is unique mod k. Suppose, indeed,

that ¢’ is another such integer. It follows from a theorem of Voronoi [9, p.111,
Theorem I] that the numbers
(> —su+q+(u—s)a+a?)/k, u=tort,

are algebraic integers. Their difference is (¢ — ¢')(t + t' — s + a)/k. However, as
was seen above, a number of this type can be integral only for # — " = Omod k. The
argument in the subsequent proof of (iii) now gives the uniqueness of F(x, y). We
observe that (ii) is true under the weaker assumption that no number of the form
(a — h)/k with h, k € Z, k > 1 is an algebraic integer, which is equivalent to the
fact that there exists an integral basis for ¢ containing 1 and «.

(iii) Since the discriminant of the polynomial f(x) equals a2D, it follows im-
mediately from the theorem of Voronoi cited above that (I) is true. From the
foregoing proof of (ii) we have t = (s — eb)/3 mod a.

Consider first the case s = 0. Then e = -1 and # = b/3 mod a. Putting b/3 = ¢ +
ra, we have from (4.5)

(5.2)

aU = abc — 9a’d = 2(t + ra)T + 9n.
Since -T < U < T, we infer
—-aT < 2(t + ra)T + 9n < aT,
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so that r = [§ — t/a — 9n/(2aT)], which gives the value of b in (II). The rest of (II)
is clearly true, the expression for d being a consequence of (4.5).

Suppose now that s = 1. In this case the argument is slightly more complicated
because we do not know beforehand whether » = 1 or —1 mod 3. Writing (1 — eb)/3
= t + ra, we have this time from (4.5)

—eaU =2(t + ra)T+(T —1)/3 + 9n,
so that
r=—-eU/(2T) —t/a — (T — 1) /(6aT) — 9n/(2aT).
It follows from the inequality -7 < U < Tthatg -1 <r < g

If g € Z then r = g or g — 1, which is possible only for U= T. If b = -1 mod 3,
then e = —1 and r = g so that (1 + b)/3 = ¢t + ra implies b = b,. If b = 1mod 3,
then e =1 and r = g — 1 so that (1 — b)/3 = ¢ + ra implies b = 3a — b,. On the
other hand, we have b > 3a/2 by Theorem 1, (ii) and (v), and therefore b =
max{b,,3a — b,)} in both cases. The assertion (II.1) now follows, the value of d
being obtained from the equation U = T.

If g & Z, then r = [g], —eb = by, and from (4.5), —ed = d .. Clearly (111.2) is true.
a

The practical implementation of the algorithm in order to compute Fy(x, y) is
facilitated by the fact that the computer listings contain the number a and the
residue class of ¢ — smod a. For future reference we record here the obvious
equality
(5.4) a=[0:7[«]].

THEOREM 6. Let K be a given totally real cubic field. Put Fy(x, y) = ax3 + bx?y +
cxy? + dy? and let H(x, y) = Tx?> + Uxy + Vy? denote the quadratic covariant of
Fy(x, y). Then K is cyclic over Q if and only if T = U = V. If this is the case, then
¢ =b — 3a,d = -a, the conductor of K is equal to T, and we have

(5.5) T = (u®+ 3v%)/4

for u = £ (2b — 3a), v = 3a. Assuming that the sign of u is suitably chosen, u and v
satisfy the conditions

u=2mod3,v =0mod3,v>0 for3+ T,
u=6mod9,v=30r6mod9,v>0 for3|T

introduced by Hasse [12, p. 12]. The set {a, o, '} of the NPE’s of K coincides, apart
from sign, with the set of the Gaussian periods for a generating cubic character of K.

(5.6)

Proof. If T = U = V, then by (2.5) the discriminant of K equals 72 so that K is
cyclic over Q with conductor T. Suppose therefore, conversely for the rest of the
proof, that K is cyclic over Q. From the results of Hasse, it follows that we can write
the conductor T of K in the form (5.5), where u and v satisfy (5.6). Take a = v/3,

= v/2 + |u|/2 and consider the form

F(x, y) = ax®+ bx%* +(b — 3a)xy? — ap’.
It is well-known that either T or T/9 is a square-free integer. Since T = 9a* — 3ab
+ b? and 3 + gcd(a, b) by (5.6), it follows that ged(a, b) = 1 so that F(x, y) is
primitive. We have

a'F(3x — by,3ay) = 27x> — 9Txy? + |u|Ty?,
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so that F(x, y) is irreducible in the ring Q[x, y] by Eisenstein’s criterion if 7 # 9.
The same is clearly also true for T = 9. The quadratic covariant of F(x, y) is
T(x* + xy + y?), whence F(x, y) is reduced. It is easy to see that the DH-condi-
tions in Theorem 4 are satisfied so that F(x, y) € #. Using the notation (4.2) the
polynomial associated with the form F(x, y) is

f(x)=x3—sx2+((s—T)/3)x —(e(2b — 3a)T — 3sT + 5) /27

X=X+ (= T)/3)x —(T(u—3)+1)/27 if3+T,
x> —(T/3)x +|u|T/27 if 3|T.
Let 8, 6’, 8” denote the Gaussian periods for a generating character of K multiplied
by +1 asin [16, p. 7] and let «, o, a” denote the zeros of f(x). Now, comparing
f(x) with the minimal polynomial of 8 [16, pp. 8-9], we see that a« = + 6 for some

i. Therefore, F(x, y) must be Fg(x, y), i.e., the image of K under the bijective
Davenport-Heilbronn mapping. O

THEOREM 7. Let a be an NPE of a totally real cubic field K, f(x) = Irr(a, Q) = x>
— sx2 4 gx — n the polynomial associated with Fy(x, y) = ax® + bx%y + cxp® +
dy?, and let H(x, y) = Tx* + Uxy + Vy? denote the quadratic covariant of Fi.(x, y).
For any B € Owe have R(B) = R(«) if and only if B is of the following form:

WOIfT<V,B=t+a+ h,whereh € L.
@) IfU# T =V,eitherB= ta+ hor
B=+(?—st+q+(t—s)a+a?)/a+h,

where h € Z andt = (s — eb)/3, e being defined by (4.2).

() IfU=T=V,B=+a”+ h,wherei € {0,1,2} and h € Z.

Proof. 1t is easy to check that if 8 is of one of the particular types in the theorem,
then B € @0 and R(B)= R(a). Suppose, therefore conversely, that 8§ € @ and
R(B) = R(«). Denote Irr(B, Q) = f,(x) = x* — 5,x2 + ¢;x — n;. As in the proof of
Theorem 5 we conclude from the minimality of R(f), using Voronoi’s theorem, that
0 has an integral basis of the form #Z = (1, 8, p }, where

p= ("12 — s+ g (g —s)B+ ,32)/‘11-
Here ¢, is determined mod a, by
fi(t;) =0mod a?,  f/(t;) = 0mod a,,

and q, is the largest natural number for which these congruences have a solution.
Denote F;(x, y) = F(x, y; #). Arranging the conjugates of B suitably, we have by
(5.2),

(5.7) Fy(x, ) = ay(x +((t; = B)/a) y)(x +((1, = B')/a1) )
X(x +((t1 - B”)/al)y).
From (4.1) we obtain a similar factorization
(5.8) Fy(x,y)=a(x —(e(t — a)/a)y)(x = (e(t — &) /a) y)
X(x —(e(r—a")/a)y),
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where t = (s — eb)/3. Let H,(x, y) denote the quadratic covariant of F;(x, y). In
the proof of Theorem 5 we saw that the leading coefficient of H,(x, y) is R(B) =
R(a) = T. Let (h,,) denote the two-by-two matrix of a unimodular integral homoge-
neous linear substitution transforming Fy (x, y) into Fi(x, y), i.e.,

Fi(x,y) = Fx(hpx + hypp, hyx + hyy).
Then, correspondingly,

Hi(x,y) = H(h;x + hypy, hyx + hyy)
and, in particular,
(5.9) T = Th? + Uh, h, + VR,

Consider first the case T < V. It is well-known (and easy to see) that (5.9) holds
only for h;; = +1, h,; = 0. From the unimodularity of the substitution it follows
that #,, = + 1. Since a and a, are positive, we must have 7, = 1 and a = a,. From
Theorem 6 we know that the conjugate fields of K are distinct and, therefore, we
conclude from the factorizations (5.7) and (5.8), that

x+h,y+((t—a)/a)y=x+((¢, = B)/a)y.
Thus (1) is true.

Consider next the case U # T = V. In this case (5.9) has the additional solution
h;;, =0,hy,; = +1. Then h;, = %1, and from (5.7) and (5.8) we obtain

(510)  hy,y —(e(t—a)/a)(hyx + hypy) = C(x +((1, = B)/a;)y),
where C is a constant. The leading coefficient of F\(x, y)is
(5.11) a, = —eh, (t —a)(t — «)(t — ") /a’.
From (5.10) and (5.11) we have by a simple computation
+B8=(t—a&)t—a")a+h=(1>—1t(s—a)+aa")/a+h
=(t*—st+q+(t—s)a+a?)/a+h

for some integer 4. Hence (ii) holds.

Consider finally the cyclic case U = T = V. In this case the number « in the
previous expressions is replaceable by any of its conjugates. This gives us first of all
the possibility 8 = +a + h. In the proof of the foregoing theorem we saw that
Fy(x, y) is of the form ax? + bx*y + (b — 3a)xy? — ay>. We shall compute the
minimal polynomial of the number

(512)  By=(t*—-st+q+(t—s)a+a?®)/a=(t—a&)(t—a")/a
appearing in (ii). We have Irr(a, Q) = a'Fy(x — t, —ea) so that
N(t — a®) = a"'F¢ (0, —ea) = ea®

for each i and hence N(B,) = a®. A straightforward computation gives Tr(B,) =
b — 3a. From the condition R(B,) = T = 9a> — 3ab + b* we get the missing coeffi-
cient and the result is

Irr(By, Q) = x* — (b — 3a)x? — abx — a®> = a 'Fy(x + a,-a).
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Comparing the two minimal polynomials, we find
(5.13) Bo=eaV—a—e (i=1or2)

because it is obvious that (5.13) cannot hold for i = 0. Therefore, the numbers
resulting from (ii) by replacing a by any of its conjugates are of the form +a/) + h,
where h € Z.

In the present case, (5.9) has the further solution 4;; = -1, &,, = 1. The solution
with signs reversed is not acceptable because the leading coefficient a, (= a) of the
form Fj(x, y) must be positive. Since the substitution is unimodular, we have
hy, + h,, = +1. By interchanging conjugates of « if need be, we may take

—x + hyy —(e(t —a)/a)(x + hyy) = C(x +((1, - B)/a)y),
where C is a constant. It follows that 8 = + 8, + & where h € Z and
B, =-a*/(a+e(t— a)).

We have

N(a+e(t—a))=eN(ea+t— a)=ea'Fy(ea,-ea) = -a°,
so that

Bi=(ea+t—a)(ea+1t—a")/a.

Comparing this expression with (5.12) and using (5.13) we find

Bi=B,+ea+a+e(2t—5)=-ea+e (j=1or2).

This proves (iii). O

For practical purposes it is useful to know the approximate size of the coefficients
of an NCP. The following theorem contains estimates to that effect. Numerical
examples show that these estimates are rather accurate.

THEOREM 8. Let f(x)= x> — sx*+ gx — n be an NCP and let D denote the
discriminant of the corresponding field K. Then

(5.14) s=0orl,

(5.15) -DY2/3 +5/3< g < ~(D/4)" + 5/3,
/ q

(5.16) ~(2/27)D¥* — sD'/2/9 < n < (2/27)D¥*.

Proof. The equality (5.14) holds trivially. Write F(x, y) = ax> + bx%y + cxy? +
dy?. From (4.4) and (3.8) we obtain the lower estimate (5.15). From (4.6) we have
27D < 4T3, so that the upper estimate (5.15) also follows from (4.4). It is now easy
to deduce (5.16) from (4.6) and (5.15). O

6. The Algorithm. We shall now describe our algorithm which allows one to
determine a complete set of NCP’s whose zeros generate all totally real cubic fields
of discriminant D satisfying X, < D < X, where X, and X are given bounds. We
start the algorithm by making a search for the relevant reduced forms. Following the
classification in Theorem 1, we first determine all integral vectors (a, b, ¢, d) with
ged(a, b, ¢, d) = 1 which satisfy one of the following systems of conditions (where
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k = (35 + 13Y13) /216 as in the proof of Theorem 2):
(i.1) 1<a<2XY4/27, 1<b<2X'*//3,
max{-X12/b, (kX/a)'", (b = X'/?)/(3a)} < c
< min{XVz/b, (kX/a)"",(b? - (27X0a2/4)‘/3)/(3a)},
max{(bc — T)/(9a),(c* —=(3X + T?)/(4T))/(3b)} < d
< min{(bc + T)/(9a),(c* = T)/(3b),(c* — 3X,/(4T))/(3b)};

(i.2) 1<a<2XY4/27, b=0,
max{—(:cX/a)l/3, -X'2/(3a)} < ¢ < mjn{—3a, —(XO/(4a))1/3},
1<d<-¢/3;
(ii) 1<a<2XY4/\27,  3a/2<b<2XV*/3,

max{-X'/2/b, ~(xkX/a)"”, (b* - Xl/z)/(3a)} <c
< min{b ~ 3a, X'/b,(kX/a)"", (b2 —(27X0a2/4)”3)/(3a)},
d=(bc—T)/(%a);
(iii.1) 1<a<2XY4/027, 3a/2<b<2XV4/3,
max{-3a,-b} <c<b—3a, d=(c*—b*+ 3ac)/(3b);
(iii.2)  1<a<2XY4/27, 2xY*/V3<b<-3a, b<c< -3a,
d=(c*—b?+ 3ac)/(3b);
(iv) 1<a<2XY4*/\27, 3a<b<2X'*/V3, ¢=-3a, d=-b/3;
(v) 1<a<2XY*/\27, 3a/2<b<2X"Y*/V3, ¢=b—3a, d=-a.

In deriving these conditions frequent use is made of (2.4), (2.5), (2.6) and (2.7). All
bounds involving X or X, are consequences of (3.1), (3.2), (3.3), (3.4) and (3.8). All
other inequalities and equalities with two exceptions are critical in the sense that
their validity is necessary and sufficient for the conditions of reduction to hold in
each respective case. The exceptional ones are the bounds for b in terms of a in (iii.1)
and (iii.2), which are consequences of the bounds for c. If a fractional expression
appears in an equality it is of course stipulated that the numerator is divisible by the
denominator. An overwhelming majority of reduced forms belongs to Case (i). It is
therefore of minor practical importance to include all the possible alternative bounds
for the various quantities in the above estimates in other cases, and we have not
always done so.

The next step is to compute the value of the discriminant D and to discard all
forms which do not satisfy X, < D < X or the conditions (DH2), (DH3), (DHp) in
Theorem 4. We then determine the associated polynomial f(x) from (4.1) and (4.2)
and compute its zeros. If any of these zeros is a rational integer, f(x) is rejected.

In this way we have found the required complete set of NCP’s. Let f(x) = x> —
sx? + gx — n be any of these and let K be the cubic field generated by a zero « of

f(x). As mentioned in the Introduction, in addition to leading to a naturally defined
NCP, our approach has also practical advantages compared with the usual one.
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Firstly, there is no need to check whether fields of the same discriminant are the
same or not. Secondly, we know that the discriminant D of the form Fy(x, y)
computed above is also the discriminant of the field K. Furthermore, the leading
coefficient a of the form Fy (x, y) satisfies (5.4) and O has an integral basis {1, a, w },
where
w=(l+ma+a?®)/a,
(6.1) I=t>—st+qmoda, m=t—smoda, t=(s—eb)/3,
O0<l<a, 0sm<a,
in the notation (4.2).

Let %8,,...,*8, denote the first degree prime ideals of ¢ with norm less than
D'?/9.1. These ideals are calculated and stored in a list. It follows from a result of
Davenport [5] that every ideal class of K contains a product of nonnegative powers
of the ideals 3,. Here one has to take into account that there are only two cubic
fields with discriminants < 81 which are exceptional and they both have class
number = 1. By virtue of the results of H. P. F. Swinnerton-Dyer [19] one could
replace the constant 9.1 by a larger one, possibly at the cost of supplementary
exceptional fields.

Applying the Voronoi algorithm, we determine the class number and the structure
of the class group G of the field K inductively as follows. Suppose that for some j
(1 <j < r) we already know the subgroup H,_; of G generated by the classes
represented by @ and B,,...,%,_,. We choose a representative for each element of
H,_,, consider it in a natural way as a lattice ¥ in R?, compute a y-chain of relative
minima for U [9, Section 54], and calculate the lattices obtained by division of U by
elements of the y-chain within the bounds of one period. All these lattices are stored
in a list called the comparison list. We then determine the smallest positive exponent
k such that there is a lattice obtained in a similar way from an x-chain for 8 j" which
is already contained in the comparison list [9, p. 258, Theorem 7]. If k = 1, we have
H =H, _, If k>1, then H is generated by H,_, and the classes containing
BB J’?‘ !, The enlarged comparison list is computed in an obvious way. In order
to avoid lattices with large generators we replace any ideal by an equivalent one
encountered in the course of the computation if the latter has smaller norm than the
previous one.

Let % be any nonzero integral ideal of K. Suppose that the coordinate axes in R®
are chosen so that the vector corresponding to any number 5 of K is (7, 7', n”'). (We
shall use the same notation for such a vector and its x-coordinate). Let 5, be a
relative minimum in % and let 5, 1,,... be a chain of relative minima starting from
1o- For definiteness, suppose it is an x-chain. Write |N(7,)| = r,N(¥) and take
A, = (r,/n,)A. Obviously, r, is a relative minimum in the lattice A ,, and if §,
denotes the minimum point in this lattice adjacent to 7, on the x-axis [9, p. 247], then

et = E0,6,01/7, (n=0’1a---)~
This is, of course, the principle on which the application of the Voronoi algorithm is
based. At each step the computation is concerned with the determination of A, and
the relative minimum £, , ; adjacent to a given lattice point r, with equal conjugates.

Let {1, a, w} be the integral basis satisfying (6.1). It is of substantial practical
importance to know the order of magnitude of the integer coordinates of £, ; with
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respect to this basis, i.e., the solution x, x;, x, of
(6.2) X+ X0+ X0 =§,.4, Xot x& + x0" =§, .4,

Xo + x0” + x,0" = §,/ 4.
It follows directly from Minkowski’s theorem that r, < D'/2. Since £, ., is adjacent
to r, on the x-axis, we have |§, | <r,, |§/.1] <r, and a repeated application of
Minkowski’s theorem gives |, | < DY? because N(2,) = r2 Using Schwarz’s
inequality we get from (6.2)
DV2lxo] =1 (a'6” = a”0) + £ (a0 — aw”) + £, (a0 — o)
< ﬁDl/z((aQo” - a”w’)2 +(a"w — ozw”)2 +(aw — a’w)z)l/z,
Dl/z'xl' =I€n+1(“” - ‘0”) + §;+1("~’” - w) + §;I.I+1(w - ‘*")
< \/37D1/2((w’ - w”)2 +(w” - w)2 +(w— w’)z)l/z,
Dl/z'le = '£n+l(a” - a,) + §;+1(a - a”) + 'Srlx,+l(a/ - a)'
< ﬁDl/Z((a// _ a/)2 +(a _ a//)2 +(a/ _ a)2)1/2‘

Calculating the expressions for the symmetric functions in terms of s, ¢, n, a, I, m
and using (5.14), (5.15), (5.16), (6.1) we obtain, after a trivial but somewhat messy
computation,

Ixol < V3a (1%(2s — 6q) + 21(-sq + 4q> — 3sn)

+(s — 4q)(q> — 2sn) + 2sqn — 9112)1/2
< (2/3) D4,
il < V3a™((m + )25 — 6g) — 2(m + 5)(sq — 9n) + 24* — 6sn)"
< V6(DV?/3 + D/*),
x| < (65 — 189)"* < V6 DV,

In conclusion, we shall briefly sketch the determination of a fundamental pair of
units by Voronoi’s method. Take % = @, n, = 1 and consider the x-chain 7, 1,,...
in % as above. Let %, be the first repeating lattice, i.e., %, = %, for some 0 < j < k.
Then ey, = m;/7; is the first fundamental unit. Next let {,, {;,. .. denote the y-chain
in the lattice % ;_, starting from {, = §; in the above notation. (If j = 0 we take
A_, = Oand {;, = 1.) Let p be the smallest positive index for which anh € {,...,
k — 1} can be found such that there is an equality of lattices (1/,)%,_; =
(1/m,)%. Then ey, = (0;£,)/(4$5) is the second fundamental unit.

The two-dimensional unit lattice in the logarithmic space is generated by the
vectors (log|ey |, logley |, loglex ;) (i =1,2). We compute a reduced fundamental
parallelogram of this lattice by the usual process, i.e., we determine a fundamental
pair of units g, &,, called reduced units, so that the form

)2 +(xlog

(xloglell + yloglezl)2 +(xlog &| + ylog |&; e+ ylog|e’2’|)2

is a (semi) reduced positive definite binary quadratic form. There still is a free choice
between + &+, The choice is made so that N(e;) = +1 and two of the conjugates of
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¢, have absolute value > 1. Presumably the order of magnitude of the coordinates of
the pair ¢, &, with respect to the above basis {1, &, w } is near the least possible.

7. Tables and Statistics. The table containing the 26440 nonconjugate totally real
cubic fields with discriminants less than 500000 has been deposited in the Mathe-
matics of Computation’s UMT-depository. It consists of 10 parts, the kth part
containing the fields with discriminants between 50000(k — 1) and 50000k. For
each field K = Q(a), where « is an NPE the following data are listed:

— running number r

— discriminant D of K

- coefficients s, ¢, n of the polynomial Irr(a, Q) = x> — sx?> + gx — n

— index a satisfying (5.4)

— numbers /, m satisfying (6.1) so that {1, a, w} with @ = (/ + ma + a?)/a

is an integral basis for ¢
— class number 4 of K
— coefficients a, ,(=12;j=0,1,2)of the reduced units
g, =a,taa+ a,w
— TP indicates that every norm-positive unit is totally positive.
The data are listed in the format

r Ds qgnal mh a, (TP)

where the numbers a,; are arranged in the form of one of the following three
matrices depending on the space occupied by them:

410911 %12

T
azoanazz), A" (transpose of 4).

A = (ayay a axay ay), (
The program was constructed in FORTRAN 5A for the DEC-20 system at the
Computer Centre of the University of Turku. The total CPU time required was
about 55 hours. Most of the calculations were performed either in integral arithmetic
or double-precision arithmetic with 18 significant digits. However, when computing
the units one needs a precision of much higher order of magnitude. To begin with,
we used an accuracy of 120 digits. The program contained various reliability checks.
The sufficiency of the space reserved for the numbers was tested, and integers being
expressed as a decimal were tested to have either 00000 or 99999 as first digits after
the decimal point. Finally, the norms of the reduced units were checked for actually
having the value 1. If the field K under consideration failed to pass the test, a
warning index in the corresponding record was given a positive value. Afterwards,
we gathered together all such faulty cases and repeated the computation using 250
digits. This was found to be sufficient with the exception of three large cases
requiring about 300 digits. The necessary multi-precision routines were constructed
by ourselves.
The table below gives statistics referring to the class numbers. The numbers at the
top of each column are the bounds on the discriminant.
As remarked in the Introduction the corresponding table in [1] is erroneous and a
revised version has been given by Llorente and Oneto [15]. However, even the latter
is not fully in accordance with our results. In fact there are six differences; we have
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found the following numbers of occurrences:
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for 20001 < D < 30000 and class number = {1 no. = 414
2 no.=27
for 30001 < D < 40000 and class number = { 4 no.-=3
5 no.=3
for 60001 < D < 70000 and class number = {2 no. = 33
3 no.= 32.
iClass 1 50001 100001 150001 200001
number 50000 100000 150000 200000 | 250000
1 2023 2169 2204 2204 2258
2 109 181 193 199 230
3 112 155 143 162 163
L 11 10 17 20 29
5 6 12 12 11 11
6 1 6 11 12 17
7 1 6 - 3 3
8 - 1 4 3 2
9 - 1 4 4 2
10 - - 2 - -
1 - - - 2 -
12 - - - - -
13 - - 1 - -
Total no
of fields| 2263 2541 2591 2620 2715
Class 250001 300001 350001 Loooo1 450001
number 300000 350000 400000 450000 500000
1 2261 2244 2278 2309 2270
2 216 232 238 229 232
3 156 199 155 154 193
L 26 24 26 29 32
5 12 14 14 12 21
6 10 16 9 17 11
7 5 5 1 2 6
8 1 3 2 3 2
9 3 3 5 3 2
10 - 3 1 3 1
11 - 1 - - -
12 1 1 - 5 3
13 - - 1 - 1
14 - - 1 - 1
15 - 1 - - -
16 - - - - 1
Total no
of fields| 2691 2746 2731 2766 2776
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The following tables contain statistics about TP-cases and about nonconjugate
fields with the same discriminant. Both these phenomena are of considerable

theoretical interest.
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The notable increase in local density of these N = 3,4 fields as D increases, is
discussed at length in [17] and is said to account for the increase in overall local
density toward the theoretical limit (12 {(3)) ! that was mentioned above.

Our final table gives a list of discriminants D and class numbers 4 of fields with
noncyclic class group. Each of these groups is generated by two elements. For the
four cases with 4 = 12 in the table there is more than one field with these D, but
only one with a noncyclic group. On the other hand, both fields of D = 431649 have
noncyclic groups so they are listed twice. The frequency of occurrence of a noncyclic
class group is 35 out of 26440 so that the phenomenon is a very uncommon one
indeed. This is in conformity with the comprehensive results of Buell [4] on class
groups of imaginary quadratic fields.

D h D h D h
26569 4 35537 4 76729 4
121801 4 128357 8 146853 9
151717 4 157609 4 210649 4
229577 4 240149 9 277429 4
299209 4 312709 8 314369 4
347485 4 368449 4 376712 9
394609 4 395177 4 409533 4
412277 12 424148 12 428657 8
431649 9 431649 9 442489 4
444412 8 455700 9 461041 12
468892 8 474949 4 476249 4
494209 12 496129 4

Note added in March, 1984. After the completion of this work we have computed a
supplementary table containing the values of the regulators up to D < 200000. A
table of unit signatures is in preparation.
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