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Averaging Effects on Irregularities 
in the Distribution of Primes in 

Arithmetic Progressions 

By Richard H. Hudson 

Abstract. Let t be an integer taking on values between 1 and x (x real), let ni,bc(t) denote the 
number of positive primes < t which are c (mod b), and let li t denote the usual integral 
logarithm of t. Further, let the ratio of quadratic nonresidues of b > 2 to quadratic residues of 
b be y(b) to 1, and let 

x x 

Ab(x) = (1/y(b))- E c. (t) - y(b) E bc,'c., (t) 
t=l t=1 

I<chb-1 Ic'<b-1 

where c runs over quadratic nonresidues and c' runs over quadratic residues of b. 
Nearly periodic oscillations of A6(x) = (/x) =1(7T6,5(t) - 7T6,1(t)) about h(x) = 

(1/x)E,= li(tl/2 )/2 are depicted in Figures 2, 3, 4 over the range of integers less than 
2.5 x 1011 . Over this range, h (x) is a far better "axis of symmetry" for these oscillations than 
S(X) = (1/)X)E= t"'2/log t (suggested by Shanks [29]). 

On the other hand, recent work of W. J. Ellison (9], three letters from Andrzej Schinzel to 
the author, and my own considerations (see Section 4) lead to the following. In contradiction 
to a conjecture of Shanks [29], 

x ( 

7E76.5(t 

6 

l(t))/(tl/2/log t)) 

-A 1 as x oo. 

Moreover, I prove in Theorem 4.1 that A6(x)/h(x) -/+ 1 as x - oo, and Schinzel has 
provided a heuristic argument that no amount of averaging of A6(x) will provide an 
asymptotic relationship of this sort. However, let h(l)(x) = h(x), A(1)(x) = A6(x), and for 
k > 1 let 

x ~~~x 
A?l)(x) - L h(6)(t), Akl)(x) = - 6 

Xt=l t=1 

Assuming the truth of the generalized Riemann hypothesis for L(s, X), X the nonprincipal 
character mod 6, we prove 

im llim 6 (x) = 1 = lim lim Ak6 (x) 
k-o O X X oo h (k) (x) k -- ?? X X- oo h(k)(X) 

The behavior of A6(x) is a special case of a far more general phenomenon. In Section 3, 
reasons are given why Ah,(x) can be expected to oscillate more or less symmetrically about 
h(x) for every modulus b > 2. 

1. Introduction and Summary. Throughout b will denote a modulus > 2; c will 
always denote a quadratic nonresidue and c' a quadratic residue of b. Let t be an 
integer with 1 < t < x (x real) and let 'fb c(t) and 'frbCo(t) denote, respectively, the 
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562 RICHARD H. HUDSON 

number of primes < t which are c (mod b) or to c' (mod b). For each b = 2aoq'l 

* qr,r ql,... qr distinct odd primes, it is well-known (see, e.g., [26]) that the ratio 
of quadratic nonresidues to residues is 2' 1 - 1 to 1 where /3 = 1 if ao = 0 or 1, 

=2 if ao = 2, and 3 = 3 if ao >, 3. Consequently, one would expect that 

(1.1) Ab(X) 
= 

1 l bx,=t E 7Th1At) -2 I)X t=1 X t=1 
l Ac <b -1 1 <c< Sb- 1 

would oscillate more or less evenly about 0. Daniel Shanks [29] first observed that 
for x < 3.106, and certain values of b, this is not the case. 

Figures 2 and 3 at the conclusion of this paper depict oscillations of 

1 x 
A6(x) =- ? (76,5(t) - 76,1(t)) 

X t=1 

about 

(1.2) h 1(x) = t2 

on standard scales and in Figure 4 they are depicted for x < 250,000,000,000 on a 
logarithmic scale. These figures show clearly that h(x) is an excellent "axis of 
symmetry" for these nearly periodic oscillations. Indeed, over this considerable 
range, the approximation (1.2) is markedly superior to s(x) = (1/x)E=l t1/2/log t 
although h(x) and s(x) are asymptotically equal (as we will see h(x) - s(x) - 

(4/3)x1/2/log 2X). 

In Section 4 we show that averaging in the ordinary sense (as in (1.1) and (1.2)) 
only postpones the swamping of the Chebyshev phenomenon by the giant fluctua- 
tions discovered by Hardy and Littlewood (see [16]). 

In particular, with the help of A. Schinzel we prove 

THEOREM 4.1. It is false that 

lim A6(x) 
x 3 co h (x) 

Moreover, we give a heuristic argument that no amount of ordinary averaging will 
yield such a limit. This is interesting as it suggests that the Abelian averaging 
employed by, e.g., Knapowski and Turan [17]-[22] is in a sense stronger than 
ordinary averaging. Of course, the results of Knapowski and Turan are contingent 
on the truth of the generalized Riemann hypothesis as is our 

THEOREM 4.2. Let A (k)(x) and h(k)(x) denote the kth averaging of A6(x) and h(x). 
Then 

lim lim 
h___( 

kX) A (k) (x) A imk)(x) =1 = lim lim 6 

The nearly periodic behavior of the oscillations of A6(x) about h(x) is interesting 
and should be compared with the important works of Polya [27], Bloch and Polya 
[5], and Grosswald [10]. 
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2. Preliminaries-Computation of s(x) and h(x). Integration by parts and a 
straightforward treatment of the error term (see, e.g., [1]), yields for each fixed kl, 

s I( x ) = x L t =2x 1 +2 4x1/2 16x'/2 
S(X) __ 1:t/log t=+- l ? ? lo3X x tlI 3loglog ogx 271o 

(2.1) 32x'/2 (2)k'(k, - 1)!XI12 1/2 

27 log4x logkl,x logkl + 1 x 

Our computer program utilized a simple trapezoidal rule. Five terms of the above 
expansions are sufficient for a high level of accuracy. 

Moreover, 

li x1/2 X1/2 2x 1/2 8x1/2 48x1'/2 

2 logx log2x log3x log4x 

(2.2) 2 k21-(k2 - 1)!x/2 ? 1/2 

logk2 x logk2+l x 

Consequently, we may integrate by parts to obtain for each fixed k3, 

n o+ X ((o J+)2 ) 

= 2x1/2 16x1/2 208x1/2 1280x1/2 30976x1/2 

(2.3) 3 log x 9 log2 x 27 1og3 x 27 1og4 x 81 log5 x 

(2.3) *.. ? 2k3(k3 - 1)!(1 + 3 + 9 + + 3k3-1)X1/2 ? x 1/2 

3k3 log k3x \logk3?+lX 

k3 
2'1(j - 1)!(3' - 

1)x112 
/ 1 

_/2 ) 

3-/log-/x logk3?l x/ 

The reader may find it easier to verify (2.3) by differentiation than to derive it by 
integration. The implied constant in (2.3) is significantly larger than in (2.1). 
Consequently, the most serious error present in Figures 2, 3, 4 arises from the failure 
to take k3 > 5 in using (2.3). However, even at 1011, the use of seven or eight terms 
would raise the curve representing h(x) by an almost imperceptible amount. 

Let h 2h(x) - (1/x)>I=1 h(t). By means of a second integration by parts we have 
for each fixed k4, 

12, (X) 4x1/2 40x1/2 576x1/2 11136x1/2 
h( ~(x)~ - ++ 

9 log x 27 log2 x 81 log3 x 243 1og4 x 

2 2A4+l(k4-1)!(1 + 1 + 3 + 1 + 3 + 9 + ... + 1 + 3 + 9 + *--+ 3A4l)xl/2 

(2.4) 3A4+ 1 
logA4 X 

(2.4) .~~~~1/2 
logA4+1 x 

E 2J- (j_ 1)!(31+1 - 2j - 3)X112 x1/2 

/=1 3J+1log'x logA4?x J 
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Remark. The numerically inclined reader may be interested in plotting 
(1/x)E t= 16(t) versus h(2)(x) for his own curiosity. In doing so, one might choose 
to use (over a small range) 

(2.5) li x = lim( + j ; ) u = y + loglogx + E k!k 
k=1 

in preference to the asymptotic expansion for li x; 

N I 
y = lim E - -log N = .577. 

N-oo ? =1 

However, good convergence for this expansion at, say 1011, requires nearly 80 
terms. 

3. The Isolation of the "Negative Part" of Ab(x). An excellent account of the 
standard argument for the modulus 4 may be found in Ingham [16, pp. 106-107] 
(although the replacement of gT(x'/2)/2 by xl/2/log x on p. 107 is unnecessary). 

Recently, the author has given a purely elementary argument [14] which suggests 
that 7743(X) - 741(X) oscillates about 7T(x'/2)/2 at least for small x. A generaliza- 
tion (see [14]) of this argument motivates what follows. 

Let b = 2aoqolq q2 ... q "r where ql,. qr are distinct odd primes. The ratio of 
quadratic nonresidues of b to quadratic residues of b is 2r - 1 - 1 to 1 where /B = 1 
if a0 = 0 or 1, /3 = 2 if a0 = 2, and /B = 3 if a0 >? 3 (see, e.g., [26, p. 167]). With this 
in mind, we define 

/2r?f I1-1 if s is a quadratic residue of b, 

(3.1) Tb(S) = - if s is a quadratic nonresidue of b, 
t 0 otherwise. 

Moreover, we define analogues of 7J(x) and P1(x) by 

(3.2) 7J(X, Tb) =E Tb(P) 
p x 

where p is prime, and 

(3.3) (x Th E 7(P ) 
pm < m 

In the following theorem we let c' denote a quadratic residue of b and c a 
quadratic nonresidue of b. 

THEOREM 3.1. Let b = 2ao* ql q2a q33 ... q 
I 

where b > 2 and ql,.. .,qq are 
distinct odd primes. Then, 

E 77b, c'( X r +,8- l( 77b,J(X) 
< c'b-1 2 - 1 (c s b-1 

. - 

( x1/2) 
? 

2 1 ( x, /)) ?T(O)]. 
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Proof. Note that 

(3.5) J(X, T,) = (2r 1) E bC'(X) - ? b c(X)- 
I 6c'6-b -1 1 Ac< b-1I 

Moreover, since Tb(p2) = + 1 for every prime p with (b, p) = 1, we have (see p. 
107 of [16]) 

(3.6) (x, Tb) -T(X, Tb) (( 1)(x ) (X/logx) 

Now (3.4) follows easily from (3.5) and (3.6). 
The extent to which (3.2) and (3.3) are natural analogues of fT(x) and P1(x), 

respectively, is readily seen by noting that Theorem 3.1 reduces to the classical result 
in Ingham [16] if b = 4 (or b = 6). Specifically, if b = 4 then Tb is the real 
nonprincipal Dirichlet character, Xi, and H(x, Tb) is the function "naturally associ- 
ated with log L(s, Xi)". As such, H(x, X1) can be expected to have values fairly 
evenly distributed about zero. Consequently, -f (x1/2)/2 is called by Ingham the 
" negative part" and JI(x, X1) the "oscillating part" of (3.4) when b = 4. 

Let b > 2 be a modulus admitting a primitive root, i.e., b = 4, q', or 2qa, where q 
is an odd prime. Then Tb is the real nonprincipal Dirichlet character (or Kronecker 
symbol) and the above argument is seen to be a natural special case. 

When b does not admit a primitive root, 2r+Af1 - 1 > 1. The resultant awkward- 
ness in the appearance of (3.1) is (regrettably) necessary if one wishes to extend the 
above argument to arbitrary modulus. The reason that I find most compelling for 
feeling that for every b the isolation of the term, 

(3.7) 2/) (1 + o(1)) 

in (3.4) is meaningful (at least for small x), is the fact that the elementary theory in 
Section 6 of [14] (see (6.14) of [14]) suggests that 

(3.8) 1 ( L 7Jb,c(t)) - ? 7b,c'(t) 
- 1 l Sc b b-i I I c' s b-I 

oscillates about ( r(t1/2)/2)(1 + o(1)). 
Of course, if b = 4 or 6, the result of Littlewood [25] shows that the "negative 

part" is overcome infinitely often. (The case for general moduli is far from solved; 
for an interesting recent result, see Stark [32].) Moreover, the results of Ellison [9] 
and Theorem 4.1 of this paper show that (for b = 4 or 6), even in the mean, the 
"oscillatory part" is not negligible relative to the "negative part." 

4. Limitations of ordinary averaging. Recently W. J. Ellison [9] has disproven the 
conjecture of Shanks [29] that 

(4.1 ) lim - 
X 

43 ( 
t 

T41 ( 1 
X t-1 t /log t 

A modification of this argument suggested to me by A. Schinzel (personal communi- 
cation, May 30, 1977) yields the following theorem. 
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THEOREM 4.1. It is false that 

A6(X) 
(4.2) lim h(x) = 1 

x - 00 (x) 

Proof. Let x(n) = (n/3) and 

L(s ~ 0- ( n) 7(M 

(4-L3) (s,LX) = 

I (x, x) = m n PM1 xm x 

so that 

(4-4) H(t,x) - r(t,X) = (t ) ? 1/(t3 log t) 

Assume that A6(x)/h(x) -* 1 as x -* x. 
If x is an integer, we have 

fH(t X) dt= fT(t X) dt + T(2 )dt + (t tdt 

(4.5) 
=- x-1 

7 12 2) ?(4"3ilogX) 
( .5) = ~E T(ti, X) + E 2 + (x /ox 

t=1 t=1 

= -(x - 1)A6(X - 1) +(X - 1)h(x - 1) + 9(x4/31ogx). 

But, because of our assumption, 

(4.6) - A6(X - 1) + h(x - 1) = o(h(x - 1)) =o(x1/2/logx) 

so that 

(4.7) -(x- 1)A6(X- 1) +(x- 1)h(x- 1) = (X3/2/logX). 

If x is not an integer, 

(4.8) jH(t X) dt = I H(t, X) dt + .(LI(x, x)), 

and this is 

(4.9) - o(x3/2/log x) ? (9(x/log x) o(x33/2/log x) 

Thus, in any case, 

(4.10) IHI(x, X) = Jn(t x) dt = o(x3/2/logx). 

On the other hand, for Re s > 1, 

log L(s, x) = sf ( +X) dx 
1XS+ 

(4.11) = s lim 1(Y, x) +(s + 1)f Hk2 +X) dx 

= s(s 1)1 <1(t X) dx; 

see (6.23) of [9]. 
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Now (4.10) implies the convergence of the integral on the right-hand side for 
Re s > , hence the nonvanishing of L(s, X) to the right of a = 2. Consider the 
function 

f(s)= d~ log L (s, X) 
(4.12) ff ) ds s(s + 1) J 

(4.12) 
~~~-1 L'(s, x) 2s ? 1 

?) L'(s,X) ? 2logL(s,x) 
s(s +1Ls,X) s 2(S ? 1)2 

By (4.11), we have 

(4.13) f(s) = ddx = Jx d l(X X)log x.d 

If now, s = a + it, a -* (1/2)+, and (4.10) holds, we have 

(4.14) If(x)I= 0(x / dx) sa-( 1) 

a contradiction, since then L(s, X) has no zero on the line a = 2 

Using the Riemann ' function it is easy to modify the above to show the falsity of 
Shanks' conjecture [29] that 

(4.15) lim -E 1t/2 ( =- 

The well-known result of Hardy and Littlewood [11] and Landau [23], [24], 
rephrased as on p. 276 of [29], states that there exists a positive constant k with 

(4.16) A6(x) > kx1/2/logx 

if and only if the generalized Riemann hypothesis is true for L(s, X), X the 
nonprincipal character mod 6. If (4.2) were true, one would have the very much 
stronger result, 

(4.17) A6(x) - 2x1/2/3logx (asx -s oo). 

Seen in this light the falsity of (4.1) is not entirely surprising in spite of the 
relatively good behavior of A6(x) over the first 250 billion integers. 

Indeed, Schinzel has communicated the following heuristic argument that no 
amount of averaging will yield an asymptotic relationship of this sort. In particular, 
letting h(1)(x) = h(x), A() (x) = A6(x), and for k > 1, letting 

(4.18) h(k?l)(x) = ? E h(k)(t), A(k+l) (x) = - A (k)(t), 
Xt=1 Xt=1 

it appears implausible that for any fixed k, we have 

(4.19) A( k)(x) - h(k)(x). 

For note that (see, e.g., [23, Section 138]) 

(4.0 xX) = E p(p + 1)log x (log 
( 

)2 
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where p runs through all zeros of L(s, X) in the critical strip and 6 is the upper 
bound of their real parts. 

If (4.19) holds and 6 = we should have 

(4.21) ( k = O(X 

,p p(p+1 

but every term on the left-hand side of (4.21) has order x112. 
Prior to receiving Schinzel's letter, dated September 4, 1977, I had overlooked the 

above argument although I had noted (as did Schinzel independently) that from 

(4.22) lim E 1 0, 
k- oo p IpI Ip llk 

the following theorem follows at once, assuming the truth of the generalized 
Riemann hypothesis for L(s, X). 

THEOREM 4.2. Let A(k)(x) and h(k)(x) be defined as above. Then 

(4.23) lim lim A6k(x) 1 = lx li A -(X) 
k--*oo X-. h(k)(X) k-,co -~ h(k) (x) 

Remark. Modifications of the above arguments for b = 4 or for b = 2 (li x versus 
Tr(x)) are easily obtained. It is, consequently, improbable that for any fixed k > 1, 
the kth average of li x - T(x) is asymptotic to the kth average of li xl/2/2. It is 
possible that Theorem 4.1 could be generalized to rigorously prove this but I have 
not been able to obtain this. 

5. Data on 76,5(t) - TT6,1(t) and Pictorial Description of the Oscillations of A6(x) 
About h(x). Our computations were carried out to 2.5 x 1011 largely in the hope of 
finding the smallest integer t with T6n5(t) < 1T61(t); for the eventual success of this 
venture, see [4]. 

Figure 1 gives a value of t with 7T65(t) - T61(t) > T(t1/2) -a rare "inverted axis 
crossing"-and some "near axis crossings" for 2,000,000 < t < 250,000,000,000. A 
" near axis crossing" is a value of t with lT6,5(t) - 1T61(t) < 1500. The values listed in 
Figure 1 are pictured in Figure 4. Interestingly, they mostly occur in the vicinity of 
an inflection point of the graph of A6(x). 

Point (see Figure 4) t 7T6,5(t) - 61(t) q7(t1/2) 

a 344,558,471 2310 2125 
b 2,471,075,683 627 5106 
c 4,450,687,051 608 6654 
d 5,278,986,859 573 7190 
e 7,068,537,481 543 8197 
f 13,121,332,621 1117 10834 
g 24,411,171,451 1193 14379 
h 27,182,104,207 730 15088 
i 121,269,714,529 1220 29834 

FIGURE 1 
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h/ x 

.8, 

1 2 3 4 5 6 7 8 9 10 II 12 13 

FIGURE 2 

In this figure, and in Figure 3, values for h(x), s(x), and A6(x) have been 
plotted on standard (increasing) scales; the dotted line represents A6(x). 
Values for x are on the horizontal axis and extend from 2 108 to 13 108. 

9- 

1~~~~~~~~~~ h(x)./ 
8- 

7- 

6- 

5- 

4-~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

3 

FIGURE 3 

In this figure, x ranges from 1 109 to 13 109. 
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S- f 

2 5 Ix109 2 5 x1010 2 5 IxO2" 2 5 

FIGuRE 4 

Values of h(x), s(x), and A6(x) have been plotted on a log log scale. Values 
for x extend from 108 to 2.5 * 1011. The locations of points listed in Figure 1 
are indicated by arrows. 
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