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A Multigrid Version of a Simple Finite Element 
Method for the Stokes Problem 

By Juhani Pitkaranta and Tuomo Saarinen 

Abstract. We consider a finite element method for the Stokes problem on a rectangular 
domain based on piecewise bilinear velocities and piecewise constant pressures on a uniform 
rectangular grid. It is shown that by a simple stabilization strategy the method can be 
implemented in a convergent multigrid procedure. 

Introduction. One of the most natural ways of discretizing the Stokes equations on 

a two-dimensional rectangular domain is to apply the finite element techniques with 

continuous piecewise bilinear velocities and piecewise constant pressures on a 

rectangular grid. This method is easily extended to more general quadrilateral 

meshes and it has proved to be quite effective in practice. The convergence analysis 

of the method was first carried out in [10] on a rectangular domain. In [12] the 

estimates of [10] are improved and extended to more general quadrilateral meshes. 

So far, the above method has been used mainly in connection with direct band 

solvers, usually combined with penalty/perturbation techniques to eliminate the 

pressure [9]. In this paper we consider an iterative variant of the method based on 

multigrid techniques. Such an algorithm seems attractive, especially since the un- 

derlying finite-difference equations are relatively simple. 
Multigrid methods for the Stokes problem and for more general elliptic systems 

were considered previously by Hackbusch [8] and Verfurth [14]. In [14] it is shown 

that a convergent multigrid algorithm for the Stokes problem can be constructed by 

appropriately scaling the variables, provided that the underlying finite element 

scheme satisfies the Babu?ka-Brezzi stability condition [2], [5]. In our case, however, 

the finite element method is not stable in this sense, and we have not been able to 

show that the straightforward application of the algorithm proposed in [14] yields a 

convergent process. Therefore, we suggest first modifying the finite element method 

in such a way that it becomes stable in the ordinary sense. 
The usual way of stabilizing an unstable mixed method is to add more velocity (or 

primary) variables. A classical example of this is the quadratic/linear velocity-pres- 

sure element of Crouzeix and Raviart [6], where added "bubble" functions act as 

stabilizers in the velocity space. Increasing the dimension of the velocity space would 

be an alternative in our case. However, we propose another method which seems to 

yield a simpler algorithm. It is based on adding an extra stabilizing term into the 
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finite element functional while keeping the velocity and pressure spaces unchanged. 
The added term introduces an extra consistency error, the magnitude of which 
depends on the smoothness of the pressure. At worst, it is of the same order of 
magnitude as the discretization error in the original scheme. The main point in the 
modification is, however, that it increases the computational work of the multigrid 
algorithm by only a negligible amount. 

For simplicity, we consider only a model problem on a two-dimensional rectangu- 
lar domain. The ideas could be easily extended to more general variants of the 
method. In particular, the same kind of stabilization is possible on the quadrilateral 
meshes considered in [12] or in the three-dimensional version of the method 
analyzed in [11]. 

The plan of the paper is as follows. In Section 2 we introduce the finite element 
method and establish some basic stability and error estimates. In Section 3 we 
consider an iterative two-grid algorithm based on the finite element method of 
Section 2. The analysis of a more general multilevel algorithm is omitted, as it is a 
straightforward extension of the two-grid case, cf. [4], [13], [14]. In Section 4 we 
report on some numerical experiments on a three-level algorithm. 

2. The Finite Element Method. Let Q Ee R2 be a rectangular domain, Q = {(x1, x2): 
O < xi < ai, i= 1,2}. We consider the Stokes differential equations for an in- 
compressible fluid with viscosity equal to unity: 

-Auu+Vp=f inQU, 

div u = O in Qi, 
(2.1) u=O onaQ, 

fpdx = 0. 

Here u = (ul, u2) is the velocity field,p denotes the pressure andf E [L2( Q)]2 is the 
external force field. For simplicity, we assume homogeneous Dirichlet boundary 
conditions and normalize the pressure to have a zero mean value. 

Finite element methods for solving the system (2.1) are usually formulated as: 
Given the subspaces Vh C [Hod()]2 V and Qh c L2(i) Q, find (uh, Ph) E 

VI, X Qh such that fSJ Ph dx = 0 and 

(2.2a) (vu,VvV) -(ph,divv) = (f, v), v e Vh, 

(2.2b) (div uh, q) = O, q E Qh 

where (, ) denotes the inner product of L2(Q) or [L2( Q)] 2. Here we consider a 
particular case of algorithm (2.2) where the subspaces are chosen as follows: Let i'h 

be a uniform rectangular partitioning of U, 

(2.3) Wh Kij (XI, X2): ihI < Xi < (i + 1)h2, jh2 < x2 < (j + 1)h29 

i 9O...9m 1- 19 j = 09... m 2 1}, 

where hi = ai/mi, and we set h hl. Then, let Vh consist of continuous vector 
functions which vanish on aQ and are bilinear on each K E- Wh, and let Qh consist of 
functions which are constant on each K E Vh 
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When used in connection with direct solvers, the above algorithm performs well, 

as is known from both practice [9] and theory [10], [12], [15]. The multigrid 

implementation of the method, however, seems nontrivial since the method is not 

stable in the classical sense of Babuska [2] and Brezzi [5] (see Lemma 2.1 below). We 

therefore suggest modifying the scheme so that instead of (2.2) we seek (Uh, Ph) E 

Vh X Qh which satisfies (2.2a) and 

(2.2b') K(Ph ,7rhq) + (div Uh, q) = 0, q E Qh 

where K > 0 is a parameter and 7h is an L2-projection into a subspace of Qh as 

defined below. The scheme (2.2a, b') performs well whenever K is nonnegative and 

bounded (see the remark following Theorem 1 below), but it has the desirable 

multigrid characteristics only when K = V(1). Therefore, we mainly assume that 

K = 1 below. 
Let us now define the projection 'rh in (2.2b'). To this end, assume that ml and m2 

in (2.3) are even numbers, and denote by "2h a coarser rectangular subdivision of Q 

defined by 

where 

TI, = {(x1, x2): 2vh, < xl < 2(v + 1)h1q 21ah2 < x2 < 2(,u + 1)h2 } 

For each T E '2h, define a function E E Qh as follows: 

(0 if x ? v, 
(2.4) = 

fXet " 

(. j =iif x E K,1 A T , K, 1 WhE 

Then let 'rh be the L2-projection into the subspace of Qh spanned by the functions 

J,,- 

In the remaining part of this section we analyze the convergence of the modified 

finite element method (2.2a, b'). We denote below by 11 Ils and I -, respectively, the 

norm and the seminorm of the Sobolev space HS(12) or [Hs(Q)]2, s > 0. By C, we 

denote a generic constant which may take different values on different usages. The 

constant may depend on Q and on the ratio hl/h2, but not on any other parameters 

unless indicated explicitly. By Pk(K), we denote the space of polynomials on K of 

degree < k. 
To shorten the notation, let us introduce the bilinear form 

(2.5) .1((u, p); (v, q)) = (Vu,vv) -(p, divv) -(div u, q) 

defined on V x Q. Then the variational formulation of problem (2.1) is: Find 

(u, p) E V x Q such that(p,1) = 0 and 

(2.6) -J((u, p); (v, q)) = g(v, q), (v, q) e v x Q, 

where g(v, q) = (f, v). Similarly, (2.2a, b') may be written as 

(2.7) qh((Uh, Ph); (v, q)) = g(v, q), (v, q) E Vh X Qh, 

where 

(2.8) -qh((u, p); (v, q)) = .q((u, p); (v, q)) - K(p, 7Thq). 
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The finite element method (2.7) is stable if there is a constant C such that for all g in 
the dual space of V x Q, the solution to (2.7) satisfies 

(2.9) IlUhlll + IlPh 10 < C1gj111,0, 
where 1 0 denotes the dual norm of V x Q: 

lIgIl-l_lO sup 
g(v 

q1+1)1 
(v.q)C-VXQ jlvjji +jjqjjo 

Inequality (2.9) is equivalent to the following condition due to Babu'ska [2]: There is 
a constant C > 0 such that for all (v, q) E Vh X Qh with (q, 1) = 0: 

(2.10) sup > C(Ilvlll + llqllo) 
(w,r)e V,XQh liwili + lrllo 

On the other hand, (2.10) follows if one can prove for all q E Qh with (q, 1) = 0, the 
inequality (cf. [5], [6], [7]) 

(2.11) sup (divv, q) 
1? C-hi llvlli 

where C > 0 is independent of q. This is usually referred to as the Babuska-Brezzi 
stability inequality. In the present case (2.11) does not hold (see below), but we can 
nevertheless prove (2.10) for K = 1. 

Below we denote by iu the usual interpolant of u in Vh and by p the L2-projection 
of p into Qh. We also need another interpolant p defined so that for each T E W2hl 

PIT E P1(T) and 

|(p -p)pdx=O pGpeP1(T). 

THEOREM 1. Let (u, p) E V x Q be a solution to (2.6), where g is a bounded linear 
functional on V x Q, and ket (uh, Ph) E Vh X Qh satisfy (2.7), where ih is defined by 
(2.8) with K = 1. Further, assume that ( p, 1) = (Ph, 1) = 0. Then we have the follow- 
ing stability and error estimates: 

IIUhlll + liPhilo < C11g91-1,o, 

and 

h |Iu - UhIlo + Iu - Uhil + IIP - PhIIO < C(IU - idIi + IIP - PIIO + IIP PIIO) 
where the interpolants are defined as above. 

Before proving this theorem, let us note that we have the simple 

COROLLARY. Under the assumptions of Theorem 1, if the solution of (2.6) satisfies 
u E8 [H2(Q)J 2, p E H1(S2), then one has the error estimates 

h1Iu - UhIlo + Iu - UhIl + IIP - PhilO < Ch(IU12 + IPI1). 
Proof of Theorem 1. Let us first prove the stability estimate in the form of (2.10). 

We need the following weak form of the Babu?ka-Brezzi stability estimate. For the 
proof, see [10]. Below, I denotes the identity operator. 

LEMMA 2.1. There is a positive constant C such that for all q E Qh with (q, 1) = 0, 
(div v, q) sup .> CIj(I - -7h)qIIO. 
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Remark. One can improve the above estimate at best as 

sup (divv, q) > C(II(I - Th)qIo0 + lIThqlh), 
Vh |lvii 

where I,h is a seminorm with two-dimensional null space Nh (including the unity), 
see [101. If Qh is replaced by its orthogonal complement Nh' with respect to this null 
space, then the mapping 

q --+ sup 
(div v, q) 

q Vsu lIVIll 

obviously defines a norm in N,L,. However, this norm is still weaker than the 
L2-norm: one can only estimate it as [10] 

sup 
(div v, q) > Chliqllo, q E N,' 

P Vh ||V|| I 

Thus, (2.11) does not hold even if Qh is replaced by Nh,. ? 

Now let (v, q) E Vh X Qh be given with (q, 1) = 0. Then by Lemma 2.1, there 
exists z E Vh satisfying 

(2.12a) <lzli 1 CIi(I - iTh) qIIo 

(2.12b) (divz, q) = ||(I - gh) 112 

Now choose w E Vh and r E Qh as follows: 

w= v-6z, r= -q, 

where 8 e (0, 1) is a constant to be chosen below. Then we have by (2.12a), 

(2.13) llwlll + IIrIIo < C(11vII + llqllo). 

Moreover, recalling (2.8) and (2.5), we have by (2.12a, b), 

((XV, q); (w, r)) = IV12 + 11|7Thq|12 + 8(div z. q) - 8( Vv, Vz) 

> (1 C8lIl + ll'ghql 0 2 {t(-hX)q 0o 

and thus choosing 8 = 1/2C, 

,h((v, q); (w, r)) > C(Iv12 + llq 112 

Together with (2.13) this proves (2.10) and, accordingly, the asserted stability 
estimate. 

To prove the error estimate we proceed from the error equation 

_h((Uh U, P p ); (v. q)) = ?4((u - iu, p - p); (v, q)) +(p, 7Thq), 

(v, q) E= h X Qhg 

which follows easily from (2.6) through (2.8). Since (Ph - p, 1) = 0 we conclude 
applying the stability estimate (2.10) and the usual estimates on the right side that 

h|Uh U|I1 II+ IPh P- PIIO< C(u-iii?iip-pllo) + C sup (P,7TThq)- 
q E Qh 
IqIIo= 1 
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To estimate the last term on the right side, note that the functions in (2.4) are 
orthogonal to polynomials of degree < 1 on L2(T,,,7). Therefore, 

(P, iThq)= (p, rhq)= (p - 
= 

7 hq), q e Qh- 

Using this in the above inequality, the asserted estimates for Iu - UhII and IIP - PhIIO 
follow applying the triangle inequality. 

The estimate for IIu - UhIlO is finally proved applying the ordinary duality 
argument. We omit the details, so the proof is complete. 5 

Remark. Although the assumption K = 1 was used heavily in the above proof, it is 
not necessary for obtaining error estimates. For example, it can be shown that in the 
whole range 0 < K < 1, one has the estimate 

(2.14) hIllu - UhIlO + Iu - UhIl + I(' - 7Th)Ph - Pilo < Ch(1u12 + IPIi), 
i.e., the usual optimal estimate holds provided that the pressure is first smoothened 
by removing the oscillating component ThPh' In the case K = 0, (2.14) is proved in 
[12], [15]. However, one further assumption is required: the functional g in (2.6) has 
to be such that g(O, Thq) = 0 for all q E Qh. In the above situation this holds 
trivially, but when the algorithm is used in a multigrid process, this assumption is no 
longer valid in general. This is one reason for introducing the stabilizing term into 
the finite element functional Vh. ? 

Remark. The term IIP - PII0 on the right side of the error estimate of Theorem 1 
may be interpreted as the extra consistency error caused by the added term 
-( Ph' Thq) in ah. Since p is defined on the coarser mesh, one might suspect that the 
stabilization reduces the accuracy of the method severely, say, to the level of the 
corresponding method on the coarser grid. This could indeed be the case if p were 
piecewise constant on W2h. However, with the above definition we have also the 
higher-order estimates 

IIP pPIIL2(T) '< Ch IPIH2(T) T E, W2h 

so the extra consistency error is probably relatively small in practical situations. O 

3. Convergence of a Two-Grid Algorithm. In this section we consider a two-grid 
procedure for solving the system (2.2a, b') with K = 1. To define the algorithm, let 
us associate to the partitioning W2h the space V2h of continuous piecewise bilinear 
functions on W2h and the space Q2h of piecewise constant-valued functions on W2h. 

Further, assuming that ml and m2 in (2.3) are divisible by four, we may associate 
with the coarse grid the. projector 1I2h defined as above replacing 'h by W2h. With 
this notation, one step of a two-grid algorithm consists of the following: Given an 
initial guess (U0, ph) such that (ph, 1) = 0 and a linear smoothing operator G(n"): 
Vh X Qh Vh X Qh involving m steps of some iteration process, compute first 

(uh"'71 Ph l)) as 

(3.1) ( 4h ), Ph )) = G(m)(u"), pho)). 

Then compute a correction to (u(m), p (m)) on the coarser grid by solving the 

problem: Find (d2h, e2h) e V2h X Q2h such that (e2h, 1) = 0 and 

(3.2) -42h((d2h,) e2h),) (V,) q)) = g(v. q) 
- 

M((u(m), s PhM); (v, q))e Q 
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Here t2h is defined as Ih above, except that 7Th is replaced by 'r2h, and we have 
assumed (as will be the case below) that the smoothing operator preserves the 
pressure normalization, i.e., (p(m)rn 1)= 0. The two-grid step is now completed by 
adding the correction to (uhm)I p(h)) 

(3.3) u(n +l) =u(nl) + d2 P(m+) pm) + e2h. 

To define an appropriate smoothing operator we follow the idea of [8], [14] of 
scaling the variables. Let {,qi, i = 1,... I ,M} (where M = 2(mI - 1)(m2 - 1)) be the 
usual basis of Vh associated with the nodes of the rectangular grid, and let Pi, 
i= M + 1,... ,N (where N = M + mlm2) be the basis of Qh consisting of the 
characteristic functicns of the rectangles in Wh. We assume each (pi to be normalized 
so that I1IPillo = 1. Then if we associate with the solution (Uh, Ph) of (2.7) a vector 

E RN so that 

M N 

(3.4) (UhlPh) h- E 

we may rewrite (2.7) as a system 

At = b, 

where A = (aij) is a symmetric matrix with elements defined by 

((V9i,VMi)~~ i <,jM, 

a,j = -h-1 (divcpi, Tm), i < M, j > M, 

t-h -2( 7719i, IThqj)i j > M. 

Here we have dropped the normalization condition for the pressure, which means 
that one of the eigenvalues of A is zero. 

In the sequel we consider only smoothing operators G(t) with m even, m > 2, 
which result from applying m/2 single iteration steps to the positive semidefinite 
system 

(3.5) A2- = Ab. 

Further, we consider for simplicity only two ways of defining a single iteration step. 
These are: 

(1) The Jacobi method. With a given initial guess for (?, iterate accordinig to the 
rule 

(3.6) Ak+1 = -,- WXN (At _ Ab), 

where X N is the largest eigenvalue of A in absolute value, and w is a parameter, 
0 < c < 1. 

(2) The conjugate gradient method. Iterate according to the rule 

(k+l = (k + a dk, k k = 2rk2 /Adk2, 

dk+l = _rk+l + Akd, Pk r k1 2/Jr k2 

where d0 -r?, rk = A2(k - Ab, and j * denotes the Euclidean norm of RN. 

Remark. If the algorithm (3.1) through (3.3) is used as a block in a multigrid 
process, an appropriate work estimate is the number of arithmetic operations 
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required in multiplying a given vector by the matrix A. If ml = m2 = m in (2.3) the 
multiplication requires 64m2 + 0(m) operations without the stabilizing term in the 
functional (i.e.,K = 0 in (2.2b')), and 66m2 + 0(m) operations in the above stabi- 
lized form. Thus, the stabilization increases the computational work only by a 
negligible amount. 0 

The main result of this section formulated below states an estimate for the 
convergence rate of the algorithm (3.1) through (3.3). As in [14], we measure the 
convergence in a scaled L2-norm 11 * 110oh defined as 

II(u, P)II12h = IJuI1I + h211pII1. 
THEOREM 2. Let m be even and let (uZm + pM+1) be computed from (u(), Ph?)) 

according to (3.1) through (3.3), where Ghm) in (3.3) corresponds to m/2 steps of either 
the Jacobi iteration or the conjugate gradient algorithm as described above, and 

(pr?), 1) = 0. Then if (Uh, Ph) is the solution to (2.7) with (Ph, 1) = 0, we have the 
estimate 

(uh )- Uh, Ph )-Ph) llo0h - C(m) || (UhO) - Uh, - Ph) lo h, 

where c(m) < C(Wm)-12 for the Jacobi iteration and c(m) < Cm' for the conjugate 
gradient algorithm. 

The proof of Theorem 2 is split below into three lemmas. We introduce first some 
notation. Let 0 = XA < IX21 < ... * I* X N be the eigenvalues of the matrix A and let 

{74P19... 94N} C RN be the corresponding system of eigenvectors, orthonormal with 
respect to the Euclidean inner product ( , ) >. Further, let v E Vh and q E Qh be 
expanded in terms of the basis functions of the subspaces as 

M N 

(3.7) v = '7qiip q = h 1 E 
i=l i=M+l 

wheren E=- RN is further expanded as 
N 

B= ? c4i,. 
i=l 

Then we may define a scale of (semi)norms III * Ills for s > 0 by setting 
N 

111( v, q) IIs=E Ai c. 
i=l 

Below we need only the norm I 1110 and the seminorm 11 2. Note that we have 

(3.8a) III(v, q)IIIo = In1k, 

(3.8b) III(v, q)1II2 = r(A2'q, 71> = lA71, 
where 1 I denotes as above the Euclidean norm. Moreover, by (3.7) and by the 
definition of the basis functions gpi, we have 

(3.9) C 171| < 11(v, q)110 h < CI711 

for some constant C, i.e., 11 *II 0h and II1110 - I are equivalent norms on Vh X Qh. 

The first step in the proof of Theorem 2 is to obtain an estimate for the smoothing 
effect of the operator Gim). The proof of the following lemma is found essentially in 
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[141 (cf. also [4]). For the convenience of the reader, the proof is reproduced at the 

end of this section. 

LEMMA 3.1. If G P) in (3.1) is defined as above, we have 

III(h)- Uhl Ph -Ph)I|j2 h Ch2c(m)|(u ) - Uh, Ph -Ph)||lo' 

where c(m) is as in Theorem 1. 

The next step in the proof is now to verify that the solution of (3.2) satisfies the 

estimate 

(3.10) II(d2h- d, e2h- e)IIo h < Ch2III(d, e)1112, 

where (d, e) = (uh - Um), Ph -p )). The statement of Theorem 2 then follows by 
combining (3.3), (3.10) and Lemma 3.1. The proof of (3.10) is also given essentially 

in [14], where it is carried out in the spirit of [4] using duality techniques. Here we 

present another proof which appears to be a bit more transparent. It is based on the 

auxiliary seminorms. 

IV12,h = IVIH 2(T) + h IS j V 2 
ds, 

K E= Wh ~ S E Th 

and 

Iqlh = IqIH'(T) + h- 
1 f [q]2. 

Ke Wh SETh S 

Here Th denotes the set of sides of rectangles in 'h that are interior to Q, [q] is the 

jump of q across S and [av/an] is the jump across S of the derivative of v with 

respect to the normal of S. These seminorms are associated, respectively, with 

the spaces 

[ 2(Q)]2= { v E V: vI T E [H2(T)] , TE Wh } ' 

and 

H1(Q)= { q E Q: qlT E H'(T), T E Wh } 
Using the above notation, we now split the proof of (3.10) into the following two 

lemmas. 

LEMMA 3.2. There is d constant C such that for all (v, q) E Vh X Qh, 

1V12,h + IqIl1,h < CIII(v, q)1112. 

LEMMA 3.3. The solution of (3.2) satisfies the error estimate 

II(d2h - d, e2h - e)IIO h < Ch2 (IdI2,h + lell,h) 

where(d,e) =(U h Uh), Ph-Ph )P 

Proof of Lemma 3.1. Consider first the Jacobi method, where according to (3.4) 

through (3.6), 

rnl _ t 
= I - I|XNI2 A2) (to 

- 
t) 
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By (3.8), the asserted inequality is equivalent to the estimate 

Itm - tIA < Ch-2C(m)ltO - 41 

where I7IA = IAql. Now if t0 - = E' lcibi, we have 

it- = (A I(- |IXAN A2) ( tO - () tO - 

- E 4i [1- "'(A)2]mC 

< _ll 12max x2(1 - x2)MIt0 _ 
-j 

2 

- 1 < x < 1 

To estimate IA NI, note that by (3.9) and by definition of the matrix A, 

IX NI = max I A<'q > )< C max -h ((cv q); ( v,q)) 
nRN 11(,q) e Vh XQh ||V )112, 

By a simple inverse estimate, 

-h ((v' q); ( V, q)) I < C(|V12 + ||q 112) 

< Ch||(V q)lO,hs (V, q) E= h X Qh. 

Therefore, IXNI < Ch -2, and since 

max IxX(1 - x2)m//2 M 

-1 x41 

the asserted estimate follows. 
Consider next the conjugate gradient method. In this case we have the identity (cf. 

[1]) 

itm - tIA = min jr(A2)(t0-( OIA9 r eAm/2 

where Am/2 denotes the set of polynomials r of degree < m/2 such that r(O) = 1. 
Recalling that I XNI < Ch 2, this gives the upper bound 

I|m - VA< Ch-2 min max |xr(x2)1 Ito - . 
re-Am!2 -1 <x<41 

Since m is even, it is possible to choose 

r(x2) = m+1 X- Tm+1(X), 

where Tm+1 is the Chebyshev polynomial of degree m + 1. This choice yields 
immediately the asserted estimate, so the lemma is proved. 0 

Proof of Lemma 3.2. Let (v, q) E Vh X Qh and let in be as in (3.7). Then recalling 
(3.9) and the definition of the matrix A,we have 

II(v, q)1II2 = IAq1I = sup A71,t> > C sup qh((v, q); (w, r)) 
CERN Ri (w,r)E VhXQh III(w, r)IIIO,h 

Therefore, if (W, p) E Vh X Qh iS such that 

(3.11) _qh((v, q), (w, r)) = (w, w) + h 2( p, r), (w, r) E Vh X Qhg 

we have 
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and so the asserted estimate follows if we can show that 

(3.12) 1V12 h + IqIl.h CII(W, P)II0,h, 
which is a stability estimate for (3.11). 

To prove (3.12), let (v, q) - (V(1), q(l)) + (v(2), q(2)), where (v0'), q(i)) E Vh X Qh 

satisfies (q(2), 1) = 0 and 

h 
h((V , q()) (w, r)) = (w, w), (w, r) E Vh X Qhs 

and 

qh ((v, q(2) ), (w, r)) h2 (p, r), (w, r) E Vh X Qh- 

Then (v(l), q(l)) is the approximate solution of the Stokes problem (2.1) withf = . 
Denote by (u, p) the corresponding exact solution normalized so that (p, 1) = 

(q(l), 1) and let (ui, p) be the interpolant of (u, p) in Vh X Qh. Then applying first 
the triangle inequality, 

IV 12,h + lq(1) ,h < IV(')- U12h + lq(l) - Plh 

+ IU - U12h + IP - PI1,h + IUI2,h + IPl,h 

and on the right side the further estimates 

IV( - U12,h + lq(l- PI1Kh < Ch '(Iv(') - Il, + q() - Pllo) 

< c0(luI2 + IP11)9 

lu - U12,h + IP - Pll,h < C(lu12 + IP11) 

(where we used standard inverse and interpolation error estimates (cf. also [13]), 
together with the error estimate of Theorem 1), we conclude, noting that IU12 h = I1u2 

and I P I 1h = h pI and applying the standard regularity estimate, that 

lV112,h + q(l)l,h < C(IU12 + |Ph1) < C111WI10- 

In estimating (v(2), q(2)) we need only to combine the stability estimate of Theorem 1 
with inverse estimates to obtain 

IV(2)I. + (2)1~ ChlI(Iv(2)1i + q(2)110) _<,IIIo |V 12,h + Iq"|1,h < Ch(v l+llq ll) ClhllpIl?o 

Combining now the estimates for (v(i), q(i)), i - 1,2, we obtain (3.12), and the 
lemma is thus proved. 

Proof of Lemma 3.3. Comparing (2.7) and (3.2) and noting that s7rq = 0 for 
q E Q2h' we obtain 

2 h((d2h, e2h); (v, q)) = -'2h((d, e); (v, q)) + (e, 1'2hq), 

(v, q) E V2h X Q2h' 

Arguing as in the proof of Theorem 1, we obtain the error estimate 

11(d2h- d, e2h- e)tOh -<- Ch(Id - dl, + Ile - Illo + Ile -eJl), 

where the interpolants d E V2h, eE Q2h and e are the coarse-mesh analogies of 
those in Theorem 1. The asserted estimate obviously follows if we can prove the 
interpolation error estimates 

(3.13) Id-dl - a< ChIdl2, d E Vh, 
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and 

(3.14) lie - Illo + Ile - fllO < Chlellh, e E Qh 

To prove (3.13), let K1, K2 E ' Wh be two rectangles with a common side S. Set 
K = K1 U K2 U S and define the seminorm IVI2 hK for v E Vh by 

IV2,h,K = lVlH2(K ) + lVlH2(K2) + h-1 j ds, 

where we use the same notation as in defining the seminorm I - 12h above. It is easy 
to see that the null space of I - 12,hK is contained in the null space of the seminorm 
v - Iv - 

DIM(K)' where v is the interpolant of v in V2h. Therefore, by a simple 
scaling argument and by the equivalence of norms in a finite-dimensional space, 
there is a constant C independent of K such that 

IV - VlH1(K) < ChlV12,h,K, V E Vh. 

When summed over all pairs of adjacent rectangles in 'h, this proves (3.13). 
Estimate (3.14) is proved in a similar manner, and so the assertion of the lemma 
follows. O 

4. Numerical Results. The algorithm of Section 3 was tested by solving numerically 
the Stokes equations on the unit square, with f in (2.1) chosen so that the exact 
solution is given by 

ul(x) = x2(1 -X1) (2X2- 6X2 + 4X), 

u2(x) = x2(1 -x2 -2x, + 6x2 -4x3) 

p(x) = X2 4 X2 

A three-level algorithm with W-cycle (cf. [13]) was applied to solve the problem on a 
16 x 16 grid. The relaxation steps were distributed symmetrically with respect to 
coarse grid corrections, and on the coarsest 4 x 4 grid the discrete equations were 
solved directly as usual. 

In the numerical tests the scaling parameter h in (3.4) was first replaced by yh and 
y was varied so as to obtain the best convergence rates. The optimal value was found 
to be close to 0.5. Similarly, the value of the parameter w in the Jacobi relaxation 
was chosen close to the optimum, i.e., w = 1. In the subsequent computations the 
parameters y and w were held fixed and asymptotic convergence rates in the norm 
11 O 110h were computed as a function of the remaining parameters, i.e., the stabiliza- 
tion parameter K and the number of relaxation steps per level. 

Table 1 shows the dependence of the convergence rate on the stabilization 
parameter K in the case of eight conjugate gradient relaxations per level. Similar 
results were obtained with other values of m and with the Jacobi relaxation. Thus we 
conclude that the stabilization, although unnecessary in the direct solution, is of 
essential importance in the multigrid solution. 

Table 2 shows the dependence of the convergence rate on the relaxation method 
and on the number of relaxation steps per level. As expected, the conjugate gradient 
relaxation gives faster convergence for large m. However, for small m the Jacobi 
relaxation seems superior as it is simpler. 
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We should finally point out that very likely neither of the relaxation methods 

considered in this paper is the best possible one. The development of smoothing 

algorithms that give better convergence rates for small m no doubt deserves further 

studies. For previous work in this direction, cf. Brandt and Dinar [16]. 

TABLE 1 

Asymptotic convergence factors of a three-level algorithm for various values 
of the stabilization parameter. Eight conjugate gradient relaxations per 

level. 

K = 0 0.1 0.25 0.5 1.0 2.5 

.94 .50 .22 .22 .23 .48 

TABLE 2 

Asymptotic convergence factors of a three-level algorithm for various types 

of relaxation. K = 0.5. 

m= 2 4 8 

Jacobi .87 .81 .71 

Conjugate gradient .87 .62 .22 
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