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A Linearly Implicit Finite-Difference Scheme 
for the One-Dimensional Porous Medium Equation 

By David Hoff 

Abstract. We present and analyze a linearly implicit finite-difference scheme for computing 
approximate solutions and interface curves for the porous medium equation in one space 
variable. Our scheme requires only that linear, tridiagonal systems of equations be solved at 
each time step. We derive error bounds for the approximate interface curves as well as for the 
approximate solutions under the rather mild mesh condition At/Ax < constant. 

1. Introduction. In this paper we present and analyze a linearly implicit finite- 
difference scheme for computing approximate solutions and interface curves for the 
porous medium equation in one space variable: 

a3v = __a___ av 
vR (1.1) v=v = mv aX2 + m - I ax ) V(x, t), t > 0, x ER; 

(1.2) v(x,O) = v0(x). 

Here v denotes the pressure in a polytropic fluid occupying a portion of x-space, t 
is time, and the constant m > 1 is the adiabatic constant of the fluid. Equation (1.1) 
results by coupling D'Arcy's law with the Euler equation for conservation of mass; 
see [10]. It is known (see below) that if v0 has compact support, then so does v(-, t). 
The "interface curves" are therefore defined by spt v(-, t) = [?,(t), Jr(t)]J 

Our difference scheme requires only that linear, tridiagonal systems of equations 
be solved at each time step. We derive error bounds, not only for the approximate 
solutions, but also for the approximate interface curves, under the rather mild mesh 
condition At/Ax < constant. 

These results are an extension of our previous work [5] in which, together with E. 
DiBenedetto, we presented a complete analysis of an explicit finite-difference 
scheme for the problem (1.1)-(1.2). Although convenient for purposes of exposition, 
that scheme was of limited practical significance because of the usual parabolic 
stability condition for explicit schemes, At/Ax2 < constant. Nevertheless, most of 
the techniques and arguments used there are applicable here. We shall not, therefore, 
repeat all the details. 

The plan of this paper is as follows. In the remainder of this section we give a 
detailed description of our algorithm. In Section 2 we derive the basic estimates on 
the approximate solutions which are needed for the convergence results and error 
bounds. Now, the feature of our scheme which makes it most attractive computa- 
tionally is that the required conditions on the mesh parameters are minimal. Since 

Received May 5, 1983; revised November 1, 1984. 
1980 Mathematics Subject Classification. Primary 65M15, 35K65. 

&?1985 American Mathematical Society 

0025-5718/85 $1.00 + $.25 per page 

23 



24 DAVID HOFF 

these conditions are precisely those under which the basic estimates of Section 2 
hold, we present these estimates in complete detail. On the other hand, once the 
approximate solutions and interface curves are known to satisfy these basic esti- 
mates, the proof of convergence and the derivation of error bounds are nearly 
identical to those in the above-mentioned work [5] for the explicit scheme. We 
therefore present these results in Section 3 with only brief indications of -their proofs. 

We shall assume throughout that the initial function v0 satisfies 
[Al] 0 < v0(x) < M, x E R; 

[A2] Ivo(x) - vo(y)l < Llx - yf, x, y E R; 

[A3] spt v0 5 [; (o), Dr (O) I, ;l(O) and tr(O) finite. 
Under these conditions, it is known that (1.1)-(1.2) has a unique solution v 
satisfying 0 < v(x) < M; v is Lipschitz continuous in x and Holder continuous in t 
with exponent 1/2; and spt v(-, t) = [p1(t), jr(t)], where the Lipschitz curves / and 
2r evolve according to 

=-m (1.3) ;z~~~t(t) =- v.MI(t) + 0, t), 

()r(t) = - m_ 1 Vx(r(t) -0, t) a.e. 

Here vx(DI(t) + 0, t) is the limit of vx(x, t) as x -- '1(t) from the right; similarly, for 
Vx(tr(t) - 0, t). See [1]-[4], [9]. See also [6] and [8] for related work on the numerical 
solution of (1.1)-(1.2). 

We now give a detailed description of our algorithm. Let AXt and Ax be increments 
in t and x, and let tn = n At and Xk = k Ax for integers n and k. The approximations 
to v(xk, tn), d(tn), and Jr(tn) will be denoted by vn, Lln, and tn, respectively. To start 
the scheme we set v5 = vO(xk), t = '(O), and ;r = 2r(O). Now given vn, d7, and Dn, 
we proceed as follows. Define 
(1.4) K= max{ k: Xk+1 < rn 

and 
(1.5) r - X l. 

t 
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Then in analogy with (1.3), we compute tnll from 

M At V7n 

(1.6) r 2r + mr-i s' 

K", s,', and ,' are defined in a similar way. Then for Kl < k < K,n, we compute 
vi + I from the implicit finite-difference equation 

11?1 11n Vn?1 Vn nf - fl 
Vk ~Vk nAVk AVk rn(Vk?i Vkl1 (1.7) x+ 2 + m 

mv rfk A2 + x + Ax / 

where A is the difference operator 

(Av)k = Vk+1 - 2Vk + Vk-1, 

and E is an O(Ax) viscosity parameter to be defined below. For XKn <Xk n+ 

we compute vn+1 from the linear interpolation 
P, n? +_ 

(1.8) vn = v;2 +r Xk 

-? x K,' 

and similarly at the left-hand interface. And finally we set vn+ = 0 for Xk ( 

Setting /3 = At/Ax2, we can rewrite (1.7) as 

Vjk =k + m: Vk kAV' + f3cAk 

(1.9) + Vk'\ (kv-v )2 KJ' < k < K, . 

Clearly, the computation of v4 1,. . n?1 requires only the solution of linear, 
tridiagonal systems of equations. As we shall see in Section 2, this system is uniquely 
solvable; and, owing to the presence of E, the bounds [Al] and [A2] persist for the 
computed, approximate solution. In addition, we shall establish the second-deriva- 
tive estimate 

AvI/AX2 > -const/tn. 

This lower bound will prove to be crucial for the analysis of the convergence of the 
approximate interface curves. 

We shall need to assume that the mesh-parameters satisfy the following condi- 
tions: 

[A4] (6m/(m - 1) + 3m) L Ax < E < const Ax, 

[A5] /3[E + max(m, m/(m - 1))L Ax] < 1/2. 

Observe that, since E = O(Ax), [A5] imposes an upper bound only on At/Ax. We 
have thus avoided the parabolic stability condition for explicit schemes, At/Ax2 < 

constant. 

2. Basic Estimates. Throughout this section we assume that the initial function v0 
satisfies [A1]-[A3], and that the mesh parameters satisfy [A4] and [A5]. 

LEMMA 2.1. The scheme (1.9) is uniquely solvable, and the computed solutions vk 

satisfy 
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and 

(2.2) I(Vk- Vk _)/Axl , L 

for all n and k. 

Proof. (2.1) and (2.2) hold for n = 0 by hypothesis. We assume that they hold at 
time t,, and show that Vn+1 < M for all k. The proof that vn+1 > 0 is similar; and 
the unique solvability then follows by taking M = 0 when Eqs. (1.9) are homoge- 
neous. 

Thus let { v l }K1 +K 1 solve (1.9), and choose k so that Vk+ is maximal. Because 
of the linear interpolation near the interface, we may assume that K n< k < K,n, so 
that the difference equation holds at Xk. We rewrite the last term in (1.9) as 

4(m 1)(wl + wk )(vk+l -vk 1) 

where wk" is the backward-space difference 

wn = (Vn - Vn_1)/AX. 

(1.9) then becomes 

(1 + 2mpVn)Vn 1 = mpVn(vn+1 + Vn_1) + (1 - 2e)Vn 

4(m -1) 

k+1 k) k+ 

+i4c ~m Ax 
(W21+ nJ] 

n +,[e-4(m -) ( k+1 Wk)] k-l 

Using the fact that mf3vn > 0 and the maximality of Vn+ 1 we obtain 

Vk ~~k 
(2.3) vk ( 2e)k + e+4(m l) (k+1 k Wk]k+1 

(2.3) - +w)j7i 

+ t e-4(m 1) (w++ k )] sk-l' 

The induction hypothesis Iwjnl < L and the mesh conditions [A4] and [A5] now show 
that the right side of (2.3) is a convex combination of vn_l, Vn, and vn+1, and so is 
bounded above by M. Thus for allj, vjn+ 

< Vn+1 < M. 

Next, we establish the bound (2.2) at time tn+l. Subtract from (1.9) the corre- 
sponding equation at xk-l and divide by Ax. The result is that 

w11+1 = wn +m( k 
k k 1 A Wn+1 

(2.4) +m( 2 )( w2$ - Wk-t) + feAw 

mAt (w nk+ + 2W2 + Wn1_( Wn+l -Wn_1 
~M- 1 2 J~2Ax ), KI rkK, 
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Rearranging, we find that 

[I + 2m13 +# )wn 
[ ( 2 ) ] k 

= mfV kwn+1 + mf3vnw_-+1 + (I - 2/e)Wn 

(2.5) m Ax (w+ + 2Wk + W )w+ 

+4 m Ax (w+i + 2k + 1 )]nw 

Now, the coefficients of w`i+ and wni 1are nonnegative by the induction hypothe- 
sis. Therefore, if we choose k so that wn1 is maximal, and if we assume for the 

moment that K, < k < Kr, it then follows that 

<t+1 < (1 2E) Wn + + ( Ek+ 2wk +wk-1 ) n 

(2.6) 4 mAx ( + 2 + w _ 

Again, the induction hypotheses and the mesh conditions [A4] and [A5] show that 

the right side of (2.6) is a convex combination of numbers which are less than or 

equal to L. Thus for all j, Wj1 + 1 <wk+1 < L. The proof that j >-L is similar. 

To complete the proof, we must show that w, + 1i < L when Xk is near an interface 

or t 7. We shall deal only with the right-hand interface, and for this it will be 

sufficient to bound wK+, where K = Krn. From the definition of j for j > K, 

(1.8), and from the difference equation (1.9), we have that 

n+1 0-K Vn= --V + M3AX Vn( w+1 n+1) 

WK+ 1 K -s K K 1 WK 

+/3A X(Wn+1 - Wn) + -m ( w )2j 

where s = +1-XK.I. Using the fact that 

W;K 1 = _VZIS n 

and rearranging, we obtain 

WK+ 1 [Sr WK+ 
- mf Kv((wK - WK PE Ax(w;+ WO) 

m _ K + K + K )( 4 ) ] 

(2.7) Wn rK1n(n _1' m At(m - 1)1w+1 ) _ /x - w +1) 

K1 [B Ax K_ mK '\ ( +WKW1 W) 

- -~ ~ At 
(3w 

n 
+ 

Wn)( -w) 

However, the interface condition (1.6) shows that 

S n+l -__n - n n mAt n 
S r XK r n-i K+1 -XKr 

= - K+ 1. 
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We therefore obtain from (2.7) that 

(2.8) wn+1 = (1 - a)wK+1 + awK - b(wK1 - nK1 
where 

(2.9) a = [e - r- ( 
r r 

+ ] 

and 

(2.10) b m=t mn 
(210) ~~~~~Ax( ?1-XKfl) 

Now, WK+1 = -v1+1/s 0. Therefore, if Iw;+11 is maximal, Wn8+1 must be negative 
and minimal, so that W++1 - Wn+1 0. We therefore obtain from (2.8) that 

(2.11) w11+1 > (1 - a)w"+1 + aWn 

But a is nonnegative by the induction hypothesis and [A4], and 

(2.12) a <3(E + rm LAx) c 1 

by [A5]. We may therefore conclude from (2.11) that wK++1 >-L. O 
In the next lemma we establish a one-sided bound for the discrete second-space 

derivative of the computed solutions. 

LEMMA 2.2. There is a constant C depending only on M and L such that the bound 
Av Vn v11 -2 Vn + Vn1 c (2.13) Axk Ak+1 - - 

holds for all k and all n > 0. 

Proof. Let zZ" be the variable in question. That is, 

? Avk wk+1 
- 

Wk 
Zk 

AX 2 Ax 

where, as before, w/n = (vk - V vk)/Ax. We let no denote a positive integer, to be 
chosen later, which depends only on M and L. Then for n <n 0 

2L 2L nlAt C 
k >1~~- k AX tn Ax tn 

where C depends only on M and L. (Observe that the mesh condition [A5] imposes 
an upper bound on At/Ax in terms of M and L.) 

Proceeding by induction, we establish the bound (2.13) at time tn +1 , where 
n + 1 > nO. Thus, choose k so that Zn+ 1 is minimal and, without loss of generality, 
nonpositive. First assume that Xk is an interior point; that is, Kf < k < Kr,. In this 
case Eq. (2.4) holds at both Xk and Xk+1. We rewrite this equation as 

wk = w2 ? mf8Ax ( k _ Zn+l) 

(2.14) + mP Ax (Vk - vk1)(k kI ) + AeAx (Zn - Zn_) 

m At ( +I w k1? ? w1 ? rn-i +2Wn ? ZWn) 
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Subtract this from the corresponding equation at Xk+1 and divide by AXx. The result 

is that 

= + ? r+ 3 ( l ? 2+ % ? k k-1 ) A2Zv ? 1 

?r1( 2%? )% 
zi 

?+ lXt Z m k) ? fkEAZA 

? r1 t ? 3w2+1?3w/ ? w,_1 - zZ? 

? rn - 1 k-( n2 ? 2+Z ? -1 

Combining terms, we obtain 

[i ?rf( V k +1 ? 2v ? 
- - rn L\t 

Z 

+M/3v ? 2vh- Vk1 LZ+l n Zk+1 

tZnk+1 k ? +Pe Z 
4M 4kk1k4I 

?m13( -vk+ ? 2v ? k3v 
n I + )n +(1 - 2/We)Z_ 

? j m ?1 Ax W)Zkl? + 2 k k1 - x W)Zk1 rn-18 

where w and z- are the obvious averages. Now, since 

A Z =A vt+?2 + 2z? + Zn _ 

the coefficients of z'1 +and zk+1 in the above equation are nonnegative. And since 

zCom iS minimal, we obtain 

zvj > rnl\tzZk + v ?(1 2/e)zZk ? 13( ? r 1AXt)zZk+ 

(2. 5) ? 2 k 

3vl+ 2vtE - -t7 /\x2W k1 

The mesh condition [A4] now shows that the right-hand side here is an increasing 

function of z2?_1. The same is true for the variable zZh, if we fix z,k'j1 > -2L/Ax, 

since then 

rnl\t Zk ? 1 - 2/3E n 1 - 2n(E +? rnL2Lx), 

which is nonnegative by [A5]. We therefore have from (2.15) and the induction 
hypothesis that 

h > ( C/t) (1 ? r n i ttz ) 

And this shows that zIWZ1 ? -C/t,-- provided that we take C ? 1/rn. 

To complete the proof, we need to deal with the case that the minimal zZ?' occurs 

near the interface. Now, when k t [Kao, K,e], zeu+1 will be nonnegative because of 

the linear interpolation used to construct v near the interface, We therefore set 

K = K+ and assume that zin1 is minimal. The argument at the left interface is 

siml ar. 
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First we rewrite (2.8) in the form 

(2.16) +1 = W+ - a Ax ZK- blxZK K 

where a and b are as defined in (2.9) and (2.10). Next, we have from (2.14) that 

(2.17) Wkn' = w n+ (c + d) Ix zKj1 -(c - d) Ix ZnK- 

+(f + g) AXx Z-(f- g) AXxZn1 

where 

C=Mf 
K 

2 'K-1 d= 2 f =PE 

(2.18) m At Wn + 2Wn + Wn m = k+1 ? ? I 

m m-1 Ax 4 
Subtracting (2.17) from (2.16) and dividing by AXx, we obtain 

znj' (1 a a-f- g)Zn z?(f_ g)z,_1 -(b + c + d )Znl ?(c )ZK1n 

Now, 

c - d = mivn 7> 0, 

so that, since zKj+1 is minimal, 

(2.19) (1 + b + 2d )Zn+l > (1 -a -f- g)z + (f _ g)zn 

We have thatf -g > 0 by [A4]. And from (2.12) and (2.17), 

1-a -f-g> 1 -(P3e+ -1Lm L )A PE m-i AtL 

-1-/3( m- I 
which is nonnegative by [A5]. Our induction hypothesis applied to (2.19) then shows 
that 

(2.20) (1 + b + 2d )Zn+l > (1 - a - 2g)(-C/tn)- 

We need to estimate the coefficients in this inequality. First, we have from the 
construction of Sn (see (1.5)) that 

r ~ ~ ~ ~ ~ ~ r- - n+1_X= S ~ n 
+r- < 2 Ax m - A1 

< 2 \x + e =Al\x (2 + ef3) < Ix 
Ax ~~~~2 

by [A4] and [A5]. Thus 

X -Alt/A\x (tr - Kt) >2/ 

so that, from (2.9) and (2.18), 

(2.1) 1-a-2g <1-f3(e- _1 LLvx)?+m1 L\ 
(2.21) 1 2( m m -I IA 

5 (- m _ 
12L Xx) 5 1-m-mf3LLXx 

by [A4]. Observe also that 1 - a - 2g is nonnegative, because, as we showed above, 
both 1 - a - f - g and f - g are nonnegative. Finally, 

(2.22) 1 + b + 2d >1? + 2d > 1-miL Ax > 0 
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by [A5]. Substituting the estimates (2.21) and (2.22) into (2.20), we therefore obtain 

K? > 1-m3LLx (C) (1- ZK l-mfLX 

where 8 depends only on M and L. And this shows that 

K > -C/tn1l, 

provided that n > no, where no depends only on M and L. O 
The following estimates are consequences of Lemmas 2.1 and 2.2. 

LEMMA 2.3. Given T > 0, there is a constant C depending only on M, L, and T such 

that the bounds 

2| Av k |\ t 
Ci\ I; C 

tn 

holdfor t,, < T. 

LEMMA 2.4. Given T > 0, there is a constant C depending only on M, L, and T such 

that the inequality 

ivk - Vk I < CItn - tm 

holds for t,, and t,, in [0, T] and for all k. 

Lemma 2.3 follows directly from the bound (2.13) and the difference equation 

(1.7). And Lemma 2.4 can be proved by employing the discrete version of a 

technique due to Kruzkov [7] for deducing a modulus of continuity in time from a 

known modulus of continuity in space for solutions of certain parabolic equations. 

The proofs of Lemmas 2.3 and 2.4 are nearly identical to those of Lemmas 2.6 and 

2.7 in [5], and in any case they impose no further constraints upon the mesh 

parameters. We therefore omit these proofs. 

3. Convergence and Error Bounds. We let h = (AXt, LXx) be a point in R2+ whose 

coordinates satisfy the mesh conditions [A4]-[A5]. And we define approximate 

solutions vh and approximate interface curves grhI by prolonging the sequences { vn } 
and { g7, } by piecewise-linear interpolation. For example, for tn-1 < t < tn 

th(t) = 'n-1 ? - (t -r 
LAt 

And for (x, t) in the triangle with vertices (xk, tn-1), (xk, tn), and (xk+1, tn), 

vh(X, t) = Vnl ? 
+ k vh xt)=V k+ ~1 k (X - Xk ) + t A (t- tn ), 

and so on. Lemmas 2.1-2.4 then show that 

(3.1) 0 < vh(x, t) < M, 

(3.2) |Vxh (x,t) < L a.e., 
and for t, t, t2 <T, 

(3.3) Iv(x, t2) - vh(x, t1) 0 < cit2 - 

(3.4) i t)D1lR, f Vx, t)Idx < I( t) 
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(Of course, vxx is a measure.) As a consequence of these estimates we have the 
following convergence result. 

THEOREM 3.1. Assume that the initialfunction vo satisfies [A1]-[A3], and let v be the 
unique solution of (1.1)-(1.2). Let Vh, h , and ;,Jh be as constructed above, where the 
mesh parameters are assumed to satisfy [A4]-[A5]. Then given T > 0, 

vh -*vuniformly in R x [O, T], 

v,h -vx 
in LP(R x [O, T]) for p < ox, 

and 

h'i ~h h r uniformly in [0, T]. 
Proof. The compactness of the nets { v } and { vxh } is evident from (3.1)-(3.4). 

That their limit points coincide with v and vx follows from the uniqueness of 
solutions of (1.1)-(1.2) and the fact that our difference equation (1.7) is consistent 
with (1.1). The convergence of the approximate interface curves is more subtle, 
requiring a careful coupling of the one-sided bound for vxhx in Lemma 2.2 with the 
interface condition (1.3) and its discretization (1.6). Complete details may be found 
in Section 3 of [5]. 0 

Finally, we can prove the following error bounds for the approximate solutions 
and interface curves. 

THEOREM 3.2. Assume that the hypotheses of Theorem 3.1 are in force. Then given 
T > 0 there is a constant C such that 

(3.5) IIvh - VI|p Rx [0 TI CH /P, 

(3.6) |v h(., t) - v(-, t)|11R < Cmin[(H/t)l/P+3, t1"2 + ? X] 

(3.7) j 
r _ CH 1[2(Op + 3) 

Here 

p (m + 1)/(m-1), 1 < m < 2, 
m +1, 2 m, 

and 

H = (A/Xa + lta/2) Ilog xXI, 

where 

fi1 , 1 < m < 2, 
a 11/(m -1), 2 <m. 

Proof. To prove (3.5) we exploit the built-in stability of the solution operator for 
(1.1)-(1.2). Thus vh - v can be estimated in terms of the weak truncation error-the 
extent to which vh fails to be an exact weak solution of (1.1)-(1.2). (3.6) then follows 
by applying an elementary interpolation inequality to the estimate (3.5) and using 
the regularity results of Section 2. And (3.7) is proved by exploiting the one-sided 
bound for v,,hx of Lemma 2.2 and the interface conditions (1.3) and (1.6) to couple the 
time evolution of the L?-error in vh to that in ?,h. The details are nearly identical to 
those in Sections 4 and 5 of [5]. 0 
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We remark that if the initial function v0 satisfies a2v0/ax2 > -C for some 
constant C, then this bound persists both for vh(., t) and for v(., t). In this case the 
1/t,1 may be omitted from the estimate in Lemma 2.2, and, as a result, the ilog Axl 
term may be omitted from the definition of H in the above error bounds. If, in 
addition, v0 is concave, then so are v t(., t) and v(., t). In this case vxx and vt become 
bounded in L??, and the error bounds (3.5)-(3.7) can be improved somewhat. 

Finally, if D and th are known a priori to be bounded away from 0, then the proof 
shows that the bound for jg'h - t11. in (3.7) becomes CH17P +3). 

Our computational experience indicates that the estimates appearing in Theorem 
3.2 significantly overstate the actual errors. This may be due in part to the fact that 
these bounds were derived under minimal smoothness hypotheses on the exact 
solutions. On the other hand, we have found that, even in the special case that v0 is 
concave and v has bounded derivatives of all orders on its support, the L P error in vh 
will be at best O(Ax). This is not unexpected, since the artificial viscosity parameter 
e is itself O(Ax). 
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