
MATHEMATICS OF COMPUTATION 
VOLUME 45, NUMBER 171 
JULY 1985. PAGES 35-49 

Error Bounds for Finite-Difference Approximations 
for a Class of Nonlinear Parabolic Systems 

By David Hoff* and Joel Smoller** 

Abstract. In this paper we establish error bounds for a finite-difference approximation to 
solutions of certain parabolic systems of the form t + f(PO< = .u. We assume that the 
Cauchy data is of class BV. and we show that the sup norm of the error is bounded by 
O(Axiln Axi) at positive times. 

1. Introduction. In this paper we establish error bounds for a finite-difference 
approximation to solutions of certain parabolic systems of the form 

(1.1) VI + f(v)."= 
= 
tvE, x,t)E R X R 

with initial data 

(1.2) v(x,O) = vO(x), x E R. 

Here v E R", f E C2, c is a positive constant, and u0 is a function of bounded 
variation. Thus initial discontinuities are allowed, and (1.1)-(1.2) includes the 
classical "shock-tube" problem. 

We let xk = k Ax and t = n At. The approximation to v(xk tj') is denoted by u7 
which is to be computed inductively from the finite-difference equation 

u - Ui-1 t- - 2uVti- + ullI} f(Ui) n-f(uj!--) (1.3) U&Z-Al l Uk+1 2k + k-i (k+1) -t( Uk-i) (1.3) ~~At CAx 2 2 Ax 

In [3], Nishida and Smoller showed that for the class of systems under considera- 
tion here, the uZ do in fact converge to a unique, classical solution of (1.1)-(1.2). In 
the present paper we establish a more precise result by obtaining the error bound 

(1.4) supluZ4- v(xk, t,i s iElu2 - v0(x-)IAx +Axiln Ax] 
k t,n k 

for 0 < t, < T, where C depends only on T, c, and f (Theorem 3.3 below). Actually, 
our exposition is essentially self-contained; indeed, with some minor modifications 
our arguments can be used to independently establish the existence and regularity 
results of [3]. 
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We also remark that computer computations performed for us by J. S. Shi indicate 
that the bound (1.4) is of the correct order in Ax. 

We now state our assumptions concerning the system (1.1) and the mesh parame- 
ters Ax and At: 

ASSUMPTION A. There is a convex set S in v-space, in which f'(v) is bounded, 
which is invariant for the Lax-Friedrichs scheme 

(1.5) Uk= 2 u ) ? 2(kf1(U ) -1(uk+1)). 

(This means that when unI1 and un-1 are in S, then so is the vector un defined by 
(1.5).) 

Of course, when ax = At/Ax, (1.5) is a finite-difference approximation for the 
first-order system 

(1.6) vt + f(v)x = 

associated with (1.1). Now in all cases of interest, (1.6) will be strictly hyperbolic; 
i.e., f'(v) will have distinct, real eigenvalues XA(v),... , Xn(v). Our precise assumption 
then is that S is invariant for (1.5) when ax satisfies the CFL condition 

a X A (<k1xS aXk(U ))1 

ASSUMPTION B. The mesh parameters Ax and At satisfy 

(1.7) etx 1/2 
and 

(1.8) IAx < 2 max IXk(U)I. 
Ik,uc-S 

These mesh conditions insure that S is invariant for our difference scheme (1.3). 
To see this, note that if ,B = At/Ax2, then (1.3) may be written in the form 

(1.9) uk = (12- 2k3)u-1 ? ? u l) ?+ x 4 (f(ukl) -f(uk+l))]. 

Thus if unji1 are points of S, then so is the term in the above brackets, in view of 
Assumption A and (1.8). Furthermore, since 1 - 2e,- > 0 by (1.7), (1.9) shows that 
Uk is a convex combination of points in the convex set S. 

Examples of hyperbolic systems (1.6) which satisfy Assumption A are scalar 
equations, the "p-system" 

Ut + p(v) =O, v= -u=Ox (p'(v) < O <p"(v)) 
(see Hoff [1] for details concerning the invariant regions for (1.5) for this example), 
and those 2 x 2 systems whose shock and rarefaction curves coincide (see Temple 
[5]). A complete discussion of invariant regions for weak solutions of (1.6) is given in 
Hoff [2]. When (1.6) is genuinely nonlinear, such invariant regions are necessarily 
convex (but not otherwise), and in this case they are always invariant for the 
Lax-Friedrichs scheme (1.5), at least when uk_ 1 and un- 1 are sufficiently close. 

We remark that, although different error bounds could be anticipated for smoother 
initial data, we have decided to focus attention on initial data of bounded variation 
because the system (1.1) is of interest primarily as a perturbation of the correspond- 
ing system of conservation laws (Eq. (1.1) with e = 0), and the class BV is the 
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natural space for data and solutions of these conservation laws; see Glimm [6]. 
Moreover, there is now renewed interest (DiPerna [7]) in the problem of comparing 
solutions of the viscous equation (1.1) with the solution of the corresponding system 
of conservation laws. This question presupposes of course, that one can actually 
solve the system (1.1) globally for initial data in BV. The existence portion of our 
results gives an affirmative answer for a large class of systems (1.1) of interest. 

Because our goal is to establish an error bound in sup norm, even when the initial 
data (1.2) is discontinuous, we shall need to exploit the regularizing properties of a 
certain discrete heat operator. Now, since this operator is orthogonally diagonaliz- 
able, one could easily show that, for positive times, it maps the Sobolev spaces HS 
continuously into HS+P forp > 0. On the other hand, the corresponding regularizing 
properties on the space BV are less well-known. We therefore give a complete, 
self-contained exposition of these facts in Section 2. Then in Section 3 we apply 
these results to obtain the error bound (1.4) for the scheme (1.3). 

We shall use the following notation conventions throughout the paper. If u= 
(.. . iUk ...) is an infinite vector, we let 

lull = ElUkl Ax and UL = suplukl. 
k k 

Also, for functions v = v(x), llvllp will be the usual LP-norm, 1 < p < ox. 
We let K be the usual heat kernel 

(1.10) K(x, t) = (1/ 4cT)e-t / 4e 

The solution v(t) = v(-, t) of (1.1)-(1.2) then satisfies the standard representation 

(1.11) v(t) = K(t)* v0 - Kx(t - s)* f(v(s)) ds; 
0 

see [4]. 

2. The Discrete Heat Operator. In this section we study the standard explicit 
method for the scalar heat equation 

Vt - EVXX 

in the case that the initial data v(x, 0) has finite total variation. Thus v(xk, tn) is 
approximated by u%, which is computed from the finite-difference scheme 

un- unI un4I - 2uZ'- + unIl (2.1 ) uk uk e k+ 1 2k +k1 

(2.1) ~~ ~~At Ax2 
Using the notations 

82Uk = Uk?1 -2U + u un ( U, ...), 

and, as before, 

A- = At/AX2, 

we may rewrite the scheme (2.1) in the form 

(2.2) u= (I + cf62)un1. 

We dcfine below a discrete fundamental solution for (2.2); we investigate its 
properties in Theorem 2.2; and in Theorem 2.3 we derive a bound for the error 

suplun v(xk tji. 
kA( 

k i 
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Definitions. The fundamental solution for (2.2) is the sequence a' defined by 

a2={1/Ax, k=O, 
k t0 k O 

0 

and 

an= (I ? 6p2) nao 

Also, given sequences wk and Zk, one of which has finite support, we define the 
discrete convolution by 

(W * Z)k = 
FWk-jZjAX. 
I 

It is clear that the usual algebraic properties of convolution hold, and that if S+ is 
the forward-difference operator, S +Wk = Wk +1 -Wk, then 

8+(w * z) = (S+w) * z = w * (+z). 

Finally, we have the inequalities 

lw * zll < lwlllzll and lw *zl < Iwlllzl. 
In the -following theorem we derive the discrete version of Duhamel's theorem for 

the heat equation. This result will enable us later on to give a representation of the 
solution of the difference equation (1.3) in terms of the fundamental solution a". 

THEOREM 2.1. The solution uZ of the nonhomogeneous difference equation 
un - n-1i 2u 

uk - uk k U n- 

At Ax 2 f 

is given by 
'1 

u'1 =an1*uO?+ E an-j*fj-1At. 
Jj=1 

Proof. We have that 
1- 1 

U- u1-i = (all - an-l) * UO + ao * f 1-1 At ? (an-j an-l-j) * fj At 
.j=l 

= a2a '1 1 * aUO + f n-l A t + E '.8 2a n-l-j * f j-1 A t J = 1 

- E/32 an I1i*u? + an-I-jA * j-l ta +fn-1 At 
1=1 

-3;2Un-1 +?fn 1At. O 

Next we collect together various facts about the fundamental solution an which 
will be required in the subsequent analysis. 

THEOREM 2.2. Assume that ,/ < 1/2. Then the sequence a" satisfies 

(2.3) Eak = 1, 
k 
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and 

(2.5) IPa /xI1 C2tp2 

Here C1 is a constant which depends only on e, and C2 depends on E and p. 

Proof. (2.3) holds for n = 0 by construction, and the general case follows by 
induction on n, since 

n- ak1) = nI-2afl1 = 0. 
k k 

Similarly, the lower bound in (2.4) holds for n = 0 by construction, and the general 
case follows by induction, since the difference equation (2.1) shows that an is a 
convex combination of an-1 and an-1 

To prove the upper bound in (2.4) we let wn(0) be the trigonometric polynomial 

wPl(0) = Eake 
k 

Applying the difference equation (2.1), we find that 

wnl(0) = y(O)wn-1(O) 

where 

y(O) = 1 + 24,3(cos0 - 1). 
Thus 

wn(0) = Y(0)nW,(0) = (I/Ax)y(0)n. 

Now, it is easy to see that our hypothesis on ,B implies that 

(2.6) Iy(0)I < _ ,2 

for some positive constant C when 11 < 7T. Therefore, 

a= _ J lkOl(0) dO < 2 | e dO 

1 f cv2 C 
< e12 A je- dy = 

We prove (2.5) first for the case that p = 1. Let 

zn(0) = L(S+an)eikO. 
k 

Again, using the difference equation (2.1), we find that 

(2.7) Z"l(0) = (e-' - I)Eaeik= e -a 1 A k~~~~ 
Next, define 

2n(6)= I8+an?Ieik0. 
k 

Observe that 

-t1(sT) - _f-l)k| +aknj 
= 0, 

A~~~~ 
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because of the obvious symmetry a = a k* Therefore, 

(2.8) k ?kA [j dn()2d0] 

1ld2n 1I/2 dZ dn 1/2 
niil1/2 

dz 11/ ~~ C~Z~ dO L2 -CI112dO L2 

However, (2.6) and (2.7) show that 

lZn 0) 1 < (C1011Ax)e -Cn2 

so that 
IIZIIL2 < C/n3/4 Ax. 

Similarly, 

de() < -(I + n02)e-Cn92 

so that 

dO UL2 nl/4Ax 

Substituting these estimates into (2.8), we then have 

+ k I<. C/n1/2 Ax = C/t 
AX 1 

as required. 
For general p we let m be the greatest integer in n/p and n = m(p - 1) + q. It is 

easy to see that there is an integer N = N( p) such that, when n > N( p), the integers 
m and q satisfy m, q > n/2p. For such n, then, 

_Pa_ (n 8 am 6+am A aq 

Axp 1 1 Axx/ Ax 

p - 1 factors 

am lP-l 8 aq C C C(e, p) 

AX 1 AX 1 tmp-172 t1/2 tp/2 

And when n < N(p), 

|+ak IanK C 

Ax| AXP AXpt" 

so that 

|pn | N(p) CAx C 
Ax l k Axpt1"2 At(P-1)"2tl"2 

Cn (p-)/2 C(i, p) 

tnp tn/ 

Next we establish an Lw-error bound for the approximate solution of the discrete 
heat equation in the case that the initial data v has finite total variation. This result 
will be crucial for the derivation of error bounds for the approximate solutions of 
the regularized conservation laws (1.1). 
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In the following, K will be the usual heat kernel defined in (1.10). Thus the exact 
solution of the heat equation at time t is v(t) K(t) * v. Also, P will denote the 
operator which projects functions of x onto vectors by pointwise evaluation, that is, 

(PW)k = W(Xk). 

For example, if u'" is the solution of the finite-difference equation (2.1) with initial 
data u' = v(xk), then u' = a' * Pv., 

THEOREM 2.3. Let v E BV, and let V = Tot.Var.(v). Then, given T > 0, the bound 
V 

(2.9) lan * Pv - P(K(tn)* v)lo, < C(T) Axlln Ax 
tFn 

is validfor O < t,, < T. 

Proof. We adopt the following notations: 

vn =P(K(tn)* v) and un =an*(Pv). 

In addition, if jh is the standard mollifier with support in [-h, h ], then 

Vh jh=* v, v = P(K(tn)*v*), and UVh=a9 *(PVh) 

We then have 

la'" * Pv - P(K(t,1) * v)loo = lu' - v'1 lo- 

(2.10) < lun - unlo + 0 Un -lloo + IVn - vnloo 

The proof consists of showing that when h = Ax, each of the three terms on the 
right side of (2.10) is bounded by the right side of (2.9). 

The third term on the right of (2.10) is bounded by 

C 
IIK(t,i)*(Vh - v)Ooo < IIK(tn)llo)IlVh - Vlll < I lVh - Vlll. 

tFn 

But for smooth functions v(x), 

lVh(X) - V(X)| < ih(X - y)lv(y) - v(x)I dy 

<JOO 
x? +h y ( y ) I V'(s) Ids dy = xh I v'(s) I ds, 

00 x-h -V 

so that 

IIVh - vii lJ Jxh I v'(s)I ds dx 

j= 
0 js?h Iv'(s)I dx ds = 2hV. 

-oo s-h 

The same result holds for v E BV by a simple approximation argument. Thus, when 
h = Ax, 

|Vh- v l (cvI t/n) Ax- 

The bound for the first term on the right of (2.10) is similar: 

IUn - Unlo = lan * P(v - Vh)I < I anlIP(v - Vh)I1 
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by Theorem 2.2. And as above, 

v (xk) -Vh (Xk) I J_ _ Iv(xk) - v(x)Iih(xk - x) dx 
kh 

< Var[v; (Xk - h, Xk + h)] 

so that 

|P(v - Vh)1 = E IV(Xk) - Vh(Xk)I AX 
k 

1 Var[v; (Xk - h, Xk + h)] Ax = 2VAx 
k 

when h = Ax. Thus 

jun - UZ CV I (cv/n) AX- 

To estimate the second term on the right of (2.10) we define the vector a"n by 
vn n-1i 2v- Vh - Vh __ 

Vh + an-1 
At Ax2 

We shall show below that, when h = Ax, 

(Ax-1 n > 0, 
(2.11) ju"j1 < CVX tn /'2 n > 0, 

tAxt"-1, n > O. 

Now, by Theorem 2.1, 
n-1 

v = an *PVh + E a n*j aj At, 
j=1 

and, by definition, 
U n = an * Pvh. 

Thus, 

f=l v n-u n= Ean-j j- 'At 
j=1 

=a-1 * u0At + Ean-j *aj- At + a* an- At, 
j=2 

and 

jn - uZIlx < C jA +-' At At+ jan11 / 
J=2 tn ~-t1 

Using each of the estimates (2.11), we obtain 

IVn - unlx '< CV |gy2t 

Now the result (2.9) is trivial if tn = O(At), and for tn > 2 At we have that 

1/ 1 < 2/ 
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Since At/Ax = O(Ax), we may conclude that 

(2.12) IV' - u}? < CV A0 + Ax 
tF J i2 Vttn ti tj- 1 

The sum here is 

"E j _ 1 At rt? ds 2 1 dy 

j-=2 t, s tl tnt 1 -Y Y 

Now since the function /1 -y + y is bounded away from 0 on [0,11, we have 
that 

1 r i _ _ _ + _ 

l-_y y [Y vi_ 

Therefore the sum in (2.12) is bounded by 

< C(T)(1 + lln Axi), 
and (2.12) shows that 

IVn 
U 
nI C(T)(1 + 1/ tn)VAxIln AxI, 

as required. 
We still have to prove (2.11). From its definition we have that 

Vn+1 - vn aV2vn aV(2 l 

(2.13) 1 t at (t) + e Ax2 P 
1 ax2 

We shall estimate only the first term here. The argument for the second term is 
somewhat easier. First, note the simple fact that if w is a smooth integrable function 
of x, 

EWkAX -X Wdx < Axflw'(x) I dx. 
k 

The term in question is then estimated as follows: 

Vh(Xk, tn+l) 
- Vh(Xk, tn) - aVh 

E ~ ~ A (Xk, tn) Ax 
k A at 

< iA itn|(t - S) a 2 (Xk, s)|ds 

(2.14) /jtI(tn+l -) )[ a2 (Xk S X ds 
At 

Lk at2(k,S x]d < 
At f (ta+1 a2V 

(X s)dx + Ax a 3Vh (x, s) dx] ds 
At (tn+l 

- 
S) at2 at2S)d ax 

< CAt SUp [x[IIvh(s)IIl + AXIIDxvh(s)IIl], 
til < S _< + 1 
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since vh satisfies the heat equation. But 

Vh(S) = K(s)* jh * v, 

so that if p and q are nonnegative integers with p + q = 3, 

D4vh (s)l < IDPK(s) 11111Dxqh 11 11Dxv 1Il 

CVS-pl2 -qS CVS-pl2,AX-q 

when h = lAx. Similarly, 

AXlDVh(S)hi -< AxllDxPK(s)lllllDxq+ljhlllllDxvlIl < CVS-pl2 A X-(q + ). 

Substituting these bounds into (2.14), we thus find that the first term on the right 
of (2.13) is bounded by 

CVtp/2 At AX-q= CVt-P/2 AXP-1 

for p = 0, 1, 2. The estimate for the other term in (2.13) is similar. C 

3. Proof of the Error Bound. In this section we apply the results of Section 2 to 
prove the error bound (1.4) for the approximate solutions un of the difference 
scheme (1.3). We assume throughout this section that Assumptions A and B of 
Section 1 hold. Therefore, as remarked in the introduction, the convex set S is 
invariant for the scheme (1.3), and the results of [3] then apply to show that we have 
the bounds 

IukI, kIuk?1 k u C(T), 0 < t n < T. 
k 

Moreover, the un converge to the unique classical solution v(x, t) of (1.1)-(1.2), 
which therefore satisfies v(x, t) E S and 

11v(-, t)lloo, |ljvj-, t)||j < C(T)V, O < t <, T. 

(We remind the reader that, as in Section 1, u and v are vectors in Rn.) 

We begin by estimating the derivatives of the exact solution v(x, t). 

LEMMA 3.1. Given T > 0 there is a constant C depending on T, e, andf such that the 
solution v(x, t) of (1.1)-(1.2) satisfies 

(3.1) IIvX(t)IKlo < CV/lV 

and 

(3.2) llX() l C(V + V2)1/F 

for t < T. Here V is the total variation of vo. 

Proof. Using the bound IIK,(t)lll < C/ v't in the representation (1.11), we obtain 

(3.3) 11 +(t)I < CV ? cftllvx(s)H 1ds. 

Now let a(t) = vIIvx(t)IKI. Multiplying (3.3) by Vt, we then obtain that 

(3.4) a(t) < CV + CVft' a(s) ds 
o s(t - s) 
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Substituting this estimate back into the integral in (3.4), we then obtain 

a(t) CV + Cx t CVds t'CFJ (a( d T ) d )/t (s-) ds 

~~ s (t- s ) + c 
VaJTs (t-d) 

= C(T)V+ C(T)j a ti (j - )( ) ) dT. 

A simple change of variables shows that the inner integral here is a constant. It 
therefore follows from Gronwall's inequality that 

a(t) < C(T)V, 
which is (3.1). 

The proof of (3.2) is similar. From the representation (1.11) we have that 

v.,(t) = K_(t - s)* v- K (t - s)* f(v(s))_,ds, 

so that 

IIvX(t)IIe < CV + cftllvxx(s)II1 + IIv`(s)IKII1v`(s)I11ds. 
6t o t-s 

The second term in the integral is bounded by 

Ct V2 ds 

Jo s(t -s ) 

by (3.1). Thus, 

IIvxx(t)II1 < C 
v 

+ V2) + cj I1,x(s()JIlds 

This is nearly identical in form to (3.3); and so (3.2) follows as before. The proof is 
complete. 

As an immediate corollary to (3.1) and (3.2) we observe that 

(3.5) lif (v(t))XXII1, IIv,(t)IIJ < C( 
V+ V2 

0<t<T 

As in Section 2, P will denote the projection operator, defined for a given vector 
function w of x, by 

Pw = (..., W(Xk), W(Xk+?)9 ... 

and if v is the exact solution of (1.1), the vector Pv(., t,,) will be denoted by v'. The 
truncation error associated with v is then the vector T- defined by 

(3.6) v= a1 * PO - , a i* 2 Pf (V(tJ-1)) At + T - 

We then have the following bound for T'. 

LEMMA 3.2. Given T > 0 there is a constant C, depending on T, c, and f, such that 
the bound 

(3h.7) fTo ) rxlln tx 

holds for O < t.- < T. 
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Proof. From the representation (1.11) we have that 

vn = P[K(t,) * vol - fP [K(t - s) * f (v(s)),l ds. 

Subtracting this from the definition of T', (3.6), we then have that 

-Tn- P [K(t) *v ]-an * PV0o} 

+ Ean-j*[ Pf(v(t. )) -P- f(v(t.j)) At j-l ~ 2Ax - ax . 

+ an-i* paa f((jl)P K(tn tj) fx( (tjj At] 

(3.8) = 1 

(P3 K(tn--Ktt)t* T) f (((tj(i)))jt 

t"K(tn - s)* a f(v(s)) ds 

I + II + III + IV. 

We shall show that each of the terms I-IV is bounded (in the I norm) by the 
right side of (3.7). The bound for I is immediate from Theorem 2.3. For term II, note 
first that thej = 1 andj = n summands are bounded by 

lif(v(ti- J) 11(At/Ax). 

Now At/Ax = O(Ax), and it is easy to see that 

(3.9) 1jf(v(t))jj,, < CT.V.(v(t)) < C(T)V. 

(This requires the normalization f(vo(-oo)) = 0, which entails no loss of generalitv.) 
Thus the j= 1 and j= n terms in II are bounded by CVAx as required. Next 
observe that 

f(V(Xk?l, t)) -fV((Xk1, t)) JXk+ Ia2 
2 Ax -TX 

f (v(xk, t)) a2 -f((x, t)) dx, 

so that 

Pa.xf(V(ti-))- 2x_Pf(V(tj_J))1 

2 Ax -|-f(v(tj_1)) < (c V+v) Ax 

by Lemma 3.1. Thus the sup-norm of the remaining terms in II is bounded by 

Y11 C n (V+jV)AxAt < C(V 2+ V) Ax, 
J=2as requir 

as required. 
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In term III the j = n term is 0 and the j = 1 term may be discarded as before. 
Applying Theorem 2.3 and Lemma 3.1, we find that the remaining terms are 
bounded by 

c= vt j1 |xf(v(tj_j))| AxIlInAxIAt 

11-1L 1 a2V 1 A 
J=2 tFn -_t~j= t1 - aX2 1 

< c E -~~1~ Axlln AxI At 
J=2 Ft II-t~_ Vi 

< C(V2 + V) Axlln Axl. 

Finally, we bound term IV in (3.8). First observe that 

f|J K(t -s) * -f (v (s)) ds p ds < C VAt = CVA x 
j1 00 ~~~~~~~~ ~ tn- s 

by (3.9). We may therefore integrate from t1 to tn-I in the integral in IV. Similarly, 
thej = 1 term in the sum of IV is bounded by 

IIx(tn_l)lllllf(V0)llOo/\t < CvAt/F9 

and thej = n term is bounded by 

a f(v(tiln1)) At < CVAt/ t,. 

These terms may therefore be discarded. Thus, except for these modifications, the 
sup-norm of the brackets in IV is bounded by 

11 1 
aa 

K(t-tjs)* /t-f (v(s - At)) ds 
J=2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~00 

(3.10) + Kx ( -s)* [f (v (s)) -f (v (s - At))] ds|| 

The second term in (3.10) is bounded by 

Cf lIKx (tn - ) 1)10,11vt(s)I 1, ds 
t1 s-At 

C(V V2) 1 ~ s dud 
t1 

(tn 
)/2J-V 

< c(v + v2 ) A tf - I ds 
t (tn - S)3/2(S 

_ At)1/2 

C(V + V2) Atl/2 = C(V + V2) Ax. 

Now for the first term in (3.10), we use the fact that, for regular functions w(t), 

n-1 

j= w(tj) At - 
/:"lw(t) dt < 

Atft"'1Iw,(t) I dt. 
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Therefore the first term in (3.10) is bounded by 

At''- a K (t, -s)* f (v (s -At)) ds 
as 0 

Atf( "11(IIKxt(tn - s)IIiIIf(v(s - At)) llo 
tl 

+IlKx(tn -s)IIIIf(v(s - At))%i11) ds 

CA5 tj1 
L (t n_ )3/2 + 

(tn 
- 

5)3A2( - _ t1/2] 
ds 

C(V + V2) Atl/2 = C(V + V2) AX. 

The proof is complete. 
We are now prepared to derive the final error bound for the approximate solution 

u"' computed from (1.3). We continue to let v(x, t) be the exact solution of 
(1.1)-(1.2) and vn = Pv(., t,1). 

THEOREM 3.3. Assume that vo is of class BV with total variation V and that 
Assumptions A and B of Section 1 are in force. Then given T > 0 there is a constant C 
depending only on e, T, and f such that the bound 

(3.11) Iv'l - un < C [IvO - uOI +?(V+ V2) AxIlnAxIl 

holds for 0 < tn < T. 

Proof. From the representation theorem, Theorem 2.1, applied to the difference 
equation (1.3), we have that 

a = an * U? - a an-j* ? J(ui- )A,t. 

Subtracting this from the definition of '", (3.6), we therefore obtain that 

(3.12) ,, 
Un _ un _ a"*a n -ja 

X [Pf(v(t._i)) -f(Ui ')] At + T 

where by Lemma 3.2, 

(3.13) IT" < C t Axlln AXI -tn 

Now thej = 1 term in (3.12) is bounded (in the sup-norm) by 

| oal" - 1 | E 

by Theorem 2.3, and thej = n term is bounded by 

a If(U, K ) At F 
axf t-1) + Ax At < 
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by Lemma 3.1. We therefore have from (3.12) that 

(3.14) ivil-u" <c_V - ,l + l Cv1- - u- A 2E 
vt-ll j=2 rt,,- tn 

Multiplying by nt and letting En = t v" - we then obtain 

(3.15) E, < C(v IV- u0l + E) + C 'lu- E1 lAt 
J=2 - tj) 

This is nearly identical in form to (3.4). A discrete version of the proof of (3.1) from 
(3.4), applied to (3.15), then shows that 

En C(T)(1v?- ull + E), 

which is (3.11). 0 
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