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Cosine Methods 
for Second-Order Hyperbolic Equations 

With Time-Dependent Coefficients* 

By Laurence A. Bales, Vassilios A. Dougalis and Steven M. Serbin 

Abstract. We analyze efficient, high-order accurate methods for the approximation of the 
solutions of linear, second-order hyperbolic equations with time-dependent coefficients. The 
methods are based on Galerkin-type discretizations in space and on a class of fourth-order 
accurate, two-step, cosine time-stepping schemes. Preconditioned iterative techniques are used 
to solve linear systems with the same operator at each time step. The schemes are supple- 
mented by single-step high-order starting procedures and need no evaluations of derivatives of 
operators. L2-optimal error estimates are proved throughout. 

1. Introduction. In this paper we shall study efficient, high-order accurate methods 
for the approximation of the solutions of linear, second-order hyperbolic equations 
with time-dependent coefficients. We shall use Galerkin-type discretizations in the 
space variables and base the time-stepping scheme on a class of fourth-order 
accurate, two-step methods generated by rational approximations to the cosine; cf., 
e.g., [3], [4] for the case of time-independent coefficients. The implementation of 
these "base" schemes requires solving linear systems of equations with operators 
that vary from time step to time step. Following Douglas, Dupont and Ewing, [9], 
and Bramble and Sammon, [7], we shall modify the schemes by using preconditioned 
iterative methods for the approximate solution of the linear systems and thereby 
only solve linear systems with the same, time-independent operator at every step. If 
k is the time step, we show that solving O(ln(k 1)) systems at each time step suffices 
to preserve the overall accuracy and stability of the base schemes. 

Preconditioned iterative techniques have been used for second-order hyperbolic 
problems already by Ewing in [10], where a nonlinear equation is solved by a 
second-order accurate, two-step time discretization. In addition, one of us, [5], [6], 
has used such techniques coupled with up to fourth-order accurate single-step 
discretizations for the problem (1.1) below, written in first-order system form, cf. [2]. 
These single-step schemes are based on rational approximations to eix and give rise 
to quite different time-stepping methods from the ones that we study here. In this 
paper we take a different approach, discretizing the second-order equation without 
reducing it first to a first-order system. Our two-step schemes require then, as 
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starting values, not only an approximation of the solution at t = 0 but also at t = k. 
We supply the latter by using one step of a particular scheme from those analyzed in 

[5], [6]. 
We now introduce the problem to be considered. Let Q be a bounded domain in 

RN with sufficiently smooth boundary a f and let 0 < t* < x. We shall approxi- 
mate the (real-valued) solution u = u(x, t), defined on Ql x [0, t*], of the initial- and 
boundary-value problem 

| = -L(t)u ax (a1 (x, t) a -ao(x,t)u in S1X(O,t*], 

(1.1) u(x, t) = 0 on a3i x (0, t*], 

u(x,O) = u?(x) inQ2, 

ut(x,O) = u?(x) in U. 

Here aij(x, t) and ao(x, t) are sufficiently smooth real-valued functions defined on 
Q2 x [0, t*1, such that the matrix {aij } 1'jz is symmetric and uniformly positive-defi- 
nite and a0 is nonnegative on Q x[0, t*]. u?(x) and u??(x) are given initial data 
defined on Q. 

For integer s > 0, Hs = Hs(S2) will denote the usual Sobolev spaces of real-valued 
functions on Q2 with norm sIl. The inner product on L2 = L2(Qi) = Ho is denoted 
by (-, *) and the associated norm by jj * As usual H1 = H1('il) is the subspace of 
functions in H1 that vanish in the sense of trace on MI. 

We shall assume that the operators L(t) defined by (1.1) form, for t E [0, t*], a 
smooth family of unbounded selfadjoint elliptic operators on L2 with common 
domain DL = H2 n H1 and a smooth family of bounded operators from H',2 n DL 
into H' for each 1 > 0. For integer j > 0 we calculate L(i)(t) = (d/dt)'L(t) by 
differentiating the coefficients of L with respect to t. It follows that for j, 1 > 0, 
L(J)(t) are also bounded operators from H'12 n DL into H'. 

We shall need the following regularity result for the solution of (1.1). For integer 
i > 0 let u( - (a/at)'u. Let uo = uo, ul = uo? and, for integer i > 2, define ui, the 

ith time-derivative of u at t = 0 obtained by differentiating utt = -L(t) u, by 

ui= - - ( -2-j(?)Ui 

If for p, m > O, where p + m > 2, uj E DL for O <j < p + m-2 and up+m_l E 

H1, then it is proved, e.g. in [5], that there exists a unique solution of (1.1) such that 
U(p+ - 2) E DL, U(P) E Hm for t E [0, t*] and that there exists a constant C > 0 
such that for t E [0, t*]: 

(1.2) | C(U Ip+m + IIu IIo+m-). 

In sequel, by assuming smooth and compatible data uo, uo, we shall mean that uo 
and u ? are such that (1.2) holds for appropriate p and m. As is customary, we shall 
use throughout the paper the symbols C, Ci, C' to denote generic positive constants, 
independent of the discretization parameters and the solution u of (1.1). 
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We shall let T(t): L2 -* DL denote the solution operator of the elliptic problem 
Lw = f in Q; w = 0 on a U. Consequently, we have L(t)(T(t)f ) = f for f E L2. For 
1 > 0, T(t) is then a smooth family of bounded operators from HI into HI+2 n DL. 
If we put T(j)(t) = (d/dt) T(t) we have for t E [0, t*], 

(1.3) L(l)(t)T(t) = -L(t)T(1)(t) on L2, 

T(l)(t)L(t) = -T(t)L(1)(t) on DL. 

By induction it follows that, for each j > 0, T(j)(t) is a smooth family of bounded 
operators from H' into H' 2 fl DL for 1 > 0. 

For the space discretization of (1.1) we shall assume, cf. [7], [5], that we have a 
family of finite-dimensional subspaces Sh of L2, associated with a parameter 
0 < h < 1, and a corresponding, sufficiently smooth for t E [0, t*], family of 
bounded operators Th(t): L2 -_ Sh, which are selfadjoint positive-definite on Sh, 

positive semidefinite on L2, and approximate T(t) in the following way: there exists 
an integer r > 2, such that, for eachj > 0, there exists a constant C( j), independent 
of h,suchthatforO < I< r- 2, 

(1.4) |I(T(')(t) - Th(j)(t))f || < C(j)h1+2IIfII, for t E [0, t*], 

if f E H'. Here Th(j) = (d/dt)jTh as usual. We define, on Sh, Lh(t) = (Th(t))-l and 
put L5/) = (d/dt)JLh. We assume that given j > 0, there exists a constant C(j), 
independent of h, such that 

(1.5) I(L(')(t)0, 4)) < C(j)(Lh(s) , +) for , Ee Sh, t, s E [0, t*]. 

It follows by the symmetry of L(/) and Lemma 2.1 of [6] that, for j > 0, 

(1.6) |J(L(j)(t)(p, %P)l < C(j)(L^() ?)(L lp+ )1/2 

for 4, 4E' Sh, t, s E [0, t*. 
Many well-known Galerkin type methods, including the standard Galerkin method 

0 
on Sh c Hi, satisfy_ the-above-conditions. For examples and verification cf., e.g., [8], 

[11], [5]. 
We shall also assume that Lh satisfies an inverse property, namely that there exists 

a constant C., independent of h, such that 

(1.7) (L(t)h2, 11) 1 Czh2()|112 for 4 E Sh, t E [0, Oj. 

(1.7) has a number of useful consequences. One may show, cf., e.g., [11], [5], that it 
implies that forj > 0 there exist constants C(j) such that for s, t E [0, t*], 

(1.8) ||L(hW)(t)Th(s)jj, |lTh(s)L(hi)(t) P11 < CO j, 

where P: L2 -* Sh is the orthogonal L2-projection operator onto Sh. In addition, it 
follows from (1.7) that forj > 0, 

(1a.9) njLd)(t)P|| < C(j)h t E [O, t*1] 

and 
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To approximate the solution of (1.1) one may define as an intermediate stage the 
semidiscrete approximation Uh: [0, t*1] Sh that satisfies (with D, = d/dt) 

(1.11) D7tuh(t) + Lh(t)uh(t) = 0, t E (0, t*]. 

If (1.11) is supplemented with suitable initial data Uh(O), Dtuh(O), it may be shown, 
cf. [5], that IIuh(t) - u(t)II = O(h') for t e [0, t*]. We shall not use the semidiscrete 
approximation at all in this work, except in order to motivate the time-stepping 
schemes. 

Our full discretization of (1.1) will be based on real-valued rational approxima- 
tions r(x) to cos x for x E R1, cf. [12], [3], [4]. The rational functions that we shall 
consider are of the form 

1 + plx2 +p2X4 

(1.12) 1 + qlx + q2 

with I + qlx2 + q2x4 > 0 forx E R and q2 * 0- 

We assume that r(x) is a fourth-order accurate approximation to cos x, i.e., that it 
satisfies, for Ix sufficiently small, 

(1.13) fr(x) - cos xl < Cx6. 

We shall also assume that the "stability condition" 

(1.14) Jr(x) I 1 forx E - 

is satisfied. 
As a parenthetical remark we should note here that the convergence analysis of 

Sections 2-5 can be applied (with obvious modifications, although we shall not state 
a formal result) to the much easier case of rational approximations of the form 
r(x) = (1 + p1x2)/(1 + q1x2). These lead, in general, to second-order accurate 
schemes with the exception of the case q1 = 1/12, Pi = -5/12, corresponding to the 
St0rmer-Numerov method, which is fourth-order accurate but satisfies (1.14) only 
for lxl sufficiently small. Our analysis can also be easily extended to cover, under 
stability restrictions on the discretization parameters of the form "kh-1 small", 
"conditionally stable" methods, i.e., cases for which (1.14) holds for ix/ < a < oo. 
However, it seems that our analysis cannot be extended, without restrictions of the 
form "kh-a small", a > 1, to methods that result from rational functions r(x) with 
even polynomials of degree higher than four as their numerator or denominator. 
Similarly, we do not treat the case of special methods of the form (1.12) of order 
greater than fourth (there exists a one-parameter family of sixth order and one 
eighth-order method that at most satisfy (1.14) for small Ix -if they do so at all-), 
since such methods would require appropriate higher-order single-step starting 
procedures for which no theory is available without similar restrictions on k and h. 

We turn now to a more detailed description of the rational approximations that 
satisfy (1.12)-(1.14). It is not hard to see that fourth-order accuracy, i.e., condition 
(1.13), implies that the coefficientsp1, P2 must be related to q1, q2 by the equations 

(1.15) Pi =q - 1/2, 

(1.16) P2 = -q1/2 + 1/24. 



SECOND-ORDER HYPERBOLIC EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS 69 

q 2 

/ 2 =(q, 1/1 2)/4 

q= 1/12 

A(1/4, 1/24) 

2 q1 
q2 (q1 2 T 1/48)/4 

3 

B(1/12, 1/144) 

ql 

FIGURE 1 

Stability region for ql, q2 

A straightforward elementary analysis shows now that if Pl, P2 are given by (1.15), 
(1.16), then (1.14) is equivalent to the condition 

(1.17) (ql,q2) E, 

where the region .?, a subset of the q1, q2 > 0 quarter plane is shown in Figure 1. We 
put 

= Uag and a9=a j1Ua?q2U&a3U{A}U{B}, 
where A = (1/4,1/24), B = (1/12,1/144), aj = {(qj q2): q1 > 1/4, q2 = 

(q1 - 1/12)/4}, aR2 = {(q1, q2): q1 = 1/12, q2 > 1/144I, 3 = {(q1, q2): 

q2 = (q 2 + q1/2 - 1/48)/4, 1/12 < q1 < 1/4). In 4 we have jr(x)I < 1 for x E 
R1. In particular, in R we always have -1 + 8 < r(x) < 1 for some 8 > 0 for 
all x E RW and also limjXlOO Ir(x)l < 1, while limx,. r(x) = -1 on a.l, 
limx X 0* r(x ) = 1 on a 92, whereas on ad3, r(x0) = -1 at x0 = ? (8/(1 - 4q ))1/2. 

For further reference we also note that if (1.15) and (1.16) are satisfied, then the 
following hold: 

(P2 + q2 > O q2 - P2 > O in M, 

1.18) q l-P1 > 0 in 4, q2-P2=O onaR2U{B}, 

(P2 + q218 = on;a. 2U{A}, 

(q2 + P2= (ql ) /8, on aR3 U {A} U { B). 

Many useful schemes are associated with rational approximation r(x) that satisfy 
(1.15)-(1.17). For example, the point B represents the approximation to the cosine 
obtained as the real part of the (2,2) Pade rational approximation to eix. The special 
approximations r(x) with denominators (1 + xix2)2, / > 0, considered in [3], [4], 
that are especially effective for problems with time-independent coefficients, corre- 
spond to q1 = 2,B, q2 = /32 (with Pl, P2 given by (1.15), (1.16)), i.e., lying on the 

parabola q2 = ql2/4 which crosses ah3l and lies insideSPfor q1 = 2/3 > 1/2 + 1/ V. 
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To discretize now (1.11) in time, we assume that uh(t) is sufficiently smooth, let 
k > 0 be the time step and put t0 = nk, n = 0,1, 2,. .. , J with tJ = t * for simplicity. 
The fully discrete methods generated by the rational approximation r(x) to cos x, 
henceforth referred to as "cosine methods" may be derived as follows. If we 
approximate cosh z cos(iz) by r(iz) in the formal expansion y(t"+1) + y(t"') = 

2 cosh(kD,)y(t') and replace y(t) by uh(t), we obtain, from (1.12) and (1.13), for 
1 < n < J -1, 

(1.19) (I - qlk + q2k 4D h)(un + h 

= 2( -plk2Dt2 +p2k4DE4)un + 0(k6U(6)). 

In (1.19) and in sequel, we let yfn = y(tn), 0 < n < J, and y(i) = Dty for a smooth 
function y(t) defined on [0, t*]. Now, differentiating (1.11) yields 

(1.20) u(t4) (t) = (L 2 (t) - L 2)(t)) *t- 2L(')(t)u(t1)(t). 

Introducing the polynomials q(T) = 1 + q1T + q2T2,p(T) = 1 + PiT + p2T2 and the 
notation L(tn) = L , LO('(tn) = L(j)n forj > 0, Qn = q(k2Ln), pn = p(k2Ln) for 
0 < n <J,weobtain,by(1.19)and(1.20),for1 < n <J -1, 

Q nUf + nI? Qn u 1 - 2 pnun 

k q2L L2 n1UEn _ 2L (2)nUn) 

(1.21) + 2k4q2(L(l )n+U(l)n+l + L(1)n-1U(1)n-1 - 2L(-)' U(I)n 

+ k4 (q - !.)(Lf ( L u + 2L(1) u(1)") + O(k6u}t ). 

Since we are interested in fourth-order accurate methods, i.e., of O(k6) local 
accuracy, we see that the first two terms in the right-hand side of (1.21), being of the 
form Ck4(vn+ 1 - 2 vn + vn-1), v smooth, may be dropped without affecting accu- 
racy. We also want to compute with a scheme that involves only approximations to 
the values of Un and not of its derivative u l)n. We shall therefore replace, in the last 
term of the right-hand side of (1.21), u l)n by its O(k2) backward-difference 
approximation: 

k(Un - ) + kU(2)= n (un _ un-1) kLn 

where we have used (1.11). Thus we arrive at the following fully discrete scheme for 
the approximation of u', 0 < n < J, where u is the solution of (1.1). For U?, U1 
given elements of Sh, that will be constructed in sequel as suitable approximations to 
u(0) and u(k), we seek (Un }j2 in Sh as solutions of the equations 

Qn+lun+1 + Qn-lun-I - 2pnun 

(1.22) k4(q - 1){L(2)nUn + 2L(')n[I(Un - Un1)- kLnUnj} 

1 < n < J-1. 

Due to the positivity of q(T) for T > 0, the selfadjoint operators Qn are positive- 
definite on Sh for 0 < n < J. Hence (1.22) possesses for each n, 1 < n < J - 1, a 
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unique solution U"+1 in Sh. The scheme (1.22) will be referred to in sequel as the 
base scheme. In Section 2 we shall study its consistency and stability. It will follow 
from Theorem 2.1 that, if (1.15)-(1.17) hold, then, under the conditions that kh1 be 
bounded as k, h -O 0, if (ql, q2) E aRl U aR2 U (A), kh-1 be appropriately small 
if (q1, q2) E &R3 U { B) and unconditionally otherwise and if u0, u?0 are sufficiently 
smooth and compatible, 

(1.23) max IUn - Ull= O(k4 + hr) + . 
0<n<J 

holds. Here E01 is an error term that depends on the choice of the initial data 
U0, Ul. This choice is discussed in Section 3 where it is shown that if U0 is defined 
as the "elliptic projection" of uo and U1 is constructed by means of a single-step 
method from those analyzed in [5], [6], then, for uo, uo sufficiently smooth and 
compatible, the optimal estimate eO.1 = O(k4 + hr) holds as well. 

Solving for U" + 1 by (1.22) necessitates inverting, for each n, the operator Qn+1 

that varies with n. Using preconditioned iterative techniques, following [9], [7], we 
show in Section 4 how to modify the base scheme so that the resulting method needs 
solving O(ln(k `)) systems with the same operator for every n, and preserves the 
optimal error estimate. The starting scheme used to compute U1 may be also 
similarly modified so that the overall method will be quite efficient. 

In (1.22) we note that in general (i.e., for cosine methods with q, # 1/12), we 
need to calculate, for each n, the time-derivatives L(h )n, i = 1, 2, of the operator L*. 

To avoid such calculations, we replace in Section 5 these derivatives by centered-dif- 
ference quotients that involve only values of Ln for 0 < n < J. (The same thing is 
done in the starting scheme that defines Ul; however, the computation of L(h)0 is 
needed.) We prove optimal-error estimates for the resulting method that is then 
coupled with preconditioned iterative techniques for solving the attendant linear 
systems at each time step. 

2. Consistency and Stability of the Base Scheme. For easy reference we rewrite 
here the base scheme (1.22) as follows. Given U0, U1 in Sh, we seek {U"n)J2 in Sh 

satisfying, for 1 < n < J - 1, 

tz(uni) = Qn+lun+l + Qn lun-1 - 2PnUn 

(2.1) 4q 12 [(h2)nUn + Lh)n( k (n_ Un_I) k LnUn ) 
(2.1) 

~~k4(q, - -h,?)LS )" + 2LP(l (U"-U" ~ LhU)} 

We shall compare Un with the "elliptic projection" Wn of Un, which is defined as 
follows. Let P1(t) = Th(t)L(t): DL -- Sh for t E [0, t*]. As is well-known, it follows 
from our assumptions that if v E H` 2 n DL for some 0 < I < r - 2, then 

(2.2) liv - Pl 1 lIV - P1vll < Ch112llvll?+2 for t E [0, t*]. 

Let W(t) = P1(t)u(t). Then, it is proved, e.g., in [7], [6], that if m > 0, 0 < / < r - 2 
and u?, uo are sufficiently smooth and compatible, then 

(2.3) llu(m)(t) - W(m)(t)ll < C(m)hl+2(lluOllm??+2 + ||"t?|M+/+l) 

fortE [0,t*], 
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and that it follows from (1.8) that if m > 0 

(2.4) IILh(S)W(m)(t)II < C(IJU 11m+2 + IIU?IIm+?) for t, s E [0, t*]. 

In view of (2.3) we shall be interested in comparing Un with Wn. Let En = un 

w n. Then (2.1) yields the following error equation for the base scheme 

(2.5) sn (En) = -_?n(Wn), 1 < n < J - 1. 
To estimate En we first investigate the consistency of the base scheme. To this effect 
we state the following lemma, whose proof follows easily from Taylor's theorem and 
(1.13) (i.e., (1.15) and (1.16)) and (1.2). 

LEMMA 2.1. Let uo, uo be compatible with uo e H6, uo e H5. Then for some 
constant C, independent of h, k, and u, andfor 1 < n < J - 1, 

llq(-k2D2)(Un+l + un-1 2p(-k2Dt2)u II 

(2.6) < Ck6 sup IIu(6)( T)I 1 Ck6(1u0O116 + IIu?115). 0 
n-1 <fn+1 

For the proof of the main consistency result we shall need the following technical 
fact. 

LEMMA 2.2. Let v E H' for some 0 < I < r - 2. Then, for j = 1, 2 there exist 
constants C(j), independent of h and v, such that 

(2.7) |I[L(^j)(t)Th(t) -L(j)(t)T(t)] v, 0)1 

< C(j)h 111I/|Lh(t)011 for o E- Sh, t E [, * 

Proof. Suppressing the dependence on t we have forj = 1 and 4 E Sh, using (1.3), 
its Th, Lh-analog, (1.4) and (2.2), that 

L((L )Th - L(1)T) v, k)| = ((Th(l) - ThLT()) v, Lhp)| 

- |(T(l)-T(1))vII + j|(1 - P!)T(1)vII)IILh0II < Ch' 2IIVII2IILhIIh. 

Forj = 2 we note that differentiating (1.3) and its Th, Lh-analog yields on HI 

L 2)Th- L2)T = 2(L(h)ThL(h)Th - L(1)TL(1)T)-(LhTh9)-LT(2)) 

= 2L(')Th( L(')Th - L(')T) + 2(L(')Th - L(l)T)L(1)T - (LhTh2 -LT(2)). 

It follows from (2.7) forj = 1, (1.10), (1.4), (2.2) for v e H', 4 E Sh, that 

|((L2)Th -L(2)T) v, 0) 

= 12((L(5l)Th - L(1)T) v, ThL(1l)p) + 2((L(5)Th - L(1)T) L(1)Tv, ?) 

-h T (2))V, Lhp) - ((I - PI)T(2)v, LO4.)I 

< Chl+211v IIIIILhkI. 

We now come to our main consistency result. 

PROPOSITION 2.1. Let u0, u?0 be compatible with u0 e HZ' and u?? E H'-1, , - 

max(6, r + 2). Then, there exists a constant C, independent of h, k and u, such that for 
E ShI 1 < n < J - 1, 

(2.8) |(.Y (WV), +)t < Ck2{k4(IIuo16 + IIU?115) + hr(IIUIIr?2 + IIUI?r?i)) 

x { tk? 1 + k2tIL nIt 1. 
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Proof. From (2.1) we have 

?tn(wn) = (Wn+l - 2Wn + wn-1) 

+k 2( qLn+lWn+l + qLn-1Wn-1 - 2pLnhWn) 

(2.9) k (Ln+1)2Wn+l + q2(L-1)2Wn-1 -2p2(L)2Wn) 

-k 4( q - 2 L (L2)nWn + 2L()n [-(Wn W n1) -LnWn 

1 n S J - 1. 

Now, for v: [0, t*] H,]j > 0, it follows that 

(0v11+1 - 2vn + Vn-j1 = f|k (k - jIT)V(2)(tn + T) dT| 

(2.10) -k 

k 2 sup jJv(2)(T)jjj. 
t01 < T <tn+l 

It follows then from (2.10) and (2.3) for 1 < n < J - 1, 4 e Sh, that 

(Wn+l - 2Wn + wn-1 q?() 

2.11 = (Wn?l 
- u"+1 - 2(Wn - u") + Wn-l - un-l ) 

+ (un+l - 2un + Un-1, o) 

< (un+l 
- 2un + u"n-1 ?) + Ck2hr( jU0jjr+?2 + IIU?II +r?) J? 11 

Since LhW = -Pu(2) we have, for4 e Sh, 1 < n < J - 1, 

(qiLn?lWn?l + qjLn71Wn-1 - 2pjLnWn",4 

(2(q 
- u (2)n+ + q1U(2)n1 - 2p,u(2)n", p) 

The analog of (1.20) for u, L and (1.16) yield now, for 1 < n < J - 1, 

q2(Lh)W + q2(Lh-)Wn1 - 2P2(Lh)2W 

(q- 1- L)(2L )nWn + 2L(l)n [ (Wn W"-1) _kLnWn 

- P(q2u(4)"+1 + q2U(4)"1 - 2p2U(4)") 

q(Ln+1)2Wn+l- P(Ln+1)2un+1I 

(2.13) +q2[(Lh W)lwn-l- P(Ln-l)2un-1J 

-2P2 [ ((Ln)2Wn -P(Ln )2un -( - (L)WnPL(2)nu"n 

-2(q - -){LI, (Wn _ 
k n1L- W ) Wn _ pL(l)nu(l)n} 

+ q2 p[(L(2)n+lun+1 + L(2)n-lUn-1 - 2L(2)"u") 

+2(L(lu)n+"(l)n+l + L()n-l"(l)n-1 _ 2L(l)nu(l)n)]. 
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Since L'W - PL2u = -L (P- we have, using (2.2), (1.2), (1.10) that for 
1 < n < J - 1, k E Sh, 

(q2[(Ln?1)2Wn+l - P(Ln+1)2Un+lJ 

(2.14) +?q2[(Lh')2W1- P(Ln1)2un1] 

- 2P2 [(Ln)2Wn - P(Ln)2unI, )n 

K Ch (r 0U?Ijr+ 2 + jIUt?jIr+ 1) IILn4kIj. 

By (1.1), L (2)W -L(2) -(L(2)Th -L(2)T)u(2). Then, Lemma 2.2 and (1.2) give 

for4O E Sh, O < n S J, 

(2.15) (L h )j 6 Chr( IUOllr + IIUtIIr-j)IILh4OL 
We also obtain for 1 < n < J, 

L(1)n (Wn- Wn-1) 
k 

L -nWn]_pL(1)nU(1)n 

(2.16) = L5I1)nP[L | (W(l)(T) - U(M)(T)) dTj + L(h) PZ 

+ L(h1) npU(1) n _ pL(1) n U(1) n 

where 

(2 .17) z~~~n n k(u-n- 1) _ U(1)n + k "(2)n (2.17) 4,k (U" u) 2 U 

Now (1.8) and (2.3) give, for 4 E Sh, 1 < n < J, that 

L (L1[)np [j (W(r) - u(T)( r)) dTj,4) 

(2.18) < IIThnL1)nPII sup IIW(l)(T) - u(1)(T)II IILnk11 

< Ch (r0IUOjr+ 1 + lIUtollr) IILhnklI. 

Since Taylor's theorem and (2.17) give for i = 2,3, m > 0, 1 < n < J, that 

IjZn Imn < C(i)k'-1 sup U1i)(QT)IIm, 
t 0< T<t 

we obtain by (1.8), (1.2), (2.4) for - e Sh, 1 < n < J, that 

j(L(1)nPzn, ?) I= I(L(')n[ThnLn +(p - pn)]zn )I 
(2.19) < jjL(1 5Th||j jjL"z 11n||l + II ThnL(h p|(P - _pn) z O nL7PIj 

< Ck2(IIUOI15 + IIUJI14)Ikk 11 + Ckhr(0IUOIIr+2 + IIU?IIr+?i)IIL nII. 

Now, since on DL, L(1P - PL(1)= LM)(P - PI) + (L()Th - PL(1)T)L, it follows 

by Lemma 2.2, (1.8), (2.2), (1.2), for 4 e Sh, 0 < n < J, 

(2.20) j(L51)nPu(1)P - 
_ 4)n Ch r( IIUOI|r+ 1+ IIU?llr) IL n II. 

Finally, by (2.10), (1.2) it is seen that, forO E4 Sh, 1 < n J - 1, 

(L(2)n+lun+l + L(2)n-1un- - (2)n 

(2 .21) + 2[ L( I u? + 1 - - _2L( 

,< Ck2 ( ||UO|| + ||UtO||4)j11+1jj. 



SECOND-ORDER HYPERBOLIC EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS 75 

Hence, by (2.9) through (2.21) it follows that for 4 e Sh, 1 < n < J - 1, 

I(Qn(wn), 4))| < |(q(-k2Dt2)(un+?l + un1) - 2p(-k2D2) un, ) 

+ Ck2h r( |U0 ir?2 + lU0jr?+)(11) (| + (IP21 + jq21 )k2||L ||l) 

(2.22) cq1 12 U {h-(Ilujr?2 +I ku ??)k21nLP1l 

+k4(I uOiI5 + ?lU?4I14) 1101} 

+ Cjq2jk6( 1u0115 + ||U?||4) 114) . 

(2.8) now follows from (2.6). 
Remark. (2.22) was written to encompass all fourth-order schemes including the 

Stormer-Numerov method, which corresponds to P2 = = 0, q1 = 1/12, P1 = 

-5/12 and therefore has no IL nIll term in the right-hand side of (2.8). 
We now prove the main result of this section, namely a bound on En = U _ W- 

, 

obtained by the energy method. 

THEOREM 2.1. Let U0, U1 be given elements of Sh and let ( UnI }J2 be the solution of 
(2.1). Let (ql, q2) EPA and if (ql, q2) e Aassume in addition that 

(2.23) kh < X, forany constantX > 0, if (q 1 q2) e# al U a-12 U{ A), 

and 

(2.24) khl < [C1(*- ql)>", with C1asin(1.7),if(ql,q2) ea3 u{B}- 

Then, for compatible u? C Hy, u? E HI` with ji = max(6, r + 2) and for k suffi- 
ciently small, there exists a constant C, independent of h, k, and u, such that for 
O < n <n Js 

(2.25) ||E ? llE'?I + ClC1e 1/2 

+ C{ k 4 ( uf116 + IIuO?15) + hr(lUoilr?+2 + I|U|j?1) )r 

where 

e0 1 El' - E?0 + k2(I P (L)(L(E? + E0), E?1 + E?) 

(2.26) ?k2( q1 P )(Lk (El - E0), El - E?) 

+k4( q2 P2) lLi(El + EO)|| + k4(q2 +P2)DIL (E- E0)| 1. 

Proof. Taking the L2-inner product of both sides of (2.5) with Enl n - "-1 for 
1 < n < J - 1 and using the symmetry of Qj, P' we obtain 

(Q E 1?' E"7') -(Q 1E"1 Enl) -((Qnl 
- 

Q" )E"+1, En l) 

(2.27) -2[(Pn+lEn+l, Et) (P "En, En-1)] + 2((P"n+-P"n)En" E) 

=(An A", + - EF-') -(Y"(w"), E+1 -El"l), 1 < n J - 1, 

where, for 1< n s J - 1, 

(2.28) At? (q1 - f2)k4(L("2)n?" + 2L5(1)"nF"En _ E n)! j L"En]} 
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Summing (2.27) from n = 1 to n = 1, 1 < I < J - 1 and rearranging, yields 

I((Ql+l 
- Pl+')(El+l + El), El+' + El) 

+ 2((Q+l + Pl+')(El+l - El), El+' - El) 

-((Q -Pl)(El + E?), E1 + E?) 

+ ((Ql + Pl)(El - E), E1 - E) - ((Ql - Q0)E0, E?) 

+ ((QQ+l-Q)EI, El) + E ((Qn+l - Qn-)En+l, En- 
n=l 

/ / 

-2 ((pn+l - pn)En+l, E) + (An, En+l -En- 
n=l n=l 

_ (tyn(wn), En+l - En-1), 
n=1 

which, upon expanding the polynomials Qn, pn and using (2.26), may be written as 

|E/+1 - E/112 + k2( q2 Pi )(L'^?(El+l + E'), El+1 + El) 

+k 2( q2 1 )(L'?1(El?l - E), E+' - E) 

+k4( 2 P2)IILi+?(El+l + E)II + k4(2 P2)IILI+1(El+1 - E) 

= e0-qik2((L -L?)E0 F?)-q2k4( (Ll )2 -(Lo?)2 EO, E) 

+ qlk ((L- Ll)E', E') + q2k4([(LZ,?1) -(L ) F', E') 

+qlk2E ((L+l - L^El)El) + En-h) 

(2.29) =1 

-2p,k E ((L - LO)E"1 E") 
n=l 

+ q 4 (|(Ln^+1)2 - (Ln- 2] n"+l nE -1l 
*1= 1 

-2p2k4 ([(Ln+1)2 -(Ln)2 En+l En) 
n=l 

+ ? (An En+l - En- 

- E (tyn(wn), En+l - En-1), 1 < I .j -1. 
n1=1 

From (1.5), (1.6) it follows that for 0 < m, n, i, j < J, k, 4 E Sh: 

(2.30) (LT - L |),4.)I0 < i Clm- n1k(EL.k,6 ) (L*4, ,)1/2 
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Hence, for 1 < 1 < J - 1, (2.30) and the arithmetic-geometric mean inequality yield 

-qlk2((L) - L5?)E0, EO) + qlk2((L+? - L' )El, El) 

+ qlk 2 ((L nt+1-L)n-1 n+1E n-1) 

-2p,k2 i ((Lh+ Lh)En+1 En) 

(2.31) 1 

Ck3 [(L nt+1En+1 IEn) + n+ nEn En) 
f1 =0 

< Ck E k2[(L nt+l(En+1 + En), En+1 + En) 
f1 =0 

+(Ln+l(E n+1- En), En+1 En 

Also, for 0 < m, n, i, j < J and 4, 4 e Sh, it follows, as in (4.6) of [7], by (1.8) and 
(1.10) that 

(2.32) ([(Lm)2 _(L n)2I ) < Clm - njkIIL'kII |jLj4jj. 

Hence, (2.32) and the arithmetic-geometric mean inequality give 

-q2k4([(L )2 - (Lo )2I E, EO) + q2k4([(Ll+1)2 - (Lt)2I El, El) 

+ k4 - n(L )2I E n-) 
n1 = 1 

(2.33) -2p2kp k ([(Ln+1)2 -(Ln)2 En+ En) 

< Ck5 (I |Lnt+1E n+1lll + JIL n+ 'E nll) 
n =O 

< Ck , k4(IIL?n1+ (En+1 + En)jj1 + jIL n+1(En+1 - En)Il) 
nl =0 

Also, by (2.28), (1.5), (1.6), (1.8), (1.10) we obtain for 1 < 1 < J - 1, 

E (A", En+1 En-1) 

Ck4 [(L Lnt+1E n E n)+(Lnh+1En+l E n+1l) 
n =0 

3+Ck3 E [(LnE+1En, En) +(LL + LE n+ 1- En+1) 
nt =0 

(2 . 34) + Ck' 5, I Ln^E nl II Th"TL(l )"np11 JIL Ln (E n +1 - E n - 1 ) 

< Ck E k2[(Ln^+l(En+1 + En), E"+1 + En) 
11 0 

+ (Ln+ '(El'+ - En) , El" - En)] 

+Ck n k4(IIL?n1+(En+1 + En)II + IlLn+ -(E n+- En)l) h 
=O 
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Finally, defining 

(2.35) ak,h 
= k (IIU0116 + JJUfJJ5) + h (iiUOIIr+2 + IIUt lr+1) 

we have, by (2.8), (1.10) and the arithmetic-geometric mean inequality 

(y0n(Wn ), E n+1 - E n-1) 

n7=1 

< E Ck2-k (IIEn+1 - E n-1I + k2I!Ln+l(E n+1 - En-1) 
(2.36) 11=1 

/ /~~~~ 
< Ck 2a,, + Ck L iiE n+1 - E n2 + Ck E k4IILn+l(E n+- E)IIn 

n=O n=O 

1 < I ? J -1. 

Therefore, it follows from (2.29), (2.31), (2.33), (2.34) and (2.36) that for 0 I < 
J - 1, 

JIE'+1 - El12 + k2( q 
- 

Pi )(L'?1(El+1 + El), El+' + E) 

+k 2 q, 
2 Pi )(L'?(E?+l - El), El+'1 - E') 

+k 4(2 P IILh?(El?l + El)!I + k4 +P2)IIL?(E? 
- E-)1 

(2.37) < eo0 + Ck2( 2h + Ck , IIEn+1 -EnI12 
n=O 

+Ck k2 [(Ln+l(En+1 + E )n En+1 + E ) 
nt =O0 

+ (Ln^+l(En+1 - En), En+1 - En)] 

+Ck k k4(|IL?n+1(En+1 + E )n! + !ILn+1(E n+1 En- 

nI =O0 

We now embark upon the stability investigation. We distinguish a number of cases 
depending on the position of (ql, q2) in 1. 

I.i: (ql, q2) e .q, q1 > 1/4. In this case by (1.15), q1 + Pi > 0 and by (1.18) we 
see that the coefficients of all terms in the left-hand side of (2.37) are positive. 
Applying (the discrete) Gronwall's lemma to (2.37) yields, for k sufficiently small, 

(2.38) llEn+1 - E ll2 < C(e0'l + k2 2h), 0 < n < J- 1. 

Taking square roots in (2.38) and using the fact that 
n 

IIE n + 1<E ljEj+1 - E'lI + IIE0?I, for 0 < n < J-1, 
J=O 

we obtain (2.25). 
I.ii: (ql, q2) E M?, q1 = 1/4. Now, since q1 + Pi = 0, the third term in the 

left-hand side of (2.37) is missing. For the analogous term in the right-hand side of 
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(2.37) the Cauchy-Schwarz and the arithmetic-geometric mean inequalities yield, for 
0 < I/< J- 1, 

Ck k 2(-Ln+l(En+-En), En+1 - En) 

(2.39) /? 
= 

E 

< Ck k (k4JILn+l(En+1 -En)J + IIE n+1 -E ). 
U = 0 

Gronwall's lemma may now be applied to (2.37) and (2.25) follows as above. 
I.iii: (ql, q2) E M, q1 < 1/4. In this case all terms in the left-hand side of (2.37) 

have positive coefficients except the third, since q1 + Pi < 0. However, the Cauchy- 
Schwarz and the arithmetic-geometric mean inequalities yield, for any E> 0 

k2(Ll(El+l - El), El+1 - El) 

(2.40) k 2jjL'+?(E+l - E')Jj2 + ? 8IE/+1 - E 112. 

It follows that the left-hand side of (2.37) is bounded below by 

[1 ? (q1 + P1)e]IIE?1 - E 112 

+k2( q1 2 P, )(L'+'(E?+l + El), El+' + E) 

(2.41) + k4( q2 P2 ? 

?4[q2 
+ P2 ?(q1?+pl) j2~Lj'E~ 

| 2 + 4E ]*IIL'#+'(E'+l -El)ll2 

Both the coefficients of the first and fourth term of (2.41) will be positive iff there 
exists an E > 0 such that E < -4/(q1 + Pl) and - > -(q1 + pl)/2(q2 + P2), i.e. iff 
(q1 + pl)2 < 8(q2 + P2). This holds in the subset of . under consideration since the 
equation of the parabolic arc 8a3 is 8(q2 + P2) = (q1 + pl)2. Therefore there exists 
a suitable E > 0 such that the coefficients of all terms in (2.41) are positive. After an 
estimate like (2.39) in the right-hand side of (2.37) we may apply Gronwall's lemma 
and (2.25) follows. 

II.i: (ql, q2) E a3l. In this case q2 + P2 = 0 from (1.18) and all terms in the 
left-hand side of (2.37) have positive coefficients except the last one, which is 
missing. For the corresponding term in the right-hand side of (2.37) we have, by 
(1.9), (2.23), 

/ /~~~~~~ 
(2.42) Ck k 4-lLn+?(En+l-En)jt < Cx4k E En+1 - Enl 

n=0 n=O 

Hence, the application of Gronwall's lemma is again possible and (2.25) follows. 
II.ii: (ql, q2) = (1/4,1/24) = A. Now q2 + P2 = 0, q1 + Pi = 0 while q2 - P2 > 

0, q1 - P, > 0. Using (1.9) and (2.23) we may estimate in the right-hand side of 
(2.37), in addition to (2.42), 

l l 

(2.43) Ck E k2(Ln+1(En+l - En) En+1 - E) < CX2k E IIEn+1 - E II2 
11=0 n=O 
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From (2.42) and (2.43) it follows that Gronwall's lemma may be applied again to 
(2.37); (2.25) follows. 

III: (ql, q2) E a-2. Now q2 - P2 = 0, q1 - Pi > 0, q2 + P2 > 0 but q1 + Pi <0 
It is still possible, since 8(q2 + P2) > (q, + pl)2 on a82, to repeat the analysis of 
case I.iii and choose - > 0 that enables us to hide the third term within the first and 
the fifth term in the left-hand side of (2.37). Using again (2.43) and the estimate 

1 2 
Ck E k4jjLI+'(En+l + E?)|| 

n1=0 

(2.44) < Ck5 E (L^?1)i/2Pj (Ln+?) /(En + E) 
11=0 

< CX2k ? k2(Ln+'(En+' + En), En+' + En) 
n=O 

(which follow from (1.7) and (2.23)), in the right-hand side of (2.37), we are able to 
complete the proof of (2.25) in this case as well. 

IV.i: (ql, q2) E aM3. Now q1 -Pp > 0, q1 + p, < 0, q2 + P2 > 0, q2-P2 > 0 
but we are no longer able to find E > 0 for which all terms of (2.41) have positive 
coefficients since (q1 + pl)2 = 8(q2 + P2) on a3. However, by (1.7) 

k2( q 2 P )(Ll'h(El+l - E), El+' - El) 

> c(I IP 1)2IIEI+?1 - E/12 

Hence, noting, by (1.15), that (q1 + pl)/2 = -(4 - ql) and using the hypothesis 
(2.24) we are able to hide the third term of the left-hand side of (2.37) within the 
first. An estimate of the form (2.43) prepares the right-hand of (2.37) for Gronwall's 
lemma and the results follow. 

IV.ii: (ql, q2) = (1/12,1/144) = B. In this final case (which corresponds to the 
r(x) obtained as the real part of the (2,2) Pade approximant of eix) we have 

q2- P2 = 0. As in case IV.i we may hide the third term within the first in the 
left-hand side of (2.37). Two estimates of the form (2.43) and (2.44) make the 
right-hand side of (2.37) amenable to the application of Gronwall's lemma and 
(2.25) follows. O 

Remark. Obviously, if (ql, q2) t .9 but still, e.g., ql, q2 > 0, we can, by repeating 
appropriate parts of the above analysis handle, under the hypothesis that kh-1 be 
small, all such conditionally stable cases too, i.e. cases for which Ir(x)l < 1 only for 
xI < a < oo. 

3. Starting the Base Scheme. In this section we shall consider the problem of 
choosing suitable initial values, U?, U1 in Sh for the base scheme (2.1), that make 
the initial error term IIEOII + Ck-1 e0'1 1/2 in (2.25) of optimal order O(k4 + hr). 

Taking UO = W- = ThL?0u0 will give of course E? = 0. Hence (2.26) shows that 

it would suffice to choose U1 so that 

(3.1) IIE'll + k (L1E1, E1)1/2 + k 2IL', E'l1 = O(k5 + kh r). 
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One way to do this is to choose U1 by performing one step of a single-step fully 
discrete Galerkin method for the hyperbolic equation (1.1) written in first-order 
system form. Such methods (corresponding to rational approximation to eix) are 
analyzed in [51, [6], to results of which we shall frequently refer in sequel. 

The specific single-step method that we shall use corresponds to the only fourth- 
order accurate rational approximation to ez, z E C, with quadratic numerator and 
denominator, namely to the (2, 2) Pade approximate of ez, given by 

(3.2) r(z) = (1 + z/2 + z2/12)/(1 - z/2 + z2/12), 

which satisfies, for z sufficiently small, 

(3.3) JP(z) - ezi < CIzI| 

and is, of course, A-stable. Here, however, we shall only need its stability on the 
imaginary axis, i.e., that 

(3.4) |Ir(ix)I < 1 for x E R. 

Following now [5], [6], consider the product space Sh2= Sh X Sh and the operator on 
S,2 defined by 

h (t) 
(Lh (L t 0)O 

Define for n = 0, 1, 2,..., ?hn =hS*(tn) S^(j)n - D/h(tn),j > 0, and the operators 

=I?+k + [(yn)2 + 
yh(,)nJ 

(3.5)n n + 12 [(h) + h 

!n = n _ ,O(l)n. 12 h 

It is shown in [5] that, as a consequence of the hypotheses made, e.g., in Section 1, 
for k sufficiently small, 'In and _In are invertible. With W= P,u denoting as in 
Section 2 the elliptic projection of u, define f,n = [W", W(l) nT E Sh2 and let 
V1 = [Ull, U21] E Sh2 be the solution of the system 

(3.6) -41ql = n?00-0 

For 4) = [41, p2]T E Sh define the norm on h 

(3.7) 114)Ilin = (=1J11,12 + ?(Tn2, 42) )1, n = 0, 1, 2,.... 

We are now ready to prove a result that guarantees optimal starting for the scheme 
(2.1). 

PROPOSITION 3.1. Let U0 = W0 and if a,j = [Ut, U,1]T is the solution of (3.6), take 
U1 = Ull. Then, for compatible u0 E Hy, u ? E H-1, ,u = max(6, r + 2) and for k 
sufficiently small, there exists a constant C, independent of h, k, and u, such that if eo" 
is defined by (2.26), 

(3.8) I|E?I| + k-1ieO1I"2 " C{ k (IIUOI16 + IIUO115) + hr(IIuoIIr?2 + IutIlr?,) ) 
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Proof. We have already remarked that it suffices to prove an inequality of the type 
(3.1). It follows from Theorem 4.1 of [6] that under our hypotheses, if " = - l, 
then 

(3-9) 111| g |lll < Ckak,h, 

where k,h has been defined by (2.35). Now, by Lemma 4.1 of [6] we have 

(3.10) 111 911 + k||hgliYhdlll + k2 (Yih )21 ,1 < Ciii-.g1g1111l 

Hence, since E1 = E1, where ' = [E1, EflT, (3.7) and (3.10) give 

(3.11) h|E'll < C 1 

(3.7) also gives that 

Illyh16,11112 = IIE 112 + (L El, El), 

from which (and (3.10)) we obtain 

(3.12) k(L' El, El )/2 Clll_4G 111l 

Since ( hl )261 = [-L'h El, -LhEfl IT, (3.10) and (3.7) yield 

(3.13) k2|L'hE'll < CI1I."ll1. 

Therefore, we see from (3.9)-(3.12), that an estimate of the type (3.1) holds. Since 
E? = 0, (3.8) also follows. Ol 

Combining now the results of Theorem 2.1 and Proposition 3.1 and (2.3) we can 
state the following optimal-order convergence result. 

THEOREM 3.1. Let {U)}'n=2 be the solution of (2.1) and U?, U' be chosen as in 
Proposition 3.1. Under the hypotheses of Theorem 2.1 there exists a constant C, 
independent of h, k, and u and such that for 0 < n < J, 

(3.14) IIu - U'ffl < C{ k4(11u0116 + |llU15) + hr( IIuoIIr+2 + |u01r+Ji)}. 

4. Preconditioned Iterative Methods. Since the operators Q + that multiply U + 1 

in (2.1) change at each time step, we shall consider, following [9], [7], preconditioned 
iterative methods with suitable starting values to solve the linear systems represented 
by (2.1), thus avoiding the repeated work of new matrix factorizations at each time 
step. 

We specify first desired properties of such methods relevant to our problem. Let H 
be a finite-dimensional Hilbert space with inner product (., *)H and norm 11 II H = 

a )1,/2. Let A be a positive-definite selfadjoint operator on H and suppose that we 
want to approximate the solution of the linear system Ax = b, with b given in H. 
Suppose that there exists another positive-definite selfadjoint operator Ao on H (the 
"preconditioner") with the properties that systems of the form Aoy = z, z E H are 
easily solvable and that there exist constants 0 < X0 < X such that 

(4.1) Xo(Aoz, Z)H - (Az, Z)H < X1(A0z, z)H forz E H. 

Then, there are iterative methods, cf., e.g., [1], [9], [7], [6], for solving the system 
Ax = b, which, given an initial guess x(0) E H, generate a sequence { x W }>1 of 

approximations to x and have the following properties. 
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(i) Calculating x (p + 1), given { x (j) } Po, only requires multiplying A with vectors, 
solving systems involving Ao and computing inner products and linear combinations 
of vectors. 

(ii) There is a smooth decreasing function p: (0, 11 [0, 1), with p(l) = 0 and a 
constant C such that 

(4.2) IAb/'2(X- C[p(X0/Xi)] A/2(X -(0)I 

where X0, X1 are the constants in (4.1). In our application we shall perform at each 
step n, 1 < n < J, Pn iterations, sufficiently many so that 

(4.3) IIA 12(x - X((X)) H < f3n|Ab (X - x(0))IH 
is achieved, where /,, > 0 are small, preassigned tolerances. In general, we shall take 
,= O(k'), v > 1, thus requiring, in general, Pn = O(ln(k1)) iterations for each n. 

To use such iterative methods to solve the linear systems associated with the base 
scheme (2.1), we shall identify {H,(., )H} with {Sh,(, I)}, the operator A with 
Q I+1, and the preconditioner Ao with a selfadjoint positive-definite operator PQ on 
S,1, such that for each 4 Ee Sh, ( PQ)4 is easy to find and for which there exist 
constants C, C' such that for all 0 < n < J -1, 4) E Sh, 

(4.4) C , $ (nl< $) C,(pQo<> $)) 

is satisfied. An example of such a preconditioner is provided by the following 

LEMMA 4.1. Assume that ql, q2 > 0. Then, the operator 

(4.5) PQ= (I + /3k 2L , /2 3 > 0 

defines a suitable preconditioner for the iterative solution of the linear systems (2.1) and 
satisfies (4.4). 

Proof. Let II(x) = 1 + x + x2 and Illn = ll(k2Ln). Then, since ql, q2, /1 > O, 
there exist positive constants Ci, 1 < i < 4, such that for all 0 < n S J, Eh, 

C1(H + +) <(Q no, 0) _< 
2r ,?, 

C3 (1I? 0 ) 0 ( PQO, f) < C4(TI+ ) 
(4.3) now follows from the above and (1.5) and (1.10). [1 

Now with Vo, V1 given elements of Sh, let Vn+1' 1 < n < J - 1, be the ap- 
proximation to the exact solution Vn +1 of 

n+ln+1= 2PnV_ n-lvn-1 

(4.6) +k4(q - 

){L(2)nVn + 2L(1)n[I(Vn - Vn1) k LnVn 

obtained by applying Pn + steps of an iterative method, such as the ones described 
above, with a preconditioner PQ that satisfies (4.4), so that, for 1 < n < J - 1, and a 
preassigned tolerance 83n + 1 we have 

(4.7) |1(PQ)l/2(-n+l 
- vn+l)ll 

_ n3(PQ)(v+1 - Vn?)|| 

Here Voj +1 is the initial guess which should be chosen sufficiently close to Vn +1 So 

that the number of iterations to achieve (4.7) is reduced. Since Vn is intended to 
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approximate u' and u(t) is smooth, we shall construct Von`l by extrapolating from 
previous values of Vn. Specifically, we take 

(4.8 vn+ = |rn+(1)() -Vn for 2 < n + I < 4, 

F +(v) - 5Vn - 10Vn1 + oVn-2 - 5Vn-3 + Vn-4 

for 5 < n + 1 < J. 
The next result shows that such an iterative procedure, with suitable tolerances 18n+ 1 
(which are in general of O(k'), v > 1 so that Pn+1 = O(ln(k-1))), preserves the 
accuracy and stability of the base scheme. In sequel we shall put Zn Vn _ Wn, 
0 < n < J. 

PROPOSITION 4.1. Let V?, V1 be given in Sh. For 1 < n < J - 1, compute Vn+ 1, an 

approximation to the solution V +1 of (4.6), by a preconditioned iterative method that 
satisfies properties (i), (ii) above when { H, ( , * ) H) = { Sh, (. , - )} with a preconditioner 
PQ that satisfies (4.4). Then, there is a y > 0 such that if we use 

(a) Von` = I7n(F,)(V)9 given by (4.8), as an initial guess for Vn+1 and a corre- 
sponding tolerance 8n + = min(y, k5) if 2 < n + 1 < 4, and 

(b) I0n+l = FnS1(V) given by (4.8), as an initial guess for Vn+1 and a corre- 
sponding tolerance fln+1 = min(y, k) if 5 < n + 1 < J, and, if we assume that (ql, q2) 
E M so that (2.23), (2.24) hold, then for compatible uo E HI', ut E Hu-1 
max(7, r + 2), there exists a constant C, independent of h, k, u, such that for 0 < n < J, 

(4.9) |IlZnll < Il?l+Ck_-11?0,11112 (4.9) IZ II ~1Z011 +ckIoI/ 

+ C{ k 4 ( |U117 + |lU0ll6) + hr( IIU0oIr+2 + lU01r+?1) } 

where 

(4.10) tO,l is defined as e 01 in (2.26) with Zi instead of EI, i = 0, 1. 

Proof. The proof is largely identical to that of Theorem 2.1. The error equation is 
now, in view of (2.1) and (4.6), 

(4.11) 99n(Zn) = _-"n(Wn) + Qn+l(Vn+l - Vn+l) 1 < n < J - 1. 

Taking the L2-inner product of (4.11) with Zn+1 - Zn-1, we see that (2.27) holds 
with zn instead of En and the added term (Qn+1(Vn+1 - vn+1) Z''1 - Zn-) in 

its right-hand side. The latter term may be estimated as follows. First note that (4.7), 
(4.4) and the triangle inequality imply that there is a y > 0 such that for fn3+ < Y 
(4.12) ||(Qn?1)/ 2(Vnl - n+1)| < CfB (Qn+1)1/2(vn+1 - rF(i)1(v)) 

where (and in sequel) i = 1 or 5 depending on n as in (4.8). It follows that for 
1 n < J -1, 

Qn+l(vn+ - vn+l) zn+l - z 

< ||(Qn?)1/2(vn+l - Vn+1) |(Qn+1)12(Zn+l - n- 

(4.13) 
< cfin?1l(Qn+1)l/2(zn+l -zn 1| 

x (Qn+1)l/2(zn+l - r(i 

+ (Qn+1)l/2(wn+l - rn(ip(w)) }- 
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Now, by (4,8), (1.5), (1.10) it follows that for 1 < n < J - 1, 
n + 1 

(4.14) (Q1+1)l/2(Zn+l - rj(i) (z)) < C(Qj)12(Zj - Z 1). 
j=nl-i+2 

On the other hand, it is not hard to see, using the Cauchy-Schwarz inequality, (2.3), 
(1.2) and(2.4) that for I < n < J- 1, 

n+1)112(Wn+l - v,(i1(W)) 

(4.15) ] CW - F,(W)ll + Ck2IIL n+l(Wn+l - Frn(W))II 

< Ck'(IIUO117 + ||u?16). 

Hence, (4.13), (4.14), (4.15) and our hypotheses on 2n + imply, for 1 < n < J - 1, 
n 

(Q+l(vn+l - jn+1) zn+l - zn-1) 

(4.16) Ck 1?1 
+I 

(Qj)1l2(zi _ Zj-l)ll2 + Ckll (11u0117 + ll?6)2 

.j=n-i+2 

Continuing now the proof as in Theorem 2.1 and summing both sides of the analog 
of (2.27) with respect to n from n = 1 to 1, 1 < 1 < J - 1, we see, by (4.16), that the 
new term in the right-hand side of the sum, i.e., 

?(n+l(vn+l -_ n+1), zn+l _ n-l) 
n=1 

may be bounded above by terms of the type that already appear in the right-hand 
side of (2.37) (with En replaced by Zn and e?'1 by s0'1), with the addition of the 
increased regularity term Ck2[k4(11u011-7 + Ilu?116)]2. The rest of the proof follows, 
mutatis mutandis, that of Theorem 2.1 and the result (4.9) follows. O 

Preconditioned iterative methods of the type described above may also be used 
to approximate the solution of the linear system represented by (3.6) in such a 
way so that the initial error term 11Z01I + Ck-1l0,Y1/2 in (4.9) is of optimal or- 
der O(k4 + h'). Following [6] we identify for the purposes of this exercise 
{ H, (., ) H) with Sh = Sh X Sh, endowed with the L2 x L2-inner product which is 
denoted by((, ))and defined for ( = [41, 42], ' = [111, 2TE S as 

(4.17) (OD, ) =('01, C1) + (02, +2)- 

We put III = ((_ * ))1/2. As our system Ax = b we now regard a form of weighted 
normal equations for (3.6), namely the system 

(4.18) (Sl)*yO?l0l = ( 1)*oSo o 

where (41)* is the adjoint of 1 on S,2 with respect to the L2 x L2-inner product 
((*, .)) and where g8ho (is not the inverse of 27ho but) is defined as 

(4.19) So(I 0 ) 

Clearly, with this identification, A is selfadjoint and positive-definite on H. As 
preconditioner we shall now consider a selfadjoint, positive-definite operator Ao 
= PS, defined on S 2, such that (P4)'l( is easy to find for (D E S^ and satisfying, 
for some constants C, C' and for E S2, 

(4.20) C((W , (F)) < ((( 1)* gh01, (F)) < C'((P", ()). 
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An example of such a P- is given by the following result whose proof follows from 
Lemma 5.1 of [6]. 

LEMMA 4.2. For /3 > 0 the operator 

(4-21) ( 0 ~~~~~~(I + 8k 2LO) Thl(I + 8k 2LO) 

defines a suitable preconditioner for the iterative solution of the linear system (4.18), 
that satisfies (4.20). 

(It is evident that we intend to take the same /3 in (4.21) and (4.5).) 
For consistency in notation we now let F". (= Vi) be the exact solution of (4.18) 

and <' be its approximation, obtained by applying P1 steps of an iterative method 
that satisfies (i), (ii) in our present context, with a preconditioner P"f that satisfies 
(4.20), so that, for a preassigned tolerance l,, we have 

(4.22) ( P)'/2(j21 - ) 3, ( P)1/2(j21 - 

where ol is the initial guess for the iteration. The next result guarantees optimal 
rate of convergence for such an iteration inPi = O(ln(k 1)) steps, in general. 

PROPOSITION 4.2. There exists y > 0 such that if F1 = [V2, J2l]Tis the approxima- 
tion to the solution 1 (= t1) of (4.18), obtained by a preconditioned iterative method 
that satisfies properties (i), (ii) above when {(H,(, )H)= {2S,((, ))} using a 
preconditioner PAR satisfying (4.20), the initial guess Yol = f/O and a tolerance /3 = 

min(-y, k4) then, if we take V0 = W? and V1 = Vll, we have, for compatible uo E Ht, 
eu, E H- 1, = - max(6, r + 2), that there exists a constant C, independent of h, k and 

u, such that 

(4.23) IIZOII + k-lv1D1/1 
2 

C( k4(IIuoII6 + ) + hr(IIUOII'r2 + |utfflr?i) 1, 
where t0 1 has been defined by (4.10). 

Proof. We shall just sketch the proof briefly. Define ff = Yl - Y. It follows 

from (3.6) (with V = -1/) that 

(4.24) - 1)<l1i + li1Yk l - 

+- 

Now, as, e.g., in Lemma 4.3 of [6], we obtain 

(4.25) J'l ( 1 - -41) '1III, < CkjIIjf 'III. 

Also, by Lemma 4.4 of [6] we have the consistency result 

(4.26) 11- /1 _^ . |0I11 < Ckak.h, 

where ak,h has been defined by (2.35). We may also conclude, by methods similar to 
those used in Theotem 5.1 of [6], that there exists y > 0 such that, for /31 = 

min(y, k4), 

(4.27) j<1(y1 - y1)li < 
CkjI9121'III, + Ck5(||uOI14 + I|ut?3). 

Finally, (4.24)-(4.27) imply (since Z1 = Zl, Z? = 0), as in the proof of Proposition 
3.1, that (3.1) holds with Z1 instead of E1. (4.23) then follows. C1 
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The results of Propositions 4.1 and 4.2 may now be combined to give a conver- 
gence theorem for the variant of the base scheme that uses V0 = W? and precondi- 
tioned iterative methods to compute the approximations V' to u', for 1 < n < J. 

THEOREM 4.1. There exists y > 0 such that if { V')=o are computed by the 
algorithms described in Propositions 4.1 and 4.2 and the combined hypotheses of these 
propositions hold, then there exists a constant C, independent of h, k, and u, such that 
for 0 < n < J, 

(4.28) |V'- un| | C(k4(IuO117 + |u?116) +hr( IuoIr+2 + |u?I|ri)}. 

5. Replacing Derivatives of Lh by Difference Quotients. It is possible to replace the 
derivatives L (2) n L(5)n of the operator Lh that occur in the base scheme (2.1), if 
q* * 1/12, by difference quotients involving values of L n for 0 < n < J. As a result 
the computational cost will decrease because, as (2.1) stands now, these derivatives 
have to be evaluated at each step for the computation of the right-hand side of the 
linear system implied by (2.1). This task may be easily accomplished in our case (of a 
linear, time-dependent coefficient problem) by replacing L (1) by, e.g., 

(5.1) L n (Ln+?1 - L7-1)/2k, 1 < n < J - 1, 

and L(2) by 

(5.2) 8 2 Ln ( L?+ 1 - 2L n + L n-1 )/k 2 1 < n < J 1. 

Then, the scheme (2.1) is replaced by the following: given U?, U,1 in Sh, we seek 

{U8}J2 in Sh satisfying, for 1 n J-1, 

5?n(Un) )-Q+llbU +?l + Qn-lun-1 - 2P U k - q 12 - 

(5.3) ) + 2(28L n) [I (U8n n-1- 
= 0. 

We indicate without proof the steps in the convergence analysis of the scheme (5.3). 
We now state the "difference" analog of Theorem 2.1. In sequel we put E,6= 

UZ7- W'1, 0 < n < J. 

PROPOSITION 5.1. Let Ub?, U61 be given in Sh and { Un}jn=2 be the solution of (5.3). 
Then, under the remaining hypotheses of Theorem 2.1, it follows that the result of 
Theorem 2.1 holds if we replace E nby E in (2.25) and (2.26). 0 

To supply the initial value U1 for (5.3) we can use a scheme similar to (3.6). We 
shall leave S?k'? as is-this necessitates the computation of L(l)(t) at t = 0 
only-but replace the operator 1 by 1, defined in terms of -, 1 as 

(5.4) + ( 12 h12 h 

where, as it turns out, it is appropriate to take Ayhl as a third-order accurate 
difference approximation to Yh(%)1. To fix ideas let 

(5.5) A7h (-2h2o - 3Yh% + 6h29 - h3)16k. 

It may be seen by the proofs of Lemmata 4.2 and 4.3 of [6] that for ? E S2 

(5.6) - 41)IIII1 < Ck2 sup |||Yh(1)(T)I|jjj < Ckj|j1'Djjj1, 
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from which the invertibility of , follows for k sufficiently small. We define now 
E S' as the solution of 

(5.7) 8t 
= Q?f 

PROPOSITION 5.2. Let U,6? = W? and 8 = [U'l I U862f' be the solution of (5.7). 
Define U^ = U81. Then, under the remaining hypotheses of Proposition 3.1, the result 
of Proposition 3.1 holds with E' replaced by E,, i = 0, 1, in (3.8) and (2.26). 5 

Combining now the results Qf Propositions 5.1 and 5.2, we have, in view of (2.3), 
the following optimal-order convergence result for the new base scheme. 

THEOREM 5.1. Let U ?, U' be selected as in Proposition 5.2 and let { U8" 'n=2 be the 
solution of the scheme (5.3). Then, under the combined hypotheses of Propositions 5.1 
and 5.2 we conclude that there exists a constant C, independent of h, k, and u, such that 
forO <0 n < J, 

(5.8) jjU" n - un < C{ k4(11u0116 + IIu?115) + hr(IIuoIIr+2 + 
IIU0IIr1)}r 

a 

The operators in the left-hand sides of the system (5.3) and (5.7) still change at 
each time step. In analogy to what was done in Section 4 we may again use 
preconditioned iterative methods for the efficient solution of these systems. There- 
fore, we describe below our final method, which combines difference quotients and 
preconditioned iterative procedures. 

Consider first the difference analog of the linear system (4.18), i.e., the equation 
(we putYA 1 = 

(5.9) ( 1)*j=( ) 0 .0 0 

where (41)* is the adjoint of .s in S2 with respect to the inner product ((-, *)). To 
apply to (5.9) a preconditioned iterative method, such as the ones described in 
Section 4, we identify { H, (-, *)H } with { Sh, (( *, - ))} and tegard (5.9) as the system 
Ax = b. It can be shown (we omit the proof) that an example of a suitable 
preconditioner that satisfies (4.1) in our context is furnished again by the operator 
P-. defined by (4.21). Our algorithm then starts as follows. 

Step 1. Construct an approximation %1 = [V81,1, VJ812IT in Sh2 to the exact solution 
A/F1 of (5.9) by using a preconditioned iterative method that satisfies properties (i) 
and (ii) of Section 4-where { H,(, )H}= {Sh2(( ,))} , with preconditioner P- 
defined by (4.21), using Y ? as initial guess for the iteration and a tolerance 

,1 = min(y, k4) with -y sufficiently small. (This will require in general O(ln(k 1)) 

iterations.) Put Va0 = W?, V, = 

Now, to compute { nV 2, consider the "difference" analog of the time-stepping 

scheme (4.6), i.e., let V", 1 < n < J-1, be the (exact) solution of 

Qn+lFn+l = 2PnVn" n-lvQn-1 + k4(qi- I) 

X(Q(2Lh)Van+ 2(L 2) [ (V8n v q 8n)-2L8nj}) 

which we regard as the system Ax = b in the notation of Section 4 identifying now 
{ H, (., .)) with { Sh,( )}. An example of a suitable preconditioner that satisfies 
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(4.4) is of course again PQ given by (4.5). The rest of the algorithm is then: 

Step 2. With V,&, V& constructed in Step 1, compute for each n, 1 < n < J - 1, an 
approximation V'+1 to the exact solution V"+1 of (5.10) using a preconditioned 
iterative method that satisfies properties (i) and (ii) of Section 4-where 
{H,(*, *)H} = { ShI ( * * )} , with preconditioner PQ defined by (4.5), using Vj0+ 
= 17,1i)(V), given by (4.8), as initial guess for the iteration and tolerances 

B fmS min(y, k) if 2 < n + 1 4, 
nl Xmin(y, k) if 5 < n + I < J,9 

with y sufficiently small. (This will require, in general, O(ln(k-1)) iterations for each 
n.) 

By methods similar to those used in the proof of Theorem 4.1 we can finally prove 

THEOREM 5.2. There is a -y > 0 such that if { Vta }J=o are computed by the algorithm 
described in Steps 1 and 2 above and if the remaining hypotheses of Theorem 4.1 hold, 
then there exists a constant C, independent of h, k, and u, such that for 0 S n < J, 

(5.11) I| V" - u"II < C k4(IIuoII7 + IIuI|116) + hr(IIuoIIr+2 + IIu?I?r+1))* 
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