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A General Equivalence Theorem in the Theory 
of Discretization Methods 

By J. M. Sanz-Serna and C. Palencia 

Abstract. The Lax-Richtmyer theorem is extended to work in the framework of Stetter's 
theory of discretizations. The new result applies to both initial and boundary value problems 
discretized by finite elements, finite differences, etc. Several examples are given, together with 
a comparison with other available equivalence theorems. The proof relies on a generalized 
Banach-Steinhaus theorem. 

1. Introduction. In this paper we extend the classical Lax-Richtmyer equivalence 
theorem [6], so as to cover in a simple way not only initial value problems, but also 
boundary value problems, mixed problems, etc. Our theory relies on a generalized 
Banach-Steinhaus theorem [9] and works (essentially) in the framework of Stetter 
[13]. This set-up employs restriction operators to compare the true and discretized 
solutions, as distinct to those theories which use prolongation operators. (One of the 
oldest prolongation theories is probably that of Aubin, summarized in [16].) Our 
main result is given in Section 2. Sections 3 and 4 are devoted to examples and 
counterexamples. The former are meant to show the scope of our result and include 
the Galerkin method for boundary value elliptic problems and semidiscrete and fully 
discrete schemes for initial value problems. The counterexamples prove that the 
present hypotheses cannot be dispensed with. In particular, we show that a method 
which is consistent and convergent for all data in a Banach space may be unstable. 
The final section contains a comparison with other available equivalence theorems. 

2. An Equivalence Theorem. 
2.1. The True Problem. Let X (the space of solutions) and Y (the space of data) be 

normed spaces, both real or both complex. We consider a linear operator A with 
domain D c X and range R C Y. The problems to be solved are of the form 

(2.1) Au=f, fe Y. 

Here A is not assumed to be bounded, so that unbounded differential operators are 
included. We suppose that problem (2.1) is well-posed in the following sense: The 
range R of A is dense in Y, and there exists a bounded linear operator E E B(Y, X) 
such that the composition EA is the identity in D. Note that this implies that, for 
f E R, Eq. (2.1) has the unique solution u = Ef and that solutions depend continu- 
ously on the data. When f E Y, f O R, Eq. (2.1) has no solution, and Ef can be 
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regarded as a generalized solution, since E is the unique bounded extension to Y of 
A-': R - D (see [8] for a discussion). 

2.2 The Approximate Problems. Let H be a set of positive numbers such that 0 is 
the unique limit point of H. For each h E H, let Xh, Yh be normed spaces and 
consider the approximate or discretized problem 

(2.2) Ahuh = fh I fh E Yh' 

where Ah is a linear operator Ah: Xh - Yh. We assume that for each h E H, problem 
(2.2) is well-posed in the sense of the previous paragraph, with solution operator 

= A-. In practice Xh, Yh are subspaces of X, Y or spaces of grid functions, etc. 
(see [9] for a discussion of the various possibilities). In order to relate the true 
solutions u and data f, which lie in X, Y, with the approximate solutions Uh and data 
fh, which lie in Xh, Yh, we introduce restriction operators rh, Sh as follows [9]. For 
each h E H, rh (resp. Sh) is a bounded, linear operator from X (resp. Y) into Xh 

(resp. Yh). We assume that the operator norms can be bounded 

(2.3) ||rh|l 1< Cl, ||sh|l 1< C2, 

with C1, C2 independent of h. We shall compare the true solution u = Ef with the 
discrete solution uh = Ehshf corresponding to the discretized datum f. This compari- 
son is achieved by measuring the distance in Xh between Uh and the restriction rhu. 
(Some authors prefer to measure in X the distance between u and some sort of 
prolongation of uh [9].) 

The family (Xh, Yh, Ah, rh, Sh) defines a method for the solution of (2.1). 
2.3. Convergence, Stability, Consistency. Let f be a given element in Y. We say that 

the method (Xh, Yh, Ah, rh, Sh) is convergent for the problem (2.1) if 

(2.4) lim llrhEf- EhShf = 0. 

We say that the method is convergent if it is convergent for each problem (2.1) as f 
ranges in Y. 

Let u be a given element in D. We say that the method is consistent at u if 

(2.5) lim llAhrhu - shAull Yh 0. 
h 

A method is consistent if it is consistent at each u in a set Do such that the image 
A(DO) is dense in Y. (We recall that it is not appropriate to demand consistency at 
each u in the domain of A; cf. [8].) 

Finally, the method is stable if a constant K exists such that 

(2.6) IIEhlIB(XhYh) < K. 

Note that stability depends only on Xh, Yh, Ah and does not relate to (2.1) or to rh, 

s,h' 

The quantities within the norms in (2.4), (2.5) are, respectively, the global and 
local discretization errors. 
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2.4. The Equivalence Theorem. 

THEOREM 1. Let X, Y, A, Xh, Yh, Ah, rh, Sh be as above. 
(i) If the method is consistent and stable, then it is convergent. 
(ii) If the method is convergent, then it is stable provided that Y is a Banach space 

and that the following condition holds: 
(P) There exists a constant L such that, for each h E H and each g E Yh with 

gtII < 1, there exists an element f E Y such that Ill f I < L and Sh f = g. 

Proof. (i) Let f E A(DO). The convergence for the problem Au = f follows upon 

using (2.5) in the bound 

IlrhEf - Ehshf |= IIEh(Ahrhu - shAu)II < KIIAhrhU - ShAull 

Iff f Y, f 4 A(DO), we can choose a sequence (fn), with fn E A(DO), lim fn = f. 
Then 

lrhEf - Eh5hf 1 < lrhEf- rhEfnll + llrhEfn - EhShfnll + IlEhShfn - Ehshf || 

Since E, Eh, rh, Sh can be bounded independently of h, the first and third terms of 

the right-hand side can be made arbitrarily small, uniformly in h, by taking n large, 
while the second term tends to zero with h. 

(ii) Let f E Y. The norms llrhEf 11 are bounded as h -O 0, because (2.3) holds. 

From (2.4) we conclude that the norms IlEhShf 11 are also bounded, since H has no 
limit points other than 0. The generalized Banach-Steinhaus lemma of [9] then shows 

that there exists a constant K1 such that IlEhshll < K1. If g E Yh, with llgll < 1, we 

can write (cf. condition (P)) 

IlEhgll = IEhShf 11 < K1L, 

whence IEhII < K1L. 

Remark 2.1. It has been shown in [9] that condition (P) holds in most practical 

applications. 
Remark 2.2. We emphasize that while implication (i) has been proved by elemen- 

tary means, implication (ii) requires the use of a deep result from functional analysis. 

In this regard we note that while the convergence or otherwise of a method depends 

on the norms in Xh, but not on the norms in Yh, the concept of stability depends on 

the norms of Xh and Yh. Therefore, one may argue that by changing the norms in Yh 

one could turn a stable method into an unstable one without altering the conver- 

gence. From this line of thought one may be led to believe that implication (ii) 

cannot hold in general (cf. [13, p. 14]). This paradox is explained as follows. The 

equiboundedness of Sh together with property (P) establish a link between the norms 

in Yh and the norm in Y. (If a finer norm were introduced in Yh, the equibounded- 
ness would be likely to disappear. The introduction of a coarser norm in Yh would 

threaten the validity of (P).) Thus, in our framework the norms in Yh cannot be 

significantly altered without altering the norm in Y. But, as a consequence of the 

closed graph theorem, the norm of the Banach space Y cannot be weakened or 

strengthened. 
Remark 2.3. The considerations above suggest that the completeness of Y and 

condition (P) are essential if (ii) is to hold. The necessity of these conditions is shown 
in Section 4 by means of counterexamples. 
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Remark 2.4. It is obvious from the above proof that (P) can be relaxed to read 
(P') There exists a constant L and subspaces Sh C Yh such that, for h e H, 

sup{|IEhgll: g e Sh, 11911 < 1) = sup{IEhgI : g E Yh l < 1) 

and to each gESh, with llgll < 1, there corresponds an element f E Y, with 
11111 < L,shf = g- 

In other words, it suffices to check (P) for g ranging in a subspace Sh such that Eh 

"attains its norm" in Sh. 

Remark 2.5. The hypotheses that H has no limit point other than 0 is not essential. 
The theorem holds for general H such that inf H = 0, provided that IIEhll is bounded 
for h bounded away from zero. This supplementary condition is invariably verified 
in the applications. 

3. Examples. In this section we present four examples of applications of the 
previous theory. These examples show the way to further generality. 

3.1. The Classical Lax-Richtmyer Theory [6]. We considered a well-posed Cauchy 
problem [10, p. 39] 

(3.1) duldt = Wu, 0 < t < T, u(0) = u0, 

where _V is the generator of a strongly continuous semigroup in a Banach space -. 
This problem is cast in the form of Section 2.1 by choosing X to be the space of 
continuous mappings from [0, T] into -4 with the supremum norm, Y = -, and A 
the operator 

u(.) -) Au() =u(0), 

with domain 

D(A) = {u(-) E XIdu/dtexists,du/dt =./u,0 < t < T}. 

A difference scheme is a recursion [6] 

(3.2) un+1 =C(h)Un, n = 0,1,2,...,[T/h]-1, 

where h ranges in a set H as in Section 2.2, C(h) is a bounded linear operator in -, 
and u,1 is meant to approximate u(nh). This is accommodated in the present 
formalism as follows. We define Xh to be the product of N + 1 = [T/h] + 1 copies 
of the space -4 endowed with the supremum norm. The restriction rh is the natural 
point restriction 

rhu(-) = [u(O), u(-h),. ..,u(Nh)]. 

The space Yh is taken as the product of N + 1 copies of -4 with norm 

N 

Uh[i fo f... *N III E Ilfill - 
i=O 

The restriction Sh is defined as 
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It is clear that (2.3) holds with C1 = C2 = 1. Now the recursion (3.2) can be written 

U0 

U1 -C I 0 
U2 -c Ih_SU (3.3) - ShUO = Ah'shuo, 

0 
-UN.- -C L_ 

which is of the required form. (We have omitted the dependence of C on h.) 
We shall show that Theorem 1, as applied to this choice of X, Y, A, Xh, Yh, Ah, rh, 

Sh, is precisely the Lax-Richtmyer equivalence 1 -orem. In fact, the matrix operator 
Ah has an inverse 

C I O 
Eh= C2 C I 

E [CN CN-1 CN-2 7 

with norm sup{IIC"II, 0 < n < N}. (We recall that the norm of a matrix operator 
from L1 into LI is given by the supremum of the norms of its entries.) Therefore our 
definition of stability reduces in this case to 

(3.4) sup{IIC(h)nII:0< nh<T,heH} <Go, 

i.e., the usual definition of Lax stability. Furthermore, Eh attains its norm on Sh*, so 

that condition (P') holds with Sh = Sh-. Finally, it is obvious that our definitions of 
convergence and consistency are essentially those of the Lax-Richtmyer theory [10]. 
(Actually, the present requirement of consistency is less demanding than that of 
[10].) 

Remark. In order to follow more closely the conventions of [13, p. 6], we may 
divide by h each row of Ah except the first, in order to write the difference equations 
as approximations to the differential problem (i.e., Euler's method may be written as 

(un+1 - un)/h = Aun, rather than un+1 = un + hAun). Simultaneously one must 
change the norm in Yh into the normalized form IlIfoll + hE,1 1fill. We emphasize 
that these changes are merely a matter of notation. See [13, p. 75] on the practical 
advisability of choosing the norm in Xh to be of supremum type and that of Yh to be 
of L' type. 

3.2. The L2-Inhomogeneous Case [7]. We now consider the inhomogeneous prob- 
lem 

du/dt=-u +f(t), 0 < t < T, u(0) = uO, 

where _W is as in the previous paragraph and f E L2([0, T], -). We define Y= 

E> x L2([0, T], -), X = W([0, TJ, -), and A the operator 

u(.) -) Au(.) * (u(O), du/dt -s/u) 

with domain 

D(A) = {uE X Idu/dt exists, du/dt-,Vu E L2([0, T], )}. 



148 J. M. SANZ-SERNA AND C. PALENCIA 

The problem is well-posed with solution operator 

E(uO, f )(t) = S(t)uo + f S(t - s)f(s) ds, 

where S is the semigroup generated by -d. Following Mountain [7], we consider the 
method 

Un+1 = C(h)un + hfn f,t = hf| ff(t) dt 
nh 

where C(h) is as before. Note that averages must be used for fn since point values 
are meaningless for L2-functions. This is cast in the form (2.2) by choosing Xh, Yh, 
Ah, rh as before but changing Shinto 

Sh(v, f) = [v; hfo, hf1, ..,hfN-1 

It is readily shown that the sn are uniformly bounded. The condition of stability is 
still given by (3.4), since Xh, Yh, Ah have not been altered. Thus, the convergence of 
those methods which are stable and consistent follows from Theorem 1 (i). Con- 
versely, a method which converges for all data in Y is stable, since it was shown 
before that stability follows from the weaker requirement of convergence for 
problems having f 0. Also note that L2 may be replaced by any LP, 1 < p < X, 
or by the space of continuous functions, thus generalizing the results of [7]. When 
Y = R x W([0, T], -), one can use point values fn = f(nh) rather than averages. 

3.3. A Generalized Lax-Richtmyer Theory [9]. In the Lax-Richtmyer theory the true 
solution u(nh) and its approximation un are supposed to lie in the same space R, 
while in practical applications the former is a function of the space variables and u, 
is only a grid function. In [9] a simple proof was given of the validity of the Lax 
equivalence theorem even if u(nh), un are allowed to lie in different spaces. It is easy 
to show that this generalization of the Lax theorem is also a particular case of our 
Theorem 1. 

3.4. Elliptic Boundary Value Problems. We consider a homogeneous Dirichlet 
problem [3] in a bounded domain with smooth boundary 

LS aa (aui (x) +u(x)) =f(x), x(E cRd. u(x) =0, x C au 

for a strongly elliptic operator, with smooth coefficientsaij =ji. 
We take the domain of the operator to be Ho(2) nl H2(Q2) with the energy norm 

and assume that f ranges in L2(Q). Thus there is a continuous solution operator 
E: L2 Hd, which is characterized by the variational formulation 

a(Ef, )=( f, {), ( E Ho' 

Here a(- , *) is the bilinear form associated with the differential operator (i.e., the 
energy inner product), and (*, ) is the usual L2 inner product. If Zh is a sequence of 
finite-dimensional subspaces of Hol we consider the Galerkin solutions uh E Zh: 

a(uh, 4) = (f, 4), V4 E= Zh- 

We choose Xh to be Zh with the energy norm, and Yh to be Zh with the L2-norm. If 
we take for the roles of rh, Sh the a( *, * )- and ( , - )-orthogonal projections of Ho and 
L2onto Zh, respectively, then the conditions (P) and (2.3) are trivially satisfied. 
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Upon introducing the discrete solution operator Eh: Yh Zh characterized by 

a(Ehg, l4) = (g, 04), V4i E Zh, 

we conclude that the Galerkin solution is given by Uh = Ehshf. But, on invoking the 
optimality of Uh in the energy norm, also Uh=rhu = rhEf, and therefore the global 
error is zero and the method is convergent. Now Theorem 1 shows that the method is 
stable. When bases in Zh are chosen, this uniform boundedness of the operators Eh 

can be translated into the uniform boundedness of the inverses of the stiffness 
matrices. 

Note that the global error has turned out to be zero, because it has been defined as 

rh1u - Uh. In the finite-element literature one often considers the error u - Uh, which 
is the sum of our error rhu - Uh and the term u - rhu, which merely reflects the 
approximation capabilities of Zh- 

4. Counterexamples. The implication "convergent stable" has been shown to 
hold provided that Y is a Banach space and that (P) holds. We now prove that these 
two hypotheses are necessary. First we note that the completeness of Y cannot be 
dropped in the context of the Lax-Richtmyer theory of Section 3.1. A counterexam- 
ple is given in [8] together with a discussion. A fortiori, the completeness of Y cannot 
be dispensed within the more general setting of Theorem 1. Next, we show an 
example of a method which is unstable, yet converges for all data in a Banach space 
Y, and is consistent. 

We set X equal to the space of real, continuous functions u in 0 < t < 1, such that 
u(O) = 0, with the supremum norm. The space Y is the space of real continuous 
functions in 0 < t < 1, also with the supremum norm. The operator A maps each 
continuously differentiable function in X into its derivative; thus our problem is the 
Cauchy problem 

U(0) = 0, u'(t) = f(t), O -<- t < 1,1 

and clearly has a solution operator given by 

(Ef)(t) = ttf(s) ds. 

Let H be the set of the numbers h = 1/N, N integer, and Xh, Yh the product of N 
copies of the real line with the supremum norm. Finally, 

rhu = [u(h), u(2h),... , u(1)] 

Shf = [f (O), f (h) -f (O), f (2h) -f (h), . ,f ((N - 1)h) -f ((N -2)h)] 

-2 1 0 
1 -2 1 

(4.1) Ah= h 1 -2 1 

0 
1 -2 1 
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The method is easily seen to be consistent. The condition (2.3) holds with C1 = 1, 
C2 = 2. The inverse of Ah is given by 

2 1 0 
A*l=h 3 2 . 

hN N-1 N-2 * 1 

so that IIA-111 = ?hN(N + 1) = ?(N + 1), and the scheme is unstable. The condition 
(P') does not hold, since A- 1 attains its norm on the vector e = [1, 1,... 1], and it is 
easily checked that any function f in Y, such that Shf = e, possesses a norm 

jfjN. 
In order to see that the method converges for all data in Y, we note that the 

discrete equations are given by 

(4.2) ul/h = fo, (u2-2u1)/h =f-fog 

(u1+2 -2uj+l + uj)/h =fj+l -fj j= 1,...,N- 2, 

so that adding to each equation those which precede it, 

(4.3) ul/h =fo, (uj+1-uj)/h =fj, j = 1,...,N-l, 

i.e., the approximations generated by the unstable method (4.2) are precisely those 
generated by Euler's rule, which is, of course, convergent and stable. 

It should be emphasized that this equivalence between stable and unstable 
methods takes place because round-off errors have not been considered in the 
discussion. In order to assess the effect of round-off, we run our problem with 
f(t) = t1/2 on a VAX computer (single precision). The approximations to u(l) = 2/3 
turned out as follows: 

h Euler (4.3) Unstable (4.2) 

1E - 1 0.6105094 0.6105096 
1E - 2 0.6614627 0.6614678 
1E - 3 0.6661584 0.6662932 
1E - 4 0.6666176 0.5979251 
IE - 5 0.6668774 0.2296276 

We conclude that the "convergence" of the unstable method is more damaged by 
round-off than the "convergence" of the stable method. It seems, therefore, advisa- 
ble to employ a notion of convergence which takes into account the effect of 
perturbations such as round-off. This point is addressed in the final section. 

Remark. When f is differentiable, method (4.2) is best regarded as an approxima- 
tion to the problem u"(t) = f'(t), u(O) = 0, u'(0) = f(O), obtained from differentia- 
tion in the given problem. Then (4.3) is the "summed form" of (4.2) (see [5, p. 327]). 

5. L-Convergence. Let (Xh, Yh' Ah, rh, Sh) be a method for the solution of (1.1). 
We say that the method is L-convergent for a given datum f if 

(5.1) limllrhEf- Eh(shf+ gh)IIx, = 0, 
h 
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provided that the perturbations gh satisfy limjlghljYh = 0. The method is L-con- 
vergent if it is L-convergent for everyf in Y. 

The name L-convergent originates from the theory of initial value problems in 
PDEs (Ansorge [1], [2]). Similar concepts have often been used in the literature: cf. 
stable convergence (Dahlquist [4]) and convergence under perturbations (Spijker 
[12]). The notion of convergence of linear multistep methods in Henrici [5] is in fact 
an L-convergence concept, since it is required there that convergence take place 
under arbitrary consistent starting procedures (in particular, method (4.2) is not 
convergent in the sense of Henrici). 

Note that both the norms of Xh and Yh enter in the definition of L-convergence 
and that the idea of stability is implied in the idea of L-convergence. Therefore, it is 
not surprising that the following theorem can be easily proved by elementary means 
(cf. Remark 2.2). 

THEOREM 2. Let (Xh, Yh, Ah, rh, Sh) be a methodfor the solution of (1.1). Then 
(i) If the method is stable and convergent for f in a dense subset of Y, then it is 

L-convergent. 
(ii) If the method is L-convergent for f 0, then it is stable. 

A proof can be found in Stummel [14, p. 53]. (Stummel uses "consistency" where 
we use "convergence", and "convergence" where we use "L-convergence".) From 
Theorems 1 and 2 we conclude 

COROLLARY 1. A method is L-convergent if and only if it is stable and convergent. 

COROLLARY 2. A consistent method is L-convergent if and only if it is stable. 

Note that the equivalence result in Corollary 2 requires neither the completeness 
of Y nor the condition (P). Corollary 1 holds-when L-convergence, stability, and 
convergence are generalized in the obvious way-even in nonlinear situations [15, 
Theorem 1]. For initial value problems the equivalence between L-convergence and 
stability was first noted by Spijker [11]. Corollary 2 can also be extended to 
nonlinear situations [12]. An appraisal of some recent work on equivalence theorems 
may be found in [8]. 
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