MATHEMATICS OF COMPUTATION
VOLUME 45, NUMBER 171
JULY 1985, PAGES 153-171

Boundary Value Techniques for Initial Value Problems
in Ordinary Differential Equations

By A. O. H. Axelsson and J. G. Verwer

Abstract. The numerical solution of initial value problems in ordinary differential equations
by means of boundary value techniques is considered. We discuss a finite-difference method
which was already investigated by Fox in 1954 and Fox and Mitchell in 1957. Hereby we
concentrate on explaining the fundamentals of the method because for initial value problems
the boundary value method seems to be fairly unknown. We further propose and discuss new
Galerkin methods for initial value problems along the lines of the boundary value approach.

1. Introduction. Traditionally, methods used for the numerical integration of initial
value problems in ordinary differential equations

(1.1) y(x)=f(x, y(x)), a<x<b,y(a)given,

are step-by-step methods. Familiar step-by-step methods, which are also called
forward-step methods, are the Runge-Kutta and linear multistep method (see, e.g.,
Henrici [12], Lambert [16], Stetter [23]). The latter, in its most simple form, is
defined by the so-called k-step formula

k k
(12) Z a_jyn+j = h Z ij(xn+j’ yn+j)’ ‘aj’ Bja h € Rs h > 0’ k € N+7
j=0 Jj=0

where y, . ; represents the approximation to the exact solution value y(x,,, ;) defined
by (1.1). The positive real 4 is called the step size. Assuming that 4 is constant, it is
given by h = (b — a)/N, N being some positive integer. The points x,,, ; are called
grid points and belong to the uniform grid

(1.3) G,={x;:x;=a+jh,j=0(1)N}.

In the forward-step approach, the numerical solution is obtained by stepping
through this grid in the direction from a to b, i.e., given approximations y,., ; for
some integer n and j = 0(1)k — 1, the approximation y, ., at the next grid point
X, .« 1s computed by solving (1.2) for y,.,. In fact, all results on convergence and
numerical stability which emanate from the pioneering work of Dahlquist [5] are
based on this forward-step application.
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In this paper we will tackle the numerical solution of (1.1) in a completely
different way than in the step-by-step approach. For its numerical solution we will
consider (1.1) as a two-point boundary value problem with a given value at the left
endpoint and an implicitly defined value, by the equations y(x) = f(x, y(x)), at the
right endpoint. In this approach formula (1.2) ought to be considered as a finite-
difference formula as is the practice in the numerical solution of genuine two-point
boundary value problems for systems of first-order differential equations (see Keller
[14], [15]). One of the aims of this boundary value approach is to circumvent the
known Dahlquist-barriers on convergence and stability which are a direct conse-
quence of the step-by-step application of (1.2). In this respect boundary value
methods for (1.1) bear a relationship with the iterative algorithms of Cash [4] for the
stable solution of recurrence relations and with Olver’s algorithm [18], [19].

Up to now, boundary value methods for initial value problems have hardly been
discussed in the numerical literature. Perhaps because the step-by-step application of
formulas of type (1.2) is invariably easier to perform. As far as we know, the first
contributions have been made by Fox [9] in 1954 and Fox and Mitchell [10] in 1957.
They discuss a simple finite-difference formula for (1.1) and for the derived
second-order equation

(14 3(x) = gx »(x)) = g (x 3()) + g5 (2 2D (x, $(2)).

A feature of the boundary value method is that all approximations on the grid G,
are generated simultaneously. In 1964 Axelsson [1] proposed a quadrature type
method for the integrated form of (1.1) which also computes all approximations over
the interval [a, b] simultaneously. This method has been called a global integration
method. It is best characterized as a huge implicit Runge-Kutta method which
performs just one step with step size b — a. A special feature of this global method is
that the global errors at the end of the interval are particularly small, even when the
problem is mathematically unstable. On the other hand, the errors of step-by-step
methods have a tendency to grow, owing to accumulation at every step, especially
when the problem itself is unstable.

Two recent contributions on boundary value methods for initial value problems
are due to Rolfes [20] and Rolfes and Snyman [21]. They consider a finite-difference
method which has also been proposed by Fox [9] and apply it to stiff equations.
Rolfes and Snyman report that the finite-difference method performs satisfactorily
on stiff problems. Fox considered nonstiff equations, but was not satisfied with the
method because of an oscillating error behavior which prevents the application of
difference correction for improving the accuracy.

The present contribution consists of two parts. The first part deals with finite-
difference methods, while the second one is devoted to Galerkin methods. When
discussing boundary value techniques for initial value problems it is, of course,
obvious to consider Galerkin methods because of their use in the numerical solution
of genuine two-point boundary value problems. We shall comment on a relation
between the two approaches.

To a certain extent this paper is of an expository nature, especially in its first part
on finite-difference methods (Section 2). There, we have concentrated on describing
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the fundamentals of the boundary value approach, because for initial value problems
this approach seems to be fairly unknown. For that purpose Section 2 reports on a
case study of a straightforward combination of the explicit midpoint rule with the
first-order backward difference formula. Among others, this case study clearly
reveals that with respect to stability, an essential difference exists between the
standard forward-step and the boundary value approach. We emphasize that the
phenomena involved are typical for the boundary value approach, rather than
accidental for our case study.

Finally, we should like to mention three serious applications of the boundary
value method in situations where the forward-step method may be less appropriate
(not further treated in the present paper). Firstly, the numerical solution of initial
value problems where the right-hand side function f(x, y) is not available in analytic
form but merely in the form of discrete data.* Such a situation frequently arises in
simulation processes. These problems might be tackled by fitting the data so as to
generate functions which can be evaluated anywhere such that Runge-Kutta meth-
ods or multistep methods can be applied. This approach involves the difficulty of
avoiding too large errors in the generated functions. An alternative is to employ a
method which uses only the discrete data available. Shampine [22] examines such a
method. The boundary value methods of this paper can also be applied to the
problems discussed by Shampine [22].

The second application we have in mind lies in the control of the global error.
When integrating in a forward-step manner, direct global error control cannot be
theoretically justified since the behavior of the global error in time depends on the
stability of the problem and on all previous global errors. The only justifiable
procedure here is simply reintegration over the whole integration interval with a
smaller step size, in case the estimation of the global error has turned out to be too
crude. By its very nature, the boundary value method is better adapted for global
error control, because now the numerical solutions are computed simultaneously as
if we were solving a boundary value problem. This implies that, for global error
control purposes, one could implement sophisticated adaptive mesh techniques from
currently available boundary value codes.

Thirdly, the boundary value methods can also be used as step-by-step methods
but with much larger steps than for an ordinary step-by-step method. A possible
application of this is for ill-posed problems of the form (1.1). If the solution to such
a problem is smooth, one may approximate it well by a boundary value technique
using large time steps, and the inherent instability will not be noticed as much as for
an ordinary step-by-step method. This situation is similar to the effect of using
parallel shooting instead of just simple shooting in boundary value problems.

Naturally we can also envision problems where a boundary value technique would
be less appropriate. This occurs, for instance, in certain nonlinear problems where
the solution suddenly becomes very unsmooth. In a step-by-step method one can
more easily adapt the step-lengths in order to better approximate the steep gradients
when they occur.

*This application has been brought to our attention by Larry F. Shampine.
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2. A Finite-Difference Boundary Value Method.

2.1. Outline of the Method. Consider the initial value problem (1.1). Let us
discretize the differential equation y = f(x, y) on the grid (1.3) by means of the
explicit midpoint rule

(2'1) Yon+1 = Vn—1 — 2hf(xn’ yn) =0.

When we apply (2.1) as a step-by-step method we need two initial values, one at the
left endpoint x = a, and one at x = a + h. The first initial value is known from the
problem, while the second one has to be computed by another method. When we
apply (2.1) as a boundary value method it is applied at each of the points x, € G,
for n = 1(1)N — 1. In addition to the initial value at the left endpoint x = a, we
now need a boundary condition at the right endpoint x = b. For that purpose, one
can use the most simple backward-difference formula (Backward Euler)

(2.2) In = In-1— Bf(xn, yn) = 0.
Thus we arrive at the discrete boundary value problem
¥, given,
(2.3) Yas1 = Va1 — 2Hf(x,,»,) =0, n=1(1)N -1,

v~ Yn—1— W (xy, yy) =0,
whose solution values y,,...,yy must be generated simultaneously. Since f may be
nonlinear in y, the discrete problem (2.3) must be solved by iteration. A Newton-type
iteration is feasible because of the tridiagonal structure (block-tridiagonal for sys-
tems). )
As an alternative for formula (2.2), we mention the more accurate trapezoidal rule

(2.4) Vv~ In-1 — 1hf(Xy_1 yw-1) — 3R (xy, ya) = 0,
or the second-order backward-difference formula
(2.5) Y~ $¥n-1+ T¥n-2 — $Af(xy, yy) = 0.

The use of (2.4) or (2.5) instead of (2.2) does not increase the order of accuracy of
the method. Both combinations are of order two. Normally, method (2.3) will be
somewhat less accurate. Convergence questions are further discussed in Section 2.3.

Combination (2.1), (2.5) has already been proposed by Fox [9] and Fox and
Mitchell [10]. Rolfes [20] and Rolfes and Snyman [21] have applied this combination
to stiff problems. A slight disadvantage is that by using (2.5), the tridiagonal
coupling is lost. This might be overcome, however, by eliminating y, _, from (2.5)
and the particular equation

(2-6) YN = IVN—2 2hf(xiv—1» yN—l) =0.
This yields
Y, given,
(27) Yun+1 = -1~ 2hf(xn’ y,,) = 0, h = l(l)N — 1,

v = yv-1) = 3 (w1 yao1) - $hf(xy, yy) =0,
which is just method (2.1), (2.4).
Finally we observe that methods like (2.3) can be directly applied to problems
with periodic solutions. The last line of (2.3) then should read y, = y,. In what
follows we concentrate on the pure initial value problem.
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2.2. The Test Model. In this section we consider the standard test model
-(2.8) y=38y, &e€C,a<x<b,y(a)given.
We observe that this model plays an important role in the stability of step-by-step
integration methods. The notion of absolute stability (see, e.g., [16]) is based on this
simple problem which is also very suitable for becoming acquainted with the
boundary value approach and for comparison with the step-by-step approach. In
Section 2.3 the model is linked with a constant-coefficient linear system. We will
concentrate on method (2.3), i.e., explicit midpoint combined with Backward Euler.
Our discrete boundary value problem (2.3) now reads

.yO = y(a)9
(2.9) Yps1l = Vo1 — 22y, =0, z=hé,n=1,....N -1,
In=Ivo1 =N =0,
i.e., we have to solve the linear algebraic system
(2.10) A(z)Y =R,
where Y = [y,,...,yx]T, R = [y(a),0,...,0]T and A(z) is given by
-2z 1
-1, -2z 1
(2.11) A(z) = - . .
-1 2z 1

The first question which arises is, for which z-values is Y a well-defined vector of
approximations y, to e"“y(a), n = 1,...,N, i.e., for which z-values is A(z) regular. In
what follows, we call z a regular point for A(z) if A(z) is regular. Otherwise, z is
called a singular point.

Define A(z) = diag(l,...,1,2)A(z), and write A(z) = E — 2zI, i.e.

0 1
-1.0. 1.
(2.12) E= - .
101
-2 2
A(z) is singular, iff A(z) is singular. Hence we can use A(z), and in turn the
constant matrix E to find the singular points for 4(z). Obviously, the location of the
eigenvalues A ; of E is decisive, since z is a singular point, iff z = A /2.

LEMMA 1. All eigenvalues N ; of E satisfy 0 < Re(A)) <2, -2 < Im(A)) < 2.

Proof. The inequality -2 < Im(A;) < 2 is a direct consequence of GerSgorin’s
circle theorem. To prove the inequality for the real part we first perform the
similarity transformation

E = diag(1,...,1, d) Ediag(1,...,1,d")

which leaves the spectrum invariant. Let A and p be the real and imaginary parts of
an arbitrary eigenvalue and let u and v be the real and imaginary parts of the
corresponding eigenvector. Then we easily derive

(2.13) Lu™(E+ ET)u+ vT(E + ET)o] = MuTu + o).
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Now we take d = 1/ V2 for which L(E + ET) = diag(0,...,0,2). Hence,
0<3uT(E+ E")u<2u"u, allucR",

so that 0 < A < 2. Finally, assume A = 0 and let u,, v, denote the ith component of
u and v, respectively. From (2.13) it then follows that u, = v, = 0. By using the
relations Eu = —pv, Ev = pu and the specific form of E it is now easy to verify that
u; = v, = 0, alli = 1(1)N. This leads to a contradiction, showing that A # 0. O

We thus have the following result:

THEOREM 2. All singular points z for A(z) satisfy 0 < Re(z) < 1, -1 < Im(z) < 1.
O

We cannot determine the eigenvalues of E explicitly. Note that if in E the last row
elements are replaced by -1 and 0, respectively, the eigenvalues become
2icos(jm /(N + 1)), j = 1(1)N. Figure 1 shows all numerically computed eigenval-
ues of E and E/2h for some values of h = N 1. The eigenvalues of E/2h play an
important role in the convergence analysis (cf. Section 2.3). We see that when N
increases, a pair of eigenvalues of E approaches +2i. This means that for N large,
the points +i will act numerically as singular points for 4(z).

The second question we now wish to discuss is, how well are the decaying
exponentials e” approximated. From diagonal dominance properties it easily fol-
lows that for Re(z) < 0 (stiff eigenvalues) |y,| is an excellent approximation to
le"*y(a)|. More precisely, if z # 0 is a regular point, then (2.10) can be rewritten as

= —(2z)"Y(I — (2z)"'E)~'R, which implies

n =@ (@) + (). 3= 0l 1= 2Nl co.

Observe that the method cannot approximate positive exponentials if Re(z) > 0.
Roughly speaking, for [Re(z)| large, the approximations for the negative and positive
exponential e"* are of the same magnitude.

To get more insight into the question of how decaying exponentials are approxi-
mated, we now proceed with the analytical solution of the recurrence equation
Yoi1 = Vo1 — 22y, =0 defined by the explicit midpoint rule when applied to
test-model (2.8):

(2.14) Y.=Cpl+ G, n=1,2,...,N,
where p, =z + Vz2+1, p,=z—Vz2+ 1 and C,, C, are constants to be de-
termined by boundary conditions. Note that p; = e* + O(z3), z - 0, whereas p,
has no relation to e?, i.e. ., is the parasitic root.

Solution (2.14) can be adapted to our discrete problem (2.9) via C; and C, by
requiring

C, + G, =y(a),
(1= z)(Cpl + Couf) = Cup ™! + G
Solving for C, and C, yields C, = 8C,, C; = y(a)/(1 + &), where
5 (—_1)”‘1,, ,olom-2)
5] , (1-2)p, -1’

(2.15)

(2.16)
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and where it is assumed that Re(8) # —-1. Re(8) = -1 means singularity of the
2 X 2 system (2.15). Like for system (2.10), one thus must distinguish singular and
regular points z. We emphasize that the set of singular points for (2.15) is not
identical with that of A(z). For example, z = 4 is a singular point for (2.15) for all
N, but not for A(z) according to Theorem 2. Nevertheless, as observed before, for
numerical computations, the points z = +i must be regarded also as singular points
for A(z). Of course, if z is a singular point for A(z) and not for (2.15), (2.14) defines
a particular solution for system (2.10).

Let us consider the behavior of the principal solution component C;p] and the
parasitic component C,p’ for varying n and z, where we restrict ourselves to z < 0
and N even. We observe that for N even, z € R, the quantity § > 0, since n(0) = 0
and n(z) < 0 if z # 0. Hence, for z < 0 and N even, the solution (2.14) is well-de-
fined and is just the unique solution of system (2.10).

We distinguish between z = 0 and z < 0. The case z = 0 corresponds to y(x) = 0,
i.e. y(x)=y(a), a< x < b. It is readily seen that for z =0, y, = y(a) for all

= 1,...,N. Hence the constant solution is computed without error. For z < 0, i.e.,
decaying exponentials, we have 0 < p; < 1, p, < -1 and the limit behavior

po~1+z, p,~-1+42z, n~-4z* asz10,

2

pp =0, p,— -0, n~ -4z % asz—> —o0.

Taking this into consideration, the behavior of C;u} and C,u% is best described as
follows. C,p} approximates the decaying solution for z close to zero and vanishes if
z = —oo. This is true for all 1 < n < N. For z close to zero, the parasitic component
C,u’ is negligibly small (up to the discretization order in z). For A fixed, C,p}
increases with n. However, for all z < 0, its contribution to y, is negligible for all n,
1 < n < N. We once more note that for Re(z) < 0 (stiff eigenvalues) the strongly
decaying exponential e"* is well approximated. A similar description can be given
forz > 0.

At this point it is appropriate to make a comparison with the standard step-by-step
approach. Suppose that the explicit midpoint rule is applied that way. Consider the
general solution (2.14). In order to obtain absolute stability p, and p, now must
satisfy the root condition, i.e., none of the characteristic roots has modulus greater
than one and every root with modulus one is simple. The root condition is satisfied if
and only if z is purely imaginary and |z| < 1. Hence, as is well-known, the
step-by-step explicit midpoint rule has no real interval of absolute stability, which
shows that with respect to stability the boundary value method is just opposite to the
step-by-step method. In fact, from the investigation of equations (2.14)—(2.16), it can
be seen that the boundary value method can be applied for Re(z) < 0, just because
there |u,| <1 and |p,| > 1. This conclusion, which is valid for other difference
schemes as well, has been drawn before by Rolfes [20]. She considers the tridiagonal
infinite Toeplitz matrix with rows (-1 0 1) and shows that the forward-backward
substitution of the LU-decomposed Toeplitz matrix can be interpreted as a stable
forward recursion (|p,| < 1) followed by a stable backward recursion (|u,| > 1) (see
also [18], [19)).
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2.3. Convergence Properties. This section is devoted to convergence properties of
the finite-difference boundary value method. As in the preceding section we con-
centrate on method (2.3). It will be assumed that the vector function f: [a, b] X R
— R’is as smooth as our analysis requires.

We introduce the conventional operators A4 and 4, (see, e.g., [14], [15]):

Ay =y(x) = f(x, y(x)) =0, a<x<b,y(a) given,
Yu+1 _yn—l

‘/V'hynE —2—h-‘_f(xn’ yn) =0, n=1,...,N - 1’y0=y(a)’
YN — In-
/VhYNE%‘L_f(XN’YN)=O-

Next, for any sufficiently smooth function v(x), we define the local truncation errors
7,[v} = A u(x,) — Av(x,), n = 1(1)N, and observe that

m,[v] = th%(x,) + O(K®), n=1(1)N -1,
vlv] = —3hi(x,) + O(h?).

Let e, be the global error vector at x,, ie., e, =y, — y(x,), n = 1(1)N. By subtract-
ing /7, y(x,) from A, y, and by using the mean value equation

f(x"’ y(x") + e") _f(xn’ y(xn)) = M(x")e"’
M(x,) = [ 1 (5 p(x,) +0e,) dB, f/(x,u) = g (x0),

it can be seen that e, satisfies the difference scheme

Fe = SO y(x e, = ly], A= 10N -1,

ey — en_

ey =—" h -l M(xy)ey = -1y[»],

where e, is the zero vector and y = y(x) denotes the exact solution of the initial
value problem (1.1). Hence method (2.3) is convergent, for a given vector function f,
if for this function %, is a stable difference operator (cf., [14}, [15]).

Let us reformulate (2.17) in the block matrix form

(2.17)

-2hM(x,) I e,
-1 -2hM(x,) 1 e,
(2.18) . :
- 2hM(xy_;) I en 1
-1 I—hM(xy)[\ exn.
~2hm[y]
~2hm[y]
—2h1y_4[y]
~hty[y]

which we denote by
(2.19) Ze=(E, ®I1—-2hM)é=-2h7,
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where E, is given by (2.12) with the last row divided by two, and where ® denotes
the direct matrix product. The definitions of #, €, and 7 are obvious. Stability of .Z,
is equivalent to the existence and uniform boundedness of the inverses of the family
of matrices h o7, .

Example 3. To gain some feeling for how the local errors 7, accumulate in the
global error we now first consider the scalar equation y(x) = f(x), i.e., f does not
depend on y. Then € satisfies

(2.20) (2h)'Eé = -r.
From the computation of E! one finds the global errors
. n/2
e,=—2 2hry,_,, neven,
(2.21) e

n

e,=e,_1— 2 2h(-1)" '+ h(-1)" 'y, nodd,e,=0.
j=n

It follows that for all n, e, = O(h?). Note that Ty, = O(h) occurs only once in each
e,, n odd, and not in e, if n is even. We also see a distinction between even and odd
numbered errors, implying that e, is not smooth when considering all grid points.
O

In Example 3 we considered an over-simplified problem. It nicely illustrates,
however, the role of the matrix E, or E;, in the convergence process, which, as we
will show below, plays a similar role for the general problem.

Let us proceed with Eq. (2.19). Since E, is nonsingular, we can write

(2.22) (1-2h(Ef'®@I)#)é=75=2hn(E['®I)7.

Note that we use / to denote the s X s unit matrix, as well as the sN X sN unit
matrix. The sN-vectors 7 and ¥ consist of N blocks, each of length s. Let 1"; and ?j
denote the N-vector composed of the jth element from each block. These vectors are
associated with the jth component of the solution vector y(x). Then, for j = 1(1)s,
we have (2h)‘1E171 = -7, as in Eq. (2.20), implying that each nth element of ¥;
satisfies relation (2.21). This in turn implies that each element of the whole vector ¥
is O(h?), or, equivalently,

(2.23) ¥l < Ch?, C aconstant not depending on 4 < h,.

THEOREM 4. Let || A (x)||,, < 3 for all x € [a, b]. Then method (2.3) is convergent
in the maximum norm with order two.

Proof. Consider Eq. (2.22) and observe that hE[! ® I is uniformly bounded. In
fact, from the equation for e, in (2.21) it follows that ||hkE[! ® I||, = 1. The proof is
now easily completed by applying the perturbation lemma to the left-hand side
matrix of Eq. (2.22) and by using inequality (2.23). O

This result covers only a rather narrow class of problems on account of the norm
inequality on M(x). For example, stiff problems do not satisfy this inequality. The
above derivation indicates, however, through the introduction of ¥, that for the
general problem y = f(x, y), the global errors show a similar behavior as described
in Example 3. In fact, we observed this behavior in all our numerical experiments,
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with nonstiff, as well as stiff problems. In the next theorem we will prove conver-
gence in the spectral norm for a much broader class of problems:

THEOREM 5. Define

P-z(f'(x, u)) = m?x)\i(f'(X, u) ‘;f' (x,u) ),

where X\ () denotes the ith eigenvalue and assume that p,(f'(x,u)) < v <0 for all
(x, u) € [a, b] X R°. Method (2.3) is then convergent in the spectral norm.

Proof. We consider the matrix 2/} = (-2h) ™\, (cf. (2.19)). By definition,

M, + MT My_+ MJ | 21+ h(My+ M)
2 2 ’ 4h ’

po () = max)\i(diag(

where M, = M(x,). For all # > 0 we have

po(ZF) < maxp,(M,) < v.
n

The first inequality is trivial, while the second is a direct consequence of the
definition of M, and of a result given by Dahlquist [5, p. 11]. Since » < 0 does not
depend on 4, but only on the problem, and since

max Re A, (7) < p, (),

it is immediate that =2/*;! exists and is uniformly bounded in || - ||,. More precisely,
ll7*; "1, < -7, so that

(2.24) lell. < —»7'I7.. O

We observe that the method of proof of this theorem cannot be used to deal with
Eq. (2.22). This prevents us from proving order two convergence in the spectral
norm. In Section 3, however, we are able to prove second-order convergence in the
spectral norm by considering method (2.3) as a particular Galerkin method.

The inequality p,(f'(x, u)) < v < 0 is satisfied by all differential equations which
possess strictly contractive solutions in the Euclidean vector norm (see Dahlquist [5,
p. 13] and [6, Chapter 2]). Hence Theorem 5 covers a broad and interesting class of
problems, including many stiff ones. Furthermore, for these problems the stiffness,
i.e., the magnitude of the stiff eigenvalues of f’(x, u), does not enter into the
one-sided Lipschitz constant v. This constant » is related to the smooth, nonstiff
solution components (see [6, Chapter 2] for a clarifying discussion). Inequality (2.24)
thus shows that if the solution to be computed is smooth, the global error will not
suffer from the stiffness of the problem. Rolfes and Snyman [20], [21] observed this.
in their experiments.

If » is very close to zero, inequality (2.24) is useless. We emphasize, however, that
the algorithm then still may perform quite satisfactorily, even if » is larger than zero.
We will explain this from the constant-coefficient linear model system

(2.25)  y(x)= My(x)+g(x), M anormal matrix, M = XDX'.
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Consider for (2.25) the matrix &7, given by (2.18), but with the last row again
multiplied by two. We then can write 2} = (2h) ', in the form

E®]
2h

y{,f=(1®X)( —I®D)(I®X'1),

E as in (2.12). The eigenvalues of &/} are the sN numbers (cf. [17, p. 259])
(2.26) AN/2h =8, j=11)N,k=1(1)s,

where A ; and §, are the eigenvalues of E and M, respectively (each eigenvalue &, of
M plays the role of 8 in the test-model (2.8)). Hence method (2.3) will perform
satisfactorily on problem (2.25), for a certain A, if the eigenvalues (2.26) stay away
from zero. Figure 1 shows all numerically computed eigenvalues of E/2k for some
values of the step size . Note that some of the eigenvalues remain close to the
imaginary axis if h decreases. Further, max Re(A ;/2h) slowly increases as & de-
creases. Figure 1 is useful to ascertain for which spectra of M the method will
converge. For example, if M has positive eigenvalues §,, i.e., the problem is
unstable: the method will perform satisfactorily for A < h, if max §, <
max Re(A /2h,). See also Fox and Mitchell [10], where it is pointed out that
boundary value methods may have an advantage over step-by-step methods if the
problem to be integrated is unstable.

8

1.75

FIGURE 1
Eigenvalues of E (left plot) and E/2h (right plot) forh = 1, %, &, &.
We have only plotted eigenvalues with nonnegative imaginary part.
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2.4. A Numerical Illustration. This section deals with a numerical example which
serves to illustrate the convergence results derived in the previous section. For that
purpose we selected the simple scalar problem

@21) 5() =8y - ) - = ; G 0s¥<ly@-LicR

whose general solution is given by y(x) = e®*(y(0) — 1) + 1/(x + 1). Since y(0) = 1,
only the smooth solution component 1/(x + 1) has to be computed. If § < -1,
(2.27) is an example of a stiff problem where e®*y(0) represents the strongly varying
solution component. In order to give sufficient insight into the error behavior, which
has been predicted in Example 3, results will be shown for various choices of 4 and
8. We wish to emphasize that these results are not isolated. On the contrary, in a
qualitative sense they are valid for systems as well. We refer to [20], [21] for extensive
experiments with a known collection of stiff problems.

Table 2 contains results of method (2.3) for h =1/4,1/8,1/16, and § = -1, -5,
—-10, —100. Table 3 shows results for § = 1, 5, 10, 100. The following observations
are relevant. The lack of smoothness over the grid is clearly observable. However,
when we consider either even grid points, or odd ones, the error behaves smoothly.
Recall that we only have to compute the smooth solution of (2.27). For § < 0 the
algorithm nicely shows its order two convergence at even-numbered grid points.
Observe that after halving & the absolute error should decrease by a factor 4 because
the method is of order two and that —log,,(4) = 0.6. At odd grid points the order
behavior is much less pronounced as expected from Example 3. For § > 0 the
algorithm yields more or less comparable results, though the second order not always
shows up. This is because 8 comes too close to the spectrum of E/2h (cf. Figure 1).

TABLE 2
Results of method (2.3) for problem (2.27) with § < 0.
The table contains the value ~10g,, (absolute error).

5 1 35 -10 ~100

XA |1/4 1/8 1/16|1/4 1/8 1/16|1/4 1/8 1716 |1/4 1/8 1/16
1/16 4.56 3.76 3.83 454
2/16 318 3.42 301 3.56 315 3.70 402 4.60
3/16 354 3.51 3.69 4.69
4716|233 264 323|241 291 348 |263 315 372 [3.58 418 478
5/16 3.39 352 3.78 487
6/16 277 315 297 352 326 3.84 434 495
7/16 3.34 3.60 391 5.03
8/16|1.96 253 312 |244 300 3.58 |2.78 337 397 [388 450 5.10
9/16 334 373 4.07 517
10/16 276 3.10 324 365 357 4.09 464 524
11/16 3.36 3.94 4.28 531
12/16 | 225 251 3.10 [ 298 3.07 3.67 [3.33 350 412 420 476 537
13/16 341 4.49 5.03 5.43
14/16 286 3.10 420 3.62 400 3.96 514 5.44
15/16 3.48 410 405 5.61
16/16 | 1.94 251 311 |235 291 349 |2.57 305 3.59 |3.46 381 416
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TABLE 3

Results of method (2.3) for problem (2.27) with 8 > 0.
The table contains the values ~log,, ( absolute error).

5 1 3 10 100
N~ |1/4 1/8 1/16|1/4 1/8 1/16|1/4 1,8 1/16|1/4 1/8 1/16
1/16 2.96 3.07 3.42 4.49
2/16 243 361 262 3.83 295 402 3.99 463
3/16 3.11 3.20 3.70 472
4/161.95 281 340 |220 327 352 |2.54 345 401 |357 421 481
5/16 3.28 321 3.92 4.89
6/16 276 331 284 328 339 407 437 497
7/16 3.49 3.09 4.04 5.05
8/16|2.11 266 324 |264 291 304 |[3.00 356 408 |391 452 512
9/16 3.81 2.89 401 519
10/16 338 3.0 265 278 348 391 466 5.26
11/16 5.20 2.65 3.74 5.33
12/16 | 3.06 258 3.16 |225 246 252 |2.83 327 3.54 |414 478 539
13/16 3.88 239 331 5.44
14/16 318 312 221 226 290 3.06 472 543
15/16 3.58 213 2.81 5.00
16/16 197 250 309 [1.88 197 200 | 230 248 256 |343 3.75 4.03

3. A Variational Approach.
3.1. Preliminaries. We consider nonlinear systems of ODE’s

(3.1) U=F(t,U), 0<t<T,U(-)eR" U(0) prescribed.

We first make a transformation of this equation to a more suitable form. In
problems to be considered, there may exist positive stiffness parameters ¢;, such that
parts of F and the corresponding parts of the Jacobian matrix dF/3U are un-
bounded as O(e;'), e, > 0. We then multiply the corresponding equations by this
parameter to get

(3.2) eU=F(,U), 0<t<T,

where ¢ is a diagonal matrix with entries ¢;,, 0 < &€ < ¢; < 1, and F and 9F/9U are
bounded with respect to . A typical example is given by F(t,U) = AU + C

-1800 900 [0
1 2 1 0
14‘. = : . * . ) . . s é = E
1 =2 1 1o
1000 2000 1000

found in Enright et al. [8]. Here ¢ = diag(sls, 1,...,1, 7o) is an obvious choice. In
more general problems we may have to multiply by a more general positive-definite
matrix ¢, in order to get a bounded F and dF/0U. We further assume that F satisfies

(33) (F(1,U)=F(,V),U-V)<p()|U- V| YU,V eR" >0,
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where p: [0, T] — R is at least piecewise continuous and independent of ¢ and
p(1) < —py, t =ty = 0, py > 0. Further ||V|| = (V,V)'/2, where (-,-) is the inner
product in R™. As is well-known and easily seen, this means that, if U, V' are two
solutions of (3.2) corresponding to different initial values, then

;5,(8(’] V), U-V)=(F(t,U)=F(1,V),U~ V)

2
<pOIU-VI" <p()(e(U=-V),U=V), 121,

SO
[0(s) = VI < exp( [ 20(s) ds ) Ut0) = V(1o

2
<lU(te) = V().  to<t<T,

where ||V]|, = (¢V, V)72 This means that the system is contractive for ¢ > ¢, if
condition (3.3) holds. We further assume that F is Lipschitz continuous, i.e., there
exists a constant C such that

(3.4) |F(¢:,U) — F(¢,V)||< C|U- V| VYU,V eR™

In the initial phase (0, ¢,), the system does not have to be contractive, i.e., the
eigenvalues of the Jacobian may have positive real parts. In this interval we may
choose to use a step-by-step method with very small step sizes, if it is of importance
to follow the transients.

3.2. The Galerkin Method. We first describe the global Galerkin method to be used
in the interval (to, T). We divide this interval into a number of subintervals

ti_1, 1), i=12,...,N, where ty = T. The length of the intervals, ¢, — #,_,, may
vary smoothly w1th some function h(t, ) but for ease of presentation, we assume that
the intervals have equal length, i.e., ¢, =h,i=1,2,...,N. We consider each
interval as an element on which we place some nodal pomts, t;»J=01,...,p,and
t,;=1t; + §h, where §; are the Lobatto quadrature points which satisfy 0 = §, < §;

§ 1, and § + £ = 1. Hence the endpoints of the interval are always
nodal points and (if p > 1) we choose also p — 1 disjoint nodal pomts in the interior
of each element.

To each nodal point we associate 2 basis function ¢, ;. The basis functions may be
exponential or trigonometric functions and may also be discontinuous, but.in this
paper we only consider the most common choice where they are continuous and
polynomials over each element. Basis functions corresponding to interior nodes have
support only in the element to which they belong, and those corresponding to
endpoints have support over the two adjacent elements (except those at ¢, and at ).
The number of nodal points in each closed interval then equals the degree p of the
polynomial plus one.

Let S, be the subspace of test functions which are zero at 1, i.e.,

S, =SPAN{¢, ,,i=0,1,...,.N—1,j=1,2,...,p}.
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Let
T . m
a(U;V)Ej (U — F(t,U),V)dt, U Vel[H(t,T)]",
o

where H(¢,, T) is the first-order Sobolev space of functions with square-integrable
derivatives. To get an approximation U of the solution of (3.2), we take a test
function (vectorial function) V' = ¢!’), and multiply the equation with ¥ to get, after
integration,

a(U; l7)) = [ (e0 = F(2,0), 6}7)) dt = 0,
(3.5a) fi1
j=0,i=1,2,...,N-1,

a(s alr)) = [**" (U~ F(1,0), 8}7)) dt = 0,
(3.5b) ;
j= 192"'-’p - l,l = 0,1,..v,N_ 1.

Attty =T, we get

(3.5¢) a(0; 94%) = [ (U - F(1,0),8(}h) dt = 0.

In-1

Here we choose in turn ¢”) = ¢, je,, where ¢, ; is the corresponding scalar basis
function and e, the rth coordmate vector. This defines the Galerkin approximation
U corresponding to S, where

N-1 p
U=U(ty)poo+ X L di ¢, d,;€R",

i=0 j=1

i.e., we have imposed the essential boundary condition at ¢,,. Clearly,
a(U;V)=0 VVe [H' (4, T)]"
We then get from (3.5a)
a(U; V) —a(0; V) = j (elU - U)-[F(t,U) — F(¢,0)],V) dr =
(3.6) fi-1
V=9¢l1j=0,i=12,....,N-1,r=12,..,m,

and similarly for (3.5b, c).
To estimate the Galerkin discretization error U — U, we let U, € S, be the
interpolantto Uon (¢, ;},j = 0,1,2,...,p,i = 0,1,...,N — 1, and we write

U-U=n-86,
where n = U — U is the interpolation error and

0=-U+U+n=0U-U,
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Note that 0 € S‘,,. Assuming that the solution U is sufficiently smooth, from the
interpolation error expansion in integral form we get the usual Sobolev norm
estimates

[T 10— Ul de < cone+d [T Ul ae,
1 o

(3.7)
[T10 = Gl ar < co [T 01,
1o to

for the interpolation error. Here,

2 T
|l =7 X

o k=0
is the norm in the Sobolev space H?*!(t,, T).

THEOREM 6. Let U be the solution of (3.2) where (3.3), (3.4) are satisfied. Then the
Galerkin solution U, in the space of piecewise polynomial continuous functions of degree
D, defined by (3.5a, b, c) satisfies

- 2 2 1/2
WU = Ol = o(h?**){lleUllp+2 + U1}~ k=0,

wherev=1ifp=1,1>v> Yifp=23,5,... andv = 0 if p is even, and
1 T 2
W11 = 3 (7(7), V(7)) = [ oIV ()] .
0

(Note that this estimate implies both a least-square estimate as well as a pointwise
estimate at the endpoint of the interval.)

For a proof, see [3].

3.3. Difference Schemes. In order to get a fully discretized scheme we have to use
numerical quadrature, which results in various difference schemes. We shall consider
this only for the case p = 1. Then ¢, , = ¢, are the usual hat functions and there are
no interior nodes. With

N
U= U(ty)do+ X U,

i=1
(3.5a) and (3.5c) imply

~ ~ (7 ~ ~ ~
e(Upy = O) =2 F(6, 0101 + Uy + Usrn) 9,41,
iy

(3.8) i=1,2,....N—1,
~ ~. t ~ ~
e(Uy— Uy_y) = fN F(t,Uy_19n_1 + Uydy)opydt.

IN-1

We call this the generalized midpoint rule difference scheme. Let F, = F(t,U N, - If
we use numerical integration by the trapezoidal rule, i.e.,

[ Foudt = 3HIE 19,(t) + Fo(1)] = 3hE,

i—1
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we recover the difference method (2.1), (2.2). As we know, this scheme is of O(h?),
see Section 2.3. We consider now a more accurate difference scheme which we may
derive from (3.8). For this purpose let

1
F(1) = 5UE+ Fl+ (1= 04 5) 5 (E=Fo). <<,

except that for the last formula in (3.8) we use
F(t)=3[Fy_ + Fyl, tyy<t<ity.

Then

[" F)s,di=2(F 4 F)+ (k- F) = 2(F_, +2F),
, =7 Tk 6

i-1

and similarly

[ F(0)gdt = 2 (. + 2F).

i

Hence, the generalized midpoint rule (3.8) takes the form

5((7i+1_ (7,--1)=§(1‘".»_1+4E+E+1), i=12,...,N—-1,
(3.9) o ,
8(UN - UN—I) = E(FN—I + FN)'

We notice that this is a combination of the Simpson and trapezoidal rules.

For this combination, numerical tests (see Tables 4 and 5) indicate very accurate
results. Note that already on a very coarse mesh (A = %) the accuracy is high. For
& < 0 (Table 4), the order of convergence seems to be = 3.5.

Finally some remarks about methods for the solution of the algebraic systems.
These have block-tridiagonal form. If we use a special starting scheme for the
calculation of U;, we may use a “shooting method” for the solution of (3.1), i.e.,

U'+1= ~i—1+2hF(ti’l~]i)’ i=1’2,----

1

This is, of course, nothing but the two-step midpoint rule, which, as is well-known, is
unstable for stiff problems (and of order O(4?) for nonstiff problems). If the order
of the systems (3.1, 3.2) is large and dF/9U is sparse we may, however, apply an
iterative method, which would preserve sparsity. There exist methods, such as
preconditioned generalized conjugate gradient methods, for which convergence of
the iterations is fast; see, for instance, Axelsson [2], and Hageman and Young [11].

Hence the large size of the matrices which arise should not be detrimental for the
application of the methods described in this paper.

From the analyses and the numerical experiments it is concluded that the global
method is a robust reliable method for both stiff systems and systems with
increasing fundamental solutions. It is particularly efficient when moderate accuracy
is desired. It does not seem to be very sensitive to stiffness.
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In the case of high accuracy, large or nonlinear systems, the efficiency depends on

A. O. H. AXELSSON AND J. G. VERWER

the availability of good algebraic systems solvers.

TABLE 4
Results of method (3.9) for problem (2.27) with § < 0.
The table contains the value —log,, (absolute error).

] -1 -5 -10 -100
Y| 1/4 1/8 1/16|1/4 1/8 1/16|1/4 1,8 1/16|1/4 1/8 1/16
1/16 5.28 5.98 7.08 7.05
2/16 444 5389 552 592 537 6.17 595 17.30
3/16 5.34 6.14 6.96 7.42
4/1613.73 459 569 {469 472 578 434 502 6.13 [503 642 7.56
5/16 5.38 : 6.04 6.78 7.69
6/16 457 5.59 521 572 5.74 6.09 6.69 7.80
7/16 5.39 5.89 6.29 7.94
8/16|3.40 447 5.53 |3.62 466 5.66 |339 498 6.00 |519 6.54 798
9/16 5.40 5.75 6.03 8.41
10/16 458 5.49 479 5.60 498 5.86 644 7.84
11/16 5.39 5.63 5.82 1.75
12/16 {3.77 443 546 |3.73 456 5.53 |3.84 474 570 |4.76 585 722
13/16 5.39 5.53 5.64 6.85
14/16 454 5.43 455 5.45 461 553 539 6.42
15/16 5.38 5.43 5.45 6.02
16/16 | 3.36 440 541 |346 442 537 |3.52 443 536 |421 490 561
TABLE 5
Results of method (3.9) for problem (2.27) with § > 0.
The table contains the value -log,, (absolute error).
8 1 5 10 100
S| 1/4 1/8 1/16|1/4 1/8 1/16|1/4 1,8 1/16|1/4 1/8 1/16
1/16 4.96 4.59 5.98 6.99
2/16 4.08 7.70 408 4.96 493 1757 592 7.49
3/16 497 444 6.12 7.40
4/1613.23 516 633 |345 421 453 |396 585 6.73 1499 6.63 7.64
5/16 4.96 4.24 6.03 1771
6/16 410 594 3.75 420 521 6.02 6.57 17.86
7/16 4.95 4.00 5.65 7.95
8/16(3.72 6.84 5.69 |343 356 391 [472 540 5.44 |536 683 8.07
9/16 4.93 3.74 5.15 8.17
10/16 409 5.52 326 3.62 469 4.89 720 8.27
11/16 4.90 3.48% 4.62 8.40
12/163.31 493 538 [2.77 3.00 335 {398 419 435 (479 610 8.8
13/16 4.88 3.21 4.07 7.97
14/16 405 527 272 3.08 364 3.80 544 7.00
15/16 4.84 2.94 3.53 6.15
16/16 | 440 456 5.16 |224 245 280 |2.79 3.09 3.26 [413 474 528
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