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Constructing Integral Lattices 
With Prescribed Minimum. I 

By W. Plesken and M. Pohst 

Abstract. Methods for computing integral laminated lattices with prescribed minimum are 
developed. Laminating is a process of stacking layers of an (n - 1)-dimensional lattice as 
densely as possible to obtain an n-dimensional lattice. Our side conditions are: All scalar 
products of lattice vectors are rational integers, and all lattices are generated by vectors of 
prescribed minimum (square) length et. For m = 3 all such lattices are determined. 

1. Introduction. An integral lattice of dimension n is a free Abelian group A 
contained in the Euclidean space RW such that A is generated by n linearly 
independent vectors with integral scalar products. Important invariants of A are the 
natural numbers m, d: 

(1.1) m = m(A):= min{(x,x)lx e A,x # O}, 

the minimum (square-) length of A; the discriminant d(A) is defined by 

(1.2) d = d(A):= det((ei,e1)) ,iA<in 

for some (Z-) basis el,... ,e, of A. 
For fixed m e N we consider sequences (A )On, A1 c A2 c of n-dimen- 

sional integral lattices An = An(m) subject to the following conditions: 
(i) m(A) = m for all n E N; 

(ii) An is generated by vectors x of length m = (x, x) = lix II; 
(iii) if An-1 is given, An has minimal discriminant among all n-dimensional 

integral lattices An containing An -1 and satisfying (i) and (ii). 
For this lattice construction J. Thompson conjectured (in a private communication 

to the first author) that for each sequence (An)nlEN with the properties just 
described, there is a dimension n E N such that An is unimodular (i.e., d(An) = 1). 

Conway and Sloane [2] suggest a similar construction of (not necessarily integral) 
lattices An, which they call laminated lattices. In their construction AO is the trivial 
lattice, and for n E N they chose among all n-dimensional lattices with minimum 
length 4, which contain at least one sublattice An_, those of minimal discriminant. 
Any such lattice is called a laminated lattice An. It turns out that all laminated 
lattices up to dimension n = 24 are integral and generated by vectors of length 4. If 
one also imposes these two conditions-namely, An to be integral and generated by 
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vectors of minimum length m (m E N rather than 4)-one could speak about an 
arithmetic laminating process, whereas the construction of Conway and Sloane is 
rather a geometric laminating process. The arithmetic laminating process is a slightly 
more restricted construction than the one given at the beginning of this introduction. 
Namely, it happens that some sequences of laminated lattices terminate (e.g., in 
dimensions n = 13 for m = 4 [2], and n = 14 for m = 3 (see Section 4 of this 
paper)). Therefore we call the lattices of the construction above, with properties 
(i)-(iii), weakly (arithmetic) laminated. In this paper the weakly laminated lattices of 
minimum length m = 3 are classified. 

In Section 2 the process of passing from An to An+1 in a sequence of weakly 
laminated lattices is discussed. As a result of this analysis, three computational tasks 
must be solved for performing the necessary (computer) calculations: Find a vector 
of minimum length m(x + An) in a coset x + A, x E RIV\ An; find automor- 
phisms (or even the full automorphism group) of a lattice An; and decide if two 
lattices are isometric. Solutions of these problems are given in Section 3. Finally, in 
Section 4, we list the results for minimum m = 3. Results for other minima (m = 

4, 5) and for lattices over maximal orders of number fields will appear in a 
subsequent paper. 

We acknowledge with pleasure stimulating discussions with J. H. Conway and J. 
Thompson. In particular, we thank the referee for his careful reading of the 
manuscript. 

The extensive electronic computations were carried out on the CDC Cyber 76 of 
the Rechenzentrum of the Universitat zu Koln and on the CDC Cyber 175 of the 
Rechenzentrum of the RWTH Aachen. 

2. The Basic Construction. The following two remarks a priori restrict the 
possibilities for sequences (An),N of weakly laminated lattices with fixed minimum 
length m. 

(2.1) Remark. If An is unimodular for some n e N, then An+k = An k(k E N, 
I means orthogonal direct sum), and (ri ), N is again a sequence of weakly 
laminated lattices. 

Proof. Since An is unimodular, it has an orthogonal complement 1k in An+k 

(k e N) (Proposition 3.1 of Chapter 1 in [6]). The rest of the proof is straightfor- 
ward, since a vector of minimum length in An?k is either in An or in Fk. ? 

(2.2) Remark. For all n E N the discriminants satisfy d(An,1) < d(An)m. In 
particular, there are only finitely many possibilities for A n+l 

Proof. A,? I Ze with (e, e) = m satisfies conditions (i) and (ii); hence, d(An+0) 
< d(A,, I Ze) = d(An)m. Now the second statement follows by reduction theory. 
LIr 

For instance, all integral lattices generated by vectors of length 2 are well-known. 
They are the so-called Witt lattices, i.e., orthogonal direct sums of root lattices of 

typeAAn(n > 1), D,, (n > 4), E6, E7,E8 with discriminantsd(An) = n + 1, d(Dn) = 4, 
d(E6) = 3, d(E7) = 2, d(E8) = 1, respectively. With this information one easily 
verifies that, in case m = 2, there is-up to isometry-exactly one sequence of 

weakly laminated lattices, namely: A1, A2 A3, D4, D5,E6. E7,E8, E8 F Al,.... 
For m > 3 the situation is much more complicated. Therefore we need to analyze 

the transition from An to A +1 in some detail. The orthogonal projection xp of a 



INTEGRAL LATTICES WITH PRESCRIBED MINIMUM. I 211 

vector x E An+1 into RAn = 1'7 satisfies (xP, An) c Z. This leads to the dual 
lattice A' of A"- 

For an n-dimensional integral lattice r, the dual lattice is given by rF {x E Rn I 
x, r) c Z}. If el,...,en is a basis of r, the dual basis er,...,e,:, defined by 

(e,, e) = ,ij (1 < i, j < n), is a Z-basis of rF. In particular, d(r) = (r# : r). 
More precisely, the isomorphism type of the finite Abelian group rF/f is described 
by the elementary divisors of the Gram matrix ((ei,)e1))1<iin These elementary 
divisors are a considerable refinement of the discriminant and turn out to be useful 
invariants of r. 

The candidates in A# for the orthogonal projections of vectors x of A"+? of 
minimum length m can easily be characterized. 

(2.3) LEMMA. Let x E A,1+1 be of minimum length m. Then its orthogonal projection 
x into RA,1 is in A, and of shortest length m(xp + An) in the residue class xp + An. 

Proof. Assume that there is y E An such that xp + y is of shorter length than xp. 
Then x + y is of shorter length than x in An+ 1, which is a contradiction. OJ 

As a consequence of this elementary lemma, the number of candidates for An+1 

contained in Rhl`l is bounded by the crude estimate 2d(AI). Though this bound can 
easily be improved, it is unrealistic to take it as a starting point for the computa- 
tions. It is much more effective to proceed as follows. 

We adjoin just one additional basis vector x E R+ 1 \ RA n of minimum length m 
to A,1 subject to the conditions (i), (ii). Among the obtained lattices, we select one of 
minimal discriminant. This is done by choosing x such that m(xp + An) is maximal 
among the shortest lengths of all residue classes + An of A#/A,. Namely, 
Pythagoras' theorem yields 

(2.4) LEMMA. Let x E Rn+ 1 \ RA n. Then 

d(An @1 Zx) = d(AO)(Ix1 - iixpii). 

(2.5) PROPOSITION. Let A,n be an n-dimensional integral lattice, with d(An) + 1, 
satisfying (i) and (ii), and let m := max{m(x + An) I x E A#n \ An } < m. For each 
residue class X = x + A, of A#/A,,, with llxii = m(X) = mi-, let A"(X) be the 
(n + 1)-dimensional lattice generated by A, and a vector x E R` 1\RA, with 
orthogonal projection xp - x and jlkjl = m. (Note that An(X) is uniquely defined up to 
an orthogonal reflection.) 

Then A is among the lattices A,(X), and, conversely, each An(X) can be chosen 
as A,,+1. The discriminant of An +1 is given byd(An+ 1) = d(A n)(m-m-). 

Proof. It suffices to prove that each A n is obtained by adjoining one vector 
y E R"+ \R A,n of minimum length m to A"n. Namely, in this case Lemma (2.4) 
implies Proposition (2.5). 

We first show that we can always obtain A,+1 by adjoining one vector y E 
R"+1 \ RA,n of length IlyII = s > m. This is tantamount to RA,n n An +1 = A. 
But RAn nA ,,+ is contained in A#, and our hypothesis on A#/A, implies 
RA,, n A,+l = A, because of m(A,+l) = m- 

Clearly, we can choose this vector y such that m(yp + A") = IIYPII- Since An+ 

satisfies condition (iii), we have 

d(An+1) = d(An)(S - IIYpII) < d(An(X)) = d(An)(m-m) 
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for X e A'/An with m(X) = mi. Hence, 

S = d(A,,?1)/d(An) + IIYPIl < m- + IlYplI < M, 

and therefore the additional generator y is of length m and has a projection of length 

In the above construction of A,+, from A,n the elementary divisors of the 
corresponding Gram matrices cannot change drastically. 

(2.6) Remark. Under the hypothesis of (2.5) there is a finite Abelian group U with 
embeddings a,: U -* A#/Ai (i = n, n + 1) such that (A'/Ai)/ai(U) is cyclic for 

= n, n + 1. 
Proof. Let An+1 = An ( Zi and denote the orthogonal projection ip of x into A. 

by x. The sublattice Fr= An + Zx of A` contains A. such that F/A. is cyclic. Its 
dual lattice 

r 
- {y E RI (yr,FcZ} 

has the property 

(*) RAn n An+1 = r . 

Let U:= rP/A,,, an be the natural embedding of U into A-/An and a,+,: 
U -* A+l/An+1: z + An - z + An+ , which is an embedding by the isomorphism 
theorem. We conclude that A#/an(U) = A#/I# is isomorphic to the cyclic group 
P/A,1 (by duality), and A#n+/an+?(U) is cyclic, since A#+1/P# is cyclic by (*). C 

In order to reduce the number of residue classes of A#/An to be investigated 
according to (2.5), it is a great advantage to know a big subgroup of the automor- 
phism group Aut(An), defined as the group of all orthogonal transformations of RW 
mapping A. onto itself. Obviously, m(x + An) = m(a(x) + An) for all x E A# and 
a E Aut( An). Moreover, one easily verifies the following remark. 

(2.7) Remark. Under the assumption and in the notation of (2.5), An(X) is 
isometric to An( X') for two residue classes X, X' of A#/An if X, X' are in the same 
orbit of A#/An under Aut(A.). 

However, we note that An(X) and An(X') may still be isometric without X, X' 
lying in the same orbit of A#/An under Aut(An). To understand this phenomenon, 
the following definition is helpful. 

(2.8) Definition. Let A and F be lattices. Two (isometric) embeddings a,: F -r A 
(i = 1, 2) are said to be of the same type if there are a E Aut(A) and ,B E Aut(F) 
such that alft = aa2. The number of different types of embeddings is called the 
embedding number q( F, A). 

For example, if P is a one-dimensional lattice generated by a vector of length 1, 
then 7(F, A) is equal to the number of orbits of Aut(A) on the vectors of length I in 
A. We use Definition (2.8) in the situation of (2.5). 

(2.9) PROPOSITION. Under the hypothesis of (2.5) let X e A#/An with m(X) = m-, 
and set L(X):= {Y E A#/A Imm(Y) = u and An(Y) isometric to A,n(X)}. Then 
the number of orbits of Aut(An) on L(X) is equal to the embedding number 



INTEGRAL LATTICES WITH PRESCRIBED MINIMUM. I 213 

Proof. We abbreviate An(X) by A,,,,. Clearly, -q(A", A,,,1) is equal to the 
number of orbits of Aut(An+I) on the set S of all sublattices of An+1 which are 
isometric to An. We define a mapping P from L(X) into S; in the following way. 
For Y E L(X) let cy be a fixed isometry, cy: An(Y) -* An+l, and set P(Y) = 

Fy:= cry(An). (An is viewed as a sublattice of An(Y).) We claim that I induces a 
bijection + between the set L(X) of orbits of L(X) under Aut(An) and the set (25 of 
orbits of 5 under Aut(An+1). Note that ' does not depend on the choice of ay, 
although ' itself does. 

Next we show that + is well-defined. Let Y, Z E L(X) and T E Aut(An) such 
that Y = TZ. We extend T to an isometry X between An(Y) and An(Z) in the 

- -1* obvious way. Then ayrz is an automorphism of A which maps rz onto ry. 
Hence, + is well-defined. 

To prove the injectivity of +, let ry, rz e 25, and let a be an automorphism of 
A,+ I mapping rz onto ry. i:= a-laaz is an isometry of A"(Z) onto A"(Y) which 

maps the sublattice An = az-1(Fz) of An(Z) onto the sublattice An = aY1(FY) of 
A,,( Y). Hence, i induces an automorphism T of An mapping Z onto Y. 

To prove the surjectivity of +, let F E e. Analogous to the proof of (2.5), one 
sees An+1 = r) 3z for some y E A"+ 1 of length m. Let y' E r' be the orthogonal 
projection of y into Rr. We choose y E A', which corresponds to y' by some 
isometry between r and A,7. Then F is in the orbit of Jy, with Y= y + An, under 
the action of Aut(A.). n) 

3. Computational Methods. As a consequence of Section 2, there are three main 
computational tasks to solve: 

(a) determine a vector of minimum length in a residue class of At/An; 
(b) determine the automorphism group of A, (and its orbits on A'/A,); 
(c) decide whether two lattices An, An are isometric and, in case they are, find an 

isometry. 
Ad(a). We apply the methods of [7], which are based on quadratic supplementing 

of positive-definite quadratic forms. The amount of necessary computation time and 
storage is negligible compared to (b) and (c). 

Ad(b). All lattices A under consideration are generated by the set M of vectors of 
minimum length (property (ii)). Therefore, Aut(A) can be identified with those 
permutations a of M which satisfy (a(x), a(y)) = (x,y) for all x, y E M (and, 
hence, also a(-x) = -a(x)). An automorphism a of A is determined by the image 
(a (e1),... ,a(en)) of some basis B = (e1,. . .,en) of A. Our computations have shown 
that we can always choose a suitable basis B as a subset of M (for minimum length 
m = 3). This assumption is used in our computations, though it is not essential. 

The first problem is to restrict the number of candidates for a(ei) in M (1 < i < n). 
Therefore, we define the type t(x) of x E M by 

(3.1) t(x):= (t(x,O),...,t(x, [m/2j)), 

where t(x, i):= I{y E MI K(x,y)l = i} I (0 < i < m/2) and L denotes the floor 
function. Note, t(x, i) = 0 for m/2 < i < m. All vectors x E M which are of the 
same type as a E M belong to the equivalence class 

(3.2) T(a):= {x E= MI t(x) = t(a)}. 
We note that T(a) is a union of orbits of M under the action of Aut(A). 
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To find an automorphism a of A we compute ai E M (1 < i < n) subject to the 
condition (ai, aj) = (ei, ej) (1 < j < i); then a is given by a: ei -* ai (1 S i < n). 
Unfortunately, not every r-tuple al,...,ar (1 < r < n) of vectors of M satisfying 

(a,,aj) = (ei,ej) (1 < i < j < r) can be extended to an n-tuple a1,... ,an corre- 
sponding to an automorphism of A. The necessary backtrack search can be 
improved in two ways. Firstly, we choose a more suitable order of succession 

ei,,...,e ie of the basis vectors which makes the number of candidates for ai, for 
given ai,... , ai (1 < r < n) as small as possible. Secondly, we give another neces- 
sary condition for ai which at least guarantees the existence of a, (1 < r < n). 
The device for this improvement is called the fingerprint of A with respect to the 
basis el,...,en. It is defined as an (n - 1) x n integral matrix C, the rows of which 
can be computed inductively. 

(3.3) Definition. Let A be a lattice with basis e e,...,en of vectors of minimum 
length. We define a sequence (ill. . i"n) (new order of basis vectors) and set C(ij, k) 
(1 < k < n, 1 < j < n - 1)inductivelyby: 

Let il be the smallest index such that IT(ei )I < IT(ek)I (1 < k S n). 
If ill . . , i1 are determined (1 < j < n - 1), let 

0 fork e {il i} 

C{x kE T(ek)I(ei,,ek) = (ei,, x) for v = 1,...,j otherwise. 

In case j < n - 1 let i+ 1 be the smallest index such that IC(ij, ij11)I is minimal 
among all IC(ij, k)j > 0. For j = n - 1 let in be the remaining element of 
{1,. ..,n}\{i1,...,i,n1}. Then the fingerprint is the matrix C = (Cjk) E Z(n1)xn 

with cjk = JC(ij, k)l(1 < k < n,1 < j < n-1). 
With the fingerprint given, our procedure for computing an automorphism of A is 

as follows. Let O < r < n and ai,,. . . , ai e M satisfying (ai,,, ai) = (ei,, ee) (1 < i 
< v < r). The procedure decides whether there is an automorphism a in Aut(A) 
such that a(e,) = a, (1 < j < r), and, in case a exists, it computes a(eij) for 

j = r + l.,n . 

(3.4) Procedure for finding an automorphism a. 
Input. The fingerprint (cij) E Z(n-l)Xn the new ordering ....... i") obtained 

from it, and the sets T(ej) (1 < j < n). As an option we can prescribe the images of 
the first r basis vectors (O < r < n), which means adding ail,...,ai, satisfying 

(ai, a,) = (eiA, ei) (1 < IA < v < r), to the input. 
Output. Either vectors a, (1 < i < n) are printed such that a: ei * ai yields an 

automorphism, or "No solution" is printed in case there is no automorphism 
satisfying a(ej) = aj (1 < j < r). (The latter cannot occur in case r = 0.) 

Step 1 (Initialization). Set k *- r. 
Step 2 (Computation of candidates for 

aik+ 
). Let 

C( k, ij):= {xx E T(eij (a i, x) = (ei,, ei,) (1 < v p k)} 

(k < j n). For k + 1 < j < n, test whether each number IC(ik, ij)I coincides with 

CA,ij. If this is the case, compute C(ik, 'k+1) and go to Step 4. 
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Step 3 (Decrease k). Decrease k by 1 until either k < r-in which case "No 
solution" is printed and the procedure stops-or C(ik, ik+l) i 0. 

Step 4 (Increase k). Choose ai .l E C(ik, 4k 1) and replace C(ik, 'k+1) by 
C(i, 'kil)\ {a+a, } For k + 1 = n, print aj (1 < j < n) and terminate. Otherwise 
set k -- k + 1 and return to Step 2. 

Remarks concerning the implementation. (1) For the fingerprint and the computa- 
tion of an automorphism, a list M of the shortest vectors in A is needed. M is 
computed by the methods of [7]. One vector x for each pair + x E M is stored in a 
very compact way by using the scalar products of x with the basis vectors el,...,en 
which belong to the set (0, + 1, + 2,. . ., ? [ m/2J, min. (In case m < 7 we need only 
one computer word (consisting of 60 bits on the CDC-machines used) for one vector 
in dimensions < 20.) Also the inner products of x with all vectors of M (to 
determine T(x)) are available rather quickly, using the inverse of the Gram matrix of 
e1,... , e,e. We note that this matrix is needed anyway for the investigation of the 
residue classes of Al/A. 

(2) If the number of vectors is large, we rearrange M according to the types of the 
vectors in M. 

(3) It is obvious that the procedure is flexible enough so that not only the identity 
is generated (for example, by a suitable choice of aik+1 in Step 4). 

The procedure of computing automorphisms is designed such that we can find 
generators for the full automorphism group of the lattrice An by using permutation 
group routines which perform the following three tasks: 

(a) Determine the order of a permutation group given by generators. 
(b) Find generators for stabilizers of points. 
(c) Compute orbits of permutation groups given by generators. 
For our computations we made use of CAYLEY [1]. 
The fingerprint C already yields an upper bound for the order of Aut(An), 

namely, 

(3.5) IAut(A,,)I < H c1,1+= b, 

since c111 is an upper bound for the orbit containing e11 under the stabilizer of 
(ei,,. . . ,e,) in Aut(A"). 

We determine IAut(An) I and generators for Aut(An) in several steps. First we 
randomly compute two or more automorphisms and check whether they generate a 
group of order b. If this is not the case, let U = U0 be the group they generate, and 
let Uj be the stabilizer of (ejl,.. . ,e1j) in U. Set f = -1. We determine the smallest 
indexj > f with orbit length IUj(e ij+)d < cij,1. We check with our procedure to see if 
there is an automorphism stabilizing eil,... ,e i and mapping eij l onto the first 
element of C(i;, ij+1) which is not in the orbit Uj(ei,j+). If there is such an 
automorphism a, then replace U by (U, a) and start over again. If not, replace f by 
j. Repeating this process until noj, with f < j < n, exists such that IUj(ei, ) < c1, , 

we obtain the full automorphism group of An. 
We note that similar methods of building up generating sets of automorphism 

groups, for instance of finite groups and special combinatorial structures, were also 
developed in [51 (also used in CAYLEY [1]) and (8]. 
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(3.6) Example. Let the minimum length be m = 3 and the dimension n = 8. A 
typical Gram matrix obtained by our computations is 

3 1 -1 1 1 1 -1 1 
1 3 1 1 1 1 -1 0 

-1 1 3 1 -1 1 1 -1 
1 1 1 3 1 1 0 1 
1 1 -1 1 3 0 -1 1 
1 1 1 1 0 3 1 1 

-1 -1 1 0 -1 1 3 0 
1 0 -1 1 1 1 0 3 

There are-up to sign-20 shortest vectors in the corresponding lattice listed in the 
standard coordinates: 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

xi1 0 1 0 -1 0 1 0 0 0 -1 0 1 0 0 0 1 0 0 0 
0 1 -1 0 00-1 0 0-1 0 0 0 1 1 0 0 0 0 0 
O 0 1 1 -1 0 1 1 0 1 -1 0 0 0 -1 0 1 1 1 0 
0 0 O 0 1 1 -1 -1 0 0 0 0 0 0 0 0 -1 0 -1 0 
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 -1 -1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 111. 

These vectors belong to three equivalence classes of different types: 

T(x1) = {? X1 ?X4}, t(xl) = (0, 38); 

T(X2) = +X2 ?X3,? X5? X6 ?X11? X12}, t(X2) =(8, 30); 

T(x9) = {? xi I1 < i < 20, xi q T(xl) U T(x2)}, t(x9) = (12,26). 

The corresponding fingerprint matrix is 

0 6 1 6 12 6 12 12 
0 6 0 6 12 6 12 12 
0 0 0 4 4 4 4 4 
0 0 0 0 1 2 2 2 
0 0 0 0 0 2 2 2 
0 0 00 00 1 1 
0 0 00 00 0 1 

and therefore the new order of succession (il,.. ., i8) = (1,3,2,4,5,6,7,8). 
Our computer program easily produces the following matrices: 

l= (x4, X3 X1, -X5, -x9, -xll, -x16, -x20), 

a2 - (Xll -X11x4, X3 X13, -X5 X19, X7) 

a3 = (xl, x2, x4, X12, X15, -X5, -x9, X8), 

a4 = Io. 

al 2, a3, a4 generate the full automorphism group of the lattice of order 192 = 

4 - 1 6 * 4 * 1 * 2 * 1 1 (see fingerprint). C 
Determining the orbits of At/An under Aut(An) is straightforward. It hinges on 

finding compatible bases for An, An which can be obtained by diagonalizing the 
inverse of the Gram matrix. Since the computation of Aut(An) is time consuming 
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and done interactively, we usually work with a subgroup of Aut(A") which is 
constructed by machine alone. 

For this reason, and because the embedding numbers of An-1 into An can be 
greater than one, we also need a program which decides whether two n-dimensional 
lattices are isometric. 

Ad(c). Let An and An be n-dimensional lattices with the usual properties (i) and 
(ii) of the introduction. We first compare the following invariants: 

(i) elementary divisors of the Gram matrices, 
(ii) number of vectors of minimum length, 

(iii) types (and type frequencies) of the vectors of minimum length. 
We note that (i) and (ii) (but not the discriminant and (ii)) suffice to distinguish the 
lattices for m = 3 discussed in this paper. 

If all three invariants coincide, we try to construct an isometry by a slight 
modification of Procedure (3.4) for finding an automorphism. 

(i) Compute the fingerprint C of An with respect to a given bases el,.. . ,en. 
(ii) Compute the list Ml of shortest vectors of An (the shortest vectors of An can be 

deleted). 
(iii) Using the fingerprint C, construct an n-tuple (al,... , ia") of vectors of M with 

the same Gram matrix as e.,.. . , en by Procedure (3.4). (A slightly more complicated 
version of the procedure also states if there is no isometry.) 

Examples of isometries can be found in the next section. 

4. Results for m = 3. 

(4.1) THEOREM. (i) Each sequence of weakly laminated (integral) lattices for 
minimum m = 3 contains the unimodular lattice A23 = A23(3) with Gram matrix Q23 

(on page S5 of the supplements section). The possible sequences A1, A 2 ... A23 can be 
read off from Figure 1, in which the possible successors An 1 of An are those connected 
to A,, by a line. 

(ii) A sequence of weakly laminated (integral) lattices (A1)iEN for minimum m = 

is also a sequence of laminated lattices if it does not contain a lattice with A 14 or A'14 as 
orthogonal component. If it does contain a lattice with A14 or A'14 as orthogonal 
component, it yields only a finite sequence of laminated lattices stopping in the smallest 
dimension k- 23 + 14 (k E Z ") for which Ak .23 +14 contains A 14 or A'14 as orthogo- 
nal component. This exhausts all possibilities for sequences of laminated lattices. 

We remark that the embedding number of An in A" + 1 might be greater than one. 
The automorphism group of A23 is the direct product of (-Id) with the second 
Conway group . 2; its order is 21936537 - 11 - 23. 

Gram matrices of all lattices occurring in Figure 1 can be obtained from the Gram 
matrices Q23 Q9, and Q2 on pages S5 and S6 of the supplements section 
(described on pages S6 to S7). 

For each lattice Ai in Figure 1, additional information is given in Table 1 (pages 
S10 to Sll of the supplements section). In particular, we list 

(i) the discriminant d(A) factored into elementary divisors of a Gram matrix of 
A-i.e., the isomorphism type of A'/A; 
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A1 

A2 

A3 

4 

A5 

A6 

A7 

A8 

A9 

Alo wAl0 7\ a\b 
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12 
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A13 A13 

C 4 4a A 1 5 A 1 5 

A17A< 1 1t7 d A \ a Ae 1Af 
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A18 A1a: A18 l \b Al c d e ~~~~a 818 

19 A19 

A20 Ae Af 
' a A?I~ 

t21 
21 

A22 2 22 
I a 

A23 

FIGURE 1 

(ii) the lengths of the equivalence classes T(a) defined in (3.2) of vectors of 
minimum length in A. 

We computed the automorphism groups of the lattices Ai using Procedure (3.4) 
and CAYLEY [1] interactively up to dimension i = 18. 

Table 2 (pages S12 and S13 of the supplements section) lists the orders of the 
automorphism groups and the lengths of the orbits on M (compatible with Table 1). 
If the automorphism group is not solvable, the nonabelian composition factors are 
also given. 
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A5 

A6 K6 

A7 17 

A9 9 

A^10 

Ki2 A/ \, b 

Ia b 
W13 1 3 

K14 K14 Ia b 

'a Ilb K165 16 

Aa l 
At /017 

FIGuRu 2 

The lattice A23 is closely related to the Leech lattice L24. It can be derived from 
L24 as follows. Choose a vector xo of minimum length in L24. Let L'24 = 

{y E L241(xo y) 0 mod 2), and let 7T be the orthogonal projection of R24 = RL24 
onto (x0)'l . Then A23 'rr(L24). Therefore, this paper can be viewed as part of the 
internal study of the Leech lattice, although this was not clear in the beginning. 
Hence, it seems natural to investigate the connections between the lattices' of this 
paper and those determined by Conway and Sloane [2]. 

After rescaling their lattice Am' such that the minimum length becomes 4 (we 
denote this lattice by Am'), it contains a vector xo of length 4 having even scalar 
products with all other vectors of Alm '. Projecting Anm' and the sublattices of 
dimensions 1-12 given in [2] onto (xo) l , exactly yields our lattices up to dimension 
12. (The lattices in dimensions n > 13 do not contain such a vector xo (see also [3]).) 

Conway and Sloane [2] also discuss a second important sequence of sections of 
lattices (K-sequence). The 11-dimensional lattice in this sequence (rescaled as above) 
also contains a vector xo of length 4 having even scalar products with all other 
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vectors in the lattice. By orthogonal projections as above, we obtain lattices Ki 
generated by vectors of minimum length 3 (1 < i < 10) and Ki = Ai (1 < i < 5). As 
Conway pointed out, the discriminant of Klo is smaller than 256, the discriminant of 
Aa0 and A%O. This suggested the application of the arithmetic laminating process to 

Ki (6 < i < 10). 

The results are contained in Figure 2 and Tables 3, 4 (supplements section, pages 
S15 to S16). In Figure 2, the dotted lines mean inclusion without property (iii) of the 
introduction. For instance, K6 is contained in K7, but the laminating process leads to 
A 7instead. Both sequences, obtained by starting from K8, join with the main branch 
of Figure 1 in dimensions 17, 18, respectively. 

Gram matrices of the lattices occurring in Figure 2 can be obtained from the 
matrices Q17 and Q18 (cf. pages S13 to S14 in the supplements section). 

We note that the lattices K0 Ka 4, Ka5, K 6 have smaller discriminants than the 
lattices Ai in the corresponding dimensions and, therefore, yield denser sphere 
packings. The a-branch of the K-sequence also deserves attention for another reason. 
The elementary divisors of the Gram matrices of Ai and Aa23-i coincide for i = 1, 
2, ... , 6. This is a strong indication that the vectors of 23 which are orthogonal to 
A1 (with respect to some embedding) form a lattice isometric to a3a- (1 < i < 6) 
(cf. [2, Theorem 4]). Among the various lattices A23 - (i = 7, 8, 9) there is none with 
A# - i/A2- = A#/Ai. However, Ka# il/K a -i 

- A#/Ai for i = 7, 8, 9. Also the 
elementary divisors of the Gram matrices of the lattices A23-i which contain Af5 are 
equal to those of Ai(4) for i = 1, 2,... , 8. The same interpretation as above is forced 
upon one's mind. However, we do not have an explanation for the isomorphism of 

A#-i/A12A with A#2+i/A12+i for certain of the lattices A12+i, i = 0, 1, 2, 3, 4 (see 
[3] for proofs of some of these and related statements). The lattices A7 and Af5 are 
closely related to the Hamming codes of lengths 7, 15, respectively: They can be 
embedded into the orthogonal lattices Z7, Z15 with standard scalar product such that 
they contain 2Z7, 2Z15, and correspond to the dual of the Hamming code in 
Z7/2Z7, Z15/2Z15, respectively (see also [4]). Whereas A7 is contained in several 
orthogonal lattices which are permuted by Aut(A7), there is only one orthogonal 
superlattice for Af5 in RAf5, from which it is immediate that Aut(Af{5) is an 
extension of C25 by GL(4,2). The lattices Ai not contained in Af5 cannot be 
embedded into orthogonal lattices. 

Finally, we remark that the automorphism group of Klo is isomorphic to C2 x 

W( E6)'. It is the first example known to us of an irreducible maximal finite 
subgroup of GL(n, Z) that is not absolutely irreducible, which answers a question of 
H. Zassenhaus. 
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