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Computation of the Class Number and Class Group 
of a Complex Cubic Field 

By G. Dueck and H. C. Williams* 

Abstract. Let h and G be, respectively, the class number and the class group of a complex 
cubic field of discriminant A. A method is described which makes use of recent ideas of 
Lenstra and Schoof to develop fast algorithms for finding h and G. Under certain Riemann 
hypotheses it is shown that these algorithms will compute h in O(1A 1/5 ? +) elementary 
operations and G in O(1A 1/4 +?) elementary operations. Finally, the results of running some 

computer programs to determine h and G for all pure cubic fields.9(VDi), with 2 S D < 30,000, 
are summarized. 

1. Introduction. Let ,X be any algebraic number field of discriminant A; let G be 
the class group of Xk, and h = IGI be the class number of Yk. Since G is a finite 
Abelian group, it can be written as the direct product 

G = C(m1) X C(m2) X ... X C(mg), 

where C(m1) is a cyclic group of order mi (i = 1, 2, 3,. .. ,g). h = m1m2m3 ... mg, 
and m1 divides m whenever i > j. If n divides mr and n does not divide mr?l, we say 
that r,, = r is the n-rank of G. Clearly, G is noncyclic whenever r, > 2 for some n. 

Recently, Lenstra [8] and Schoof [10] have extended the ideas of Shanks [11], [12] 
to develop fast algorithms for computing h and G when Xk is a quadratic field.** 
Under certain Riemann hypotheses they show that their algorithms will compute h 
in 0(1 A11/5 + E) elementary operations. By an elementary operation we mean a single 
Boolean operation on either a single binary bit or a pair of binary bits; thus, if some 
procedure requires the execution of O(g(x)) operations, then it will complete its 
calculations in a length of time which is O(g(x)). 

Let p(x) be any cubic polynomial with integer coefficients, which is irreducible 
over the rationals.2. Let AvP, the discriminant of p(x), be negative, and denote by 8 

the real zero of p(x). In this paper we will show how the ideas in [8] and [10], 
together with those developed in Williams, Dueck and Schmid [15] and Williams 
[16], can be combined to produce fast algorithms for finding h and G when 

'= S9(a). Just as in the quadratic case, these new algorithms, under certain 
Riemann hypotheses, will compute h in O(1 A11/5 ?+ ) elementary operations and G in 
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0(ljAl/4`E) elementary operations. We also provide a brief summary of the results 
of running our computer programs which compute G and h for the pure cubic fields 

sk= 9(VT). 

2. Some Observations Conceming the Ideals of 0,,. We will assume from this 
point forward that 1= 9(8) above, and cP,- is the ring of all the algebraic integers of 
Ak. We say that any ideal a of 0P, is primitive if it has no rational integer divisors. It 
has been shown by Voronoi [13] that any primitive ideal of ?! has a unique 
basis {al, a2, a3) where a1 = P, a2,a3 E A) a2 = P'(m + 8)/, and a3= 
P"(n + n'8 + 82)/Ta2. Here P, P', P" > 0; T, a, P, P', P", m, n, n' E Z; and 
0 < m <iTP/P', 0 < n' <TaP'/P", 0 < n < 2aP/P". The values of a and T are 
invariant for any fixed XV, and T6a2L = Ap. Also, (P', P") = 1, P'P"IP, P"I'T2a, 
and N( ac), the norm of a, is PP'P". P is the least positive rational integer 
in a, and we frequently denote this value by L( ac). We will call (tal, a2, a3) the ca- 
nonical basis of a. Given any basis of a, it is a simple matter (see [16]) requiring 
0((UT 2L(a))') elementary operations to find a canonical basis of a. 

Let the primitive ideals a and b have canonical bases { a,, a2, a3 }, { 83l, B }' 
respectively. The product ideal a b can be written as (c) c, where c E Z and c is a 
primitive ideal with canonical basis { Y1, IY2' 73). Now c, y1, Y2l TY3 can be computed 
by using the method suggested in Section 9 of [16] together with the observation that 
c3N(c) = N(a b). This requires that we be able to compute a few gcd's and solve 
some linear Diophantine equations; hence, it is an easy matter to show that 
determining these values can be done in O((aT2L( a)L( b))') elementary operations. 

Since L(a) Ec a, we know that there exists an ideal a' such that aca' = (L(a)). 
Further, if a is primitive, then L( ia) = L( a'). The determination of a canonical basis 
of a', given a basis of a, can be done in O((aUT2L(a))') operations. When L(a) is a 
prime or prime power, the basis of a' can be found by simply using the formulas in 
[13]. 

Let a E Xk and denote by a', a" the conjugates of a. We have la'I = la"J. We say 
that a primitive ideal a of Or is reduced if there does not exist any a Ec a such that 
both lal < L(a), la'l < L(a) hold, unless a = 0. If a is any ideal of C7. there always 
exists a reduced ideal b of ?% such that b -a. For a given basis of a, the algorithm 
in [14] will find a basis of a reduced b such that*** b a in 0((aT2L(a))E) 

elementary operations. In view of this and our preceding remarks, we are able to 
deduce that if we have a basis of any ideal a of c0, we can find a basis of a reduced 
ideal b such that a' - b in O((nUT 2L(a))') operations. We need only use the 
reduction algorithm of [16] together with a power algorithm, such as those described 
in Knuth [4, p. 441ff.] (except that we multiply ideals in this case). We also point out 
here that if a is a reduced ideal, then Tr3ap 2/p,p, < jAl/3; hence, T2aL(a) 
< VlAJ/3 (see [16] or [14]). 

Given any ideal (from now on this will mean that we are given a basis of the ideal) 
a, we can use the algorithm of Voronoi [14] to find all of the reduced ideals which 
are equivalent to a. This process is described in [15] and [16]. We need only note 
here that after finding a reduced ideal a1 (- a), we then use the algorithm of 

***We say, as usual, that a - b if there exist a, ,B E Or such that (a)a = (f)b. 
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Voronoi to produce a basis for each of the reduced ideals equivalent to a,, together 
with a sequence of elements 0(l), 0(2) o(3),* * of X, each of which exceeds 1. These 
reduced ideals can be arranged in a sequence 

(2.1) all a2 a3l ...ak-l akl.. 

where 

(L(ak-1)(k) ak = (L(ak))ak-l. 

Also, to compute a basis of ak from that of ak-, requires O((cT2L(ak-l))e) 

elementary operations. 
If we define 

r-1 

Or H9g (, 

we get 

(L(aQm)On) a,n = (L(an)fm) a.. 

We say that log(9p,/O@) is the distance d( an, a,m) from am to an. Also, there exists an 
absolute and computable constant cl such that n < cld(an, a1) (see [16]). The 
number of reduced ideals in any given ideal class is finite; at some point in (2.1) we 
get ap+1 = a1 and 0P+l = 60 > 1, the fundamental unit of Y*. Thus d( aP+l, al) = R, 
the regulator of k. We call the sequence a1, a 2, ,.. 3 , ap the cycle of reduced ideals 
which belongs to a. 

In [16] an algorithm is presented which will determine whether or not two reduced 
ideals b and c are equivalent. We give a slightly different form of this algorithm 
below. 

ALGORITHM 2.1. 

(1) Find a reduced ideal b b c' and select a value for the step size S. Put i = 1 
andb1 = b. 

(2) Calculate and store the bases of a1 = (1), a2, a 3,.. a s, as+1 I at, where 
d(a, a1) < S, d(as+1, a1) > S, d(at, a1) > 3 logIA/31 + S. Sort the above ideals 
on their values of L( aj). 

(3) If bi = aj (1 < j < t), then we are done, and b c. (This part of the algorithm 
is most expeditiously achieved by first searching in the sorted list of L(aj)'s above 
for those which have L(b) = L(aj)). This can also be done by using hash coding 
techniques (cf. [10]). Otherwise, put bi+l = a reduced ideal equivalent to bias. 

(4) Replace the value of i by that of i + 1 and check that 

--i < R/(S -(1/2)logIA/31). 

If this is so, return to step (3); if not, we know that b and c are not equivalent. 
The number of elementary operations needed to execute step (2) of Algorithm 2.1 

is O(SIAIr); the number needed to execute steps (3) and (4) is O(RIAzI/S). A 
modified version of this algorithm can be used to compute R in O(Aj 11/4+ ) 

elementary operations. If we assume the Generalized Riemann Hypothesis (GRH) 
for t?(s), where Y is the normal closure of X, then R can be computed in 
O(IAI1/5+') elementary operations. The method for doing this when .k is a pure 
cubic field is fully described in [15]. It is not difficult to apply these same ideas to 
any complex cubic field. 
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3. Calculation of h. If ?f(s) is the zeta function for-k, then 

2 ThR= = (1), 

where ?(s) = t-(s)/l(s). We can write F(1) in terms of the Euler product 

I(1) = f (q), 
q 

where the product is taken over all the rational primes, and f(q) is determined by 
how the ideal (q) splits into prime ideal factors. If we let p, q, r denote prime ideals, 
we have 

(i) f(q) = I when(q) = q3; 

(ii) f(q) = q/(q-1) when (q) = ppq2; 

(iii) f(q) = q /(q2 - 1) when (q) = p c; 

(iv) f(q) = q2/(q - 1)2 when (q) = qr; 

(v) f(q) = q2/(q2?+ q + 1) when(q) = q. 

Criteria for determining how (q) splits can be found in [13] or Delone and Faddeev 
[1]. It is sufficient here to note that we require qe elementary operations to determine 
the value of f(q). 

If we define 

Q 
F(Q) = H f(q), 

q 

where the product is taken over all primes up to Q, we require O(Q1 ') elementary 
operations to evaluate F(Q). Also, 

Q 2 

(3.1) F(Q) n elg) 
<qI (q -1)2 

e lo 

by Mertens' Theorem. If 

T(Q)= f (q) 
q>Q 

where the product is taken over all primes which exceed Q, it can be shown from a 
result of Lagarias and Odlyzko [5] that if the GRH holds for t., then 

(3.2) Ii - T(Q)I < c2(logiAIQ)/Q, 

where C2 is an absolute, effectively computable constant. In fact, a value for this 
constant c2 can be computed by using the conditional results of Oesterle [9] and a 
method similar to that used in Section 10 of [15]. It is this result (3.2) that permits us 
to develop our O( jl1/5 +-) algorithm for determining R. 

If we put h = Ne(VF4AF(Q)/21TR), where Ne(x) is the nearest integer to x, we 
have 

(3.3) lh - hl < Y= 1j1 +(C2F(Q)log(IAIQ)/2TRV) 

where q = (V/1j F(Q)/2TR) - h. 
If Y < 1, then h = h. If c2Q 1/2 (loglAjQ) < 1/6, then Y < h/5 + 1/2; thus, 

Y < h/2 when Y > 1. If Y > 1, we attempt to find an integer h* such that h*Ih and 
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Y < h*/2; in this case we get h h*[h/h* + 1/2]. Thus, if Q is a constant multiple 
of 175A /, we see from (3.1) and (3.3) that 

(3.4) RY= O(IA12/S+e), 

and, as a consequence, we may assume that 

(3.5) h*R = 0 OAl/5+e) 

In order to determine h, we require an algorithm to find the order or period e of a 
given prime ideal p of degree 1. We first point out that if we are given the value of 
the rational prime p = N(p), it is a simple matter, using the formulas of [1] or [13], 
to find a basis of p. This involves solving a cubic congruence modulo p; however, for 
small values of p this congruence can be solved easily by trial, and for larger values, 
algorithms similar to those given in Williams and Zarnke [17] can be used. 

Let a be a reduced ideal equivalent to p h. In view of (3.3) we know that there must 
exist some m such that Iml < Y and 

(3.6) p h - a ptm 

If Iml = ki + j (O < j < k), we see that (3.6) is equivalent to 

(3.7) 
a (P k)' pi (m > 0), 

a f(pfk)i 
p i (m < O). 

We now search for values of i, j, and k for which (3.7) holds. We now make use of 
what is essentially the baby-step-giant-step strategy of Shanks [11]. 

ALGORITHM 3.1. We consider two possible cases. 
Case 1 (Y > R). 
(1) Put k = [lY/] and compute the cycles of reduced ideals which belong to 

each of (1), p, 22, p 3... ,pk-. By the remarks in Section 2 we see that the total 
number of ideals produced here is O(kR). We then take these ideals and sort them 
(on their L values) into a list f. Altogether, this step executes in O(vRYIAIE) 
elementary operations. 

(2) Put b0 = a, c0 = a', and compute reduced ideals bi and ci by using br+i 

br(p')k, Cr+l cr(Pt)k. If any br or Cr E/, from (3.7) we get m = rk + j when 
br p1 (br is in the cycle belonging to pi) or m = -rk -j when Cr pi. Since 
ml < Y and j < k, we see that we must find such a value for r, where r < Y/k = 

Case 2 (Y < R). In this case we put k = 1 andj = 0 in (3.7), and we compute br 

and cr as above. Put S = VAY. We now use Algorithm 2.1 with step siLe S to 
determine, as r increases, whether br or cr is principal. In the former case, m = r, 
and in the latter, m = -r. Since S is fixed here, step (2) of Algorithm 2.1 need only 
be executed once. Since a value for r must exist such that r < Y, we find that we 
require a total of O(SIAIe) + O(YR lAl/S) = O(lAIl/5+e) elementary operations to 
find m in this case. 

Having found m, we next factor Ii - ml, a task that can certainly be done in 
O(IA11/6+ ) operations (see, for example, Lehman [7]), and then find the period e of 
p by trying the factors of ih - mi. Since elh, we can use h* = e if e > 2Y. If this is 
not the case, we put el = e, p1 = p and select another prime ideal of degree 1, p2, 
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and find the order e2 of the subgroup of G which contains the ideal classes p1I, 2I, 
where I is the principal class. Continue this process until we find some en > 2Y. 
When this occurs, put h* = en and find h. In the next section we show that this 
process will require, under certain Riemann hypotheses, only O(IAIl/5?e) elementary 
operations. 

4. Calculation of G. Let b 1, .2.... 2' k be k reduced ideals of O., each with period 
a prime p, and let Ci denote the cyclic subgroup of G generated by b I. Put 
E = C1 x C2 X C3 X ... X Ck. We will now present an algorithm which will 
determine whether or not any given reduced ideal i is equivalent to some ideal in E. 
In the former case the algorithm will also determine tl, t2, t3,6.. , tk such that 

(4.1) i blb2 b k 

ALGORITHM 4.1. Compute s E Z such that 

ps pk+lR ps + > p k + R 

Case 1 (s > 0). 
(1) Compute a sorted list/of all reduced ideals b - bt *.. * u sfor 0 < ui < p. 

Since there are pS possible ideals of the form Hs=,1 bui, and each belongs to a cycle of 
reduced ideals containing O(R) such ideals, we require 0(pSRIAIe) elementary 
operations to perform this step. 

(2) Compute pk -s reduced ideals c such that 
k 

c~-j H b i (O< vi<p). 
i=s+l 

Check whether or not any of these is in/. If none is, then iI E. If we find that 
-k s 

i H tt'i Hi Ui 
i=s+l i=1 

then ti = u1 for i < s and ti = p - vi for i > s + 1. The total number of elementary 
operations needed to perform steps (1) and (2) is 

O(psRIAje) + o(pk-s|Ae) = ((Pk ?R) /1A1)- 

Case 2 (s = 0). 
(1) Find a reduced ideal equivalent to each ideal of the form 

k 

(4.2) i Fl bi (< ui < p). 
i=1 

(2) Use Algorithm 2.1 with step size S = pk+lR to determine whether any of the 
ideals produced in step (1) is principal. If the ideal given by (4.2) is principal, then 
the values of t1 in (4.1) are given by ti = p - ui. If none of these ideals is principal, 
then jI ? E. In step (1) of this case we produce pk < VRpk+ 1 ideals, and Algorithm 
2.1 must be used on each of them. Since S is fixed, step (2) of Algorithm 2.1 need 
only be executed once; hence, the total number of elementary operations required 
for the execution of this case of the algorithm is 

O(SIAIe) + O(pkRIAIe/S) = O(( pk+LR)l/21A1e) 
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We now use this algorithm in order to compute the smallest subgroup H of G 
which contains 1", g2"... gkI I where the g i are given reduced ideals of ?7 with 
periods el, e2 .... ek. If ei = pKifi, where p is a prime and (p, fi) = 1, then gfi has 
period pKi, and some of the ideal classes gN{I (i = 1, 2, 3,...,k) generate Sp, the 
Sylow p-subgroup of H. Since the problem of finding H is easy once all the distinct 
Sylow p-subgroups of H have been computed, we will assume that the periods e, 
(i = 1, 2, 3,.. ., k) are all positive powers of a fixed prime p. 

We first find a reduced ideal f g, i, where wi = p, i-1, for i = 1, 2, 3,... ,k. We 
then find those f i's whose corresponding ideal classes are generators of E, subject to 
the constraint that the sum of their corresponding K<9s is maximal. This can be done 
as follows. We suppose that we have found from among the s ideals f1, f2, f3 ... . rs9 

videals 1 42jj3,...3 vsuchthatt I(i = 1,2,3,...,v)generatesCiandEv = C1 X 
C2 x C3 X ... X CV. For example, when s = 1, we have v = 1 and b 1 = f1. We then 
use Algorithm 4.1 to determine whether or not ts+1I E Ev. If fs+1I ? Ev, then put + 

= ts+l and increase v by 1. If fs+lI E EEv, then 
S+1~~~~~~~~ s+ 1 1 2 *** J'. 

s+l 1blt 

If p"i is the period of bi and 

nm= min{njltj I 0;j=1, 2,3,...,v}, 

we replace b,,, by fs+1 and increase s by 1 whenever nm < Ks+l. If nm > Ks+l, we 
simply increase s by 1. We repeat this process until we get a value for s which 
exceeds k. At this point we have found Er = E and 

Sp =C(p) X C(pn2) X ... X C(pnr 

Note that this entire process requires O(k( pr+lR)l/21AIe) elementary operations. If 
we know r in advance, then we need only find that ideal f, among those not 
previously used to determine Er-,, with the largest period. We then put br = f and 
p"' equal to the period of f. This process requires only O(k( prR)l/2IAI,e) elementary 
operations. It follows that if we know an upper bound b on r (r < b), then the 
number of elementary operations needed to compute H is O(k( pbR)l/21AI e). 

If we make use of Corollary 1.3 of Theorem 1.2 of Lagarias, Montgomery and 
Odlyzko [6], we see that if extra Riemann hypotheses involving the location of the 
zeros of certain Hecke L-functions are assumed, then there exists an effectively 
computable constant C3 such that if 1, P2, P 3. Pk are all the prime ideals of 
degree 1 with norm less than c3(0ogjLl1)2, then the smallest subgroup H of G, which 
contains piI (i = 1, 2, 3,...,k) is G itself (see the proof of Corollary 6.2 of [10]). It 
follows that, under these hypotheses, we can compute a subgroup of G of order h* in 
O(Ah*_R Al) = O(IAIl/+?e) (by (3.5)) elementary operations. Also, once h is known, 
we can easily find the periods of any of the 4i and calculate the class group in 

(A-R IAIE) = O(AA11/4+e ) elementary operations. 

5. Computational Results. Programs were written to find R, h, and G for the pure 
32 cubic fields .9(VD-), where D = ab2, a,b are square-free, and a > b > 0. These 

programs were written in FORTRAN with some assembler language subprograms. 
For the values of D which we considered, we needed no more than double-precision 
arithmetic. For any D, our programs, which ran on an AMDAHL 470-V8 computer, 
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produced the values of R and h and the invariants of G in a matter of seconds. We 
selected the pure cubic fields in order to make the programming easier and in the 
hope that we would find some interesting (noncyclic) class groups. It should be 
noted at this point that Eisenbeis, Frey and Ommerborn [2] had previously com- 
puted r2 for all pure cubic fields with radicand D < 10,000. 

Ennola and Turunen [3] found that there were only 35 noncyclic class groups 
among those for the 26,440 nonconjugate totally real cubic number fields with 
discriminant < 500,000. We found that 11,637 fields out of the 24,537 distinct pure 
cubic fields with radicand D < 30,000 have a noncyclic G. Of course, most of these 
have C(3) x C(3) as a subgroup of G. We summarize our results in Table 1, where 
we give, for each n, the frequency of occurrence of all G with rn > 2. 

The only case in our table where C( p) x C( p) (p > 3 and p prime) is a subgroup 
of G occurs for D = 10,263, where G = C(90) x C(5). The largest value of h in our 
table is 2412, which occurs when D = 28,365; here G = C(804) x C(3). The com- 
plete table, giving for each D with noncyclic G the value of R and the class group 
invariants ml, M2, M3,.. ., has been deposited in the UMT file. 

TABLE 1 

ni 1 2 3 4 

2 1834 93 - 

3 8614 1850 74 

4 24 - = 

5 1- 

6 826 3 

9 27 - 

12 7. 
18 2- 
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