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The Construction of Unramified 
Cyclic Quartic Extensions of Q( m) 

By Theresa P. Vaughan 

Abstract. We give an elementary general method for constructing fields K satisfying [K: Q] = 

8, the Galois group of K over Q is dihedral, and K is unramified over one of its quadratic 
subfields. Given an integer m, we describe all such fields K which contain Q(Vm). The 
description is specific and is given in terms of the arithmetic of the quadratic subfields of K. 

0. Introduction. In this paper we give an elementary general method for construct- 
ing fields K which have the following properties: [K: Q] 8, the Galois group of K 
over Q is dihedral, and K is unramified over one of its quadratic subfields. Our 
procedure is from the ground up, so to speak: Given a quadratic field Q(vm_) we 
describe those fields K (as above) which contain Q(Vm). The description is specific 
and entirely in terms of the arithmetic behavior of the quadratic subfields of K. 

One application of this work is in finding, for a fixed Q(v'), all of its cyclic 
unramified extensions of degree 4. 

Results of this nature are already known for special values of m, n, and with 
extensions of higher degree than 4; see, e.g., [1], [3], [5]. We feel that our method is 
more precise and better adapted for use as an actual construction. In addition, we 
require no restrictions on m. 

An advantage of our intrinsic construction is that it can easily be used in different 
wavs. Thus, given m, we can describe the (infinitely many) square-free integers n 
such that (m, n) = 1 and Q(/n-m) has a cyclic unramified extension of degree 4 
containing Q(Vm). The conditions which n must satisfy are just the necessary and 
sufficient conditions for the construction described in Section 2. 

In Section 3 we give some assorted examples of the use of the construction. 

1. Notation and Preliminaries. The notation given here will be used throughout. 
Let m e Z and put Fm = Q(Vm). Let a E Fm, with its conjugate a', and put 

aa' = nk 2, where n is a square-free integer. 
Suppose that n # 1, m. Then Fm(Vai) is a field of degree 4 which is not normal 

over Q. Its normal closure is K = Q(VT Va. VW) -Q(Vr, V/H, a) which has 
degree 8 and is normal over Q with dihedral Galois group. K contains three 
quadratic fields, Fm, F,", F,",F,, and the quartic field J = Q(V4, v')n 

It is known [4] that the discriminant of J, disc J, is the product of the discrimi- 
nants of its three quadratic subfields. The following lemma is an immediate 
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consequence of this. (We use the notation pi t if p1 It and p'' 4 t, for an integer t 
and a prime p.) 

1.1. LEMMA. Suppose that (m, n) = 1. Then discJ - 2jt2, where t is an odd integer, 

andj is given by 

j=O iff{m,n,mn}-{1,1,1} (mod 4), 

j=4 iff{m,n,mn}-{1,3,3} (mod 4), 

j = 6 iff{m, n, mn) (11,2,2) (mod 4), 

j=8 iff{m,n,mn} -{3,2,2} (mod 4). 

From this it is easy to state some weak necessary conditions for our dihedral K to 
be unramified over one of its quadratic subfields. 

1.2. LEMMA. If K is given as above, and if K is unramified over one of its quadratic 
subfields, then 

(a) K is unramified over J, that is, disc K = (disc J)2; 
(b) if p is an odd prime and p I disc K, then p2 1l discJ and p4 11 disc K; 
(c) if 2i IIdiscK, then]j E 0,8,12). 

Proof. Since disc J is the product of the discriminants of the three quadratic 
subfields, and disc K must be the fourth power of one of these, we have (a), and then 
(b) also follows. If 28 11 discJ, then 216 l disc K, and this cannot be the fourth power 
of any quadratic discriminant. Then (c) follows from (a). 0 

We assume throughout that a is an integer in Fm. 
The principal ideal (a) factors into prime ideals in Fm: 

(a) = pilp.2 ... pJ pilPh * i) 

Define the ideal S = S(a) by S = P11P12 ... Pi; we say that S is the square-free part 
of (a). Let N(S) be the norm of this ideal. If pi, is the norm of Pi, then N(S) is the 
product of these integers. If r = 0, then put N(S) = 1. 

We say that a satisfies condition (U) if 
(i) none of the pi is an inert prime in Q(m); 

(ii) none of the pit is ramified in Q(m); 
(iii) the pi are all distinct. 
Evidently, if a satisfies (U), then N(S) is square-free and (N(S), Di) = 1 (where 

Dm= disc Fm). 
In [8] it is shown how to find disc Fm(Vai) in detail. We shall require some material 

from [8], and we shall make use of Table V from [8]. 
Say that a is reduced relative to a prime p if (a) is not divisible by the square of 

any prime divisor of the ideal (p). If ,B is an integer which is not reduced relative to 
p, then there is a reduced a and integers x, y so that x2a = y2,3; then Fm(VQi) = 

Fm,(r/i). We assume throughout, without loss of generality, that a is reduced relative 
to 2. For such a, Table V of [8] gives the integer t such that 2' 11disc Fm(Va). For 
the convenience of the reader, this table is given in Appendix 1, where it is called 
Table I. 

1.3. LEMMA. If we write disc Fm(/a) = D .DG, then for odd primes p one has p' II D. 
if and only if p'II N(S). 0 
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(I believe this is due to Hilbert.) Thus for any specific a the computation of our 
discriminant is not difficult. 

It will be convenient to have a special name for a field K which has all the 
following properties: [K: Q] = 8; K is normal over Q, and the Galois group of K is 
dihedral; K is unramified over one of its quadratic subfields. We shall say that such 
a K is of Type U. 

The following list may be convenient: 
a E Q(V4), a an integer; 
(a) = PilP2* ... 

P(Pj1 
... Pj.)2 (Pi, distinct); 

N(a) = nk2, n square-free, n # 1, m; 
J = Q(VmV, V 
K = normal closure of Q(V4, Va; 
Dn = disc Q(Vm); 
D,: = relative discriminant of Q6('m, V) over Q(;m 
Fn= Q(V/m). 

2. Necessary and Sufficient Conditions. We show first that condition (U) is 
necessary for K to be of Type U. In a general sense, condition (U) guarantees the 
good behavior of all odd primes. It gives some restrictions on 2 also, but not enough. 

2.1. THEOREM. Each of the following four conditions implies that K is not of Type U. 
(a) N(a) is a square in Fm; 
(b) N(S) is divisible by an inert prime p; 
(c) N(S) is divisible by a ramified prime p; 
(d) S is divisible by both factors of a splitting prime p. 

Proof. (a) If N(a) is square in Fm, then K = Fm(Va ) is normal of degree 4. 
(b) First let p be odd. Then p2I Da, and p I disc K. On the other hand, if 

N(a) = nk 2, n square-free, then p + n and so p + disc J. By Lemma 1.2(a), K is not 
of Type U. 

Now let p = 2 (then it must be that m 5 (mod 8)). We are assuming a reduced 
relative to 2, so a = 2,1 where 2 + N(13). From Table I we have 26 11 disc Fm(Jai) and 
212 l disc K. But since n is odd in this case, and m is odd, 26 + disc J by Lemma 1.1. 
Then by Lemma 1.2(a), K is not of Type U. 

(c) First let p be odd. Then we have p 11 D, and p3 II disc FJ(Va). Then p6 I disc K 
and K is not of Type U by Lemma 1.2(b). 

If p = 2, then m 2, 3 (mod 4). Using Table I, we find that if m 2 (mod 4), 
then 21111 disc Fm(Va) and 222 disc K; if m 3 (mod 4), then 29 I disc Fm(V(a) and 
218 l disc K. In either case, K is not of Type U by Lemma 1.2(c). 

(d) If p is odd, then as in (b) we find p + disc J, but p I disc K. 
If p = 2, then m 1 (mod 8), and we can assume a = 2,B, where N(,8) is odd. 

Then N(a) = nk2, where n is odd, and, by Lemma 1.1, 26 4 discJ. But, from Table I, 
26 11 disc Fm(Vai) and 212 I disc K. Thus, K is not of Type U by Lemma 1.2(a). 0 

In view of Theorem 2.1(a), we may assume from now on that N(a) is not square in 
F,, so that Fm(Va Va) always has degree 8. For N(a) = nk2, this assumption 
implies n ? 1, n $ m. 

The necessity of condition (U) has been established. We shall see that if a satisfies 
(U) and N(a) = nk2 with n square-free, then (n, Din) = 1, and if K is to be of Type 
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U., it must be unramified over Finn. The first order of business is to show that the 
odd primes behave properly when a satisfies (U). 

2.2. THEOREM. Let a satisfy (U) with N(a) = nk2, n square-free. If p is any odd 
prime divisor of mnn, then p2 disc J and p4 11 disc K. 

Proof. First suppose that p I n. Then (p) = P1P2 in Fm P, 0 P2, since p is a 
splitting prime in Fm by (U). Certainly p + m, and we have p 11 N(S). Letting 
L = Fe1(Vai), we have p II disc L by Lemma 1.3. 

In L the ideal P becomes a square, and the ideal P' remains prime. In L the norm 
of P' is p2. In Fm we have (a, p) = P and (a', p) = P' (where a' is the conjugate of 
a), and so in L the square-free part of (a') is divisible by P'. Then the relative 
discriminant D of K = L(4a) over L is divisible by precisely p2; p2 11 D. Now 
disc K = (disc L )2D, so we have p4 II disc K. 

Since (N(S), Dm) = 1, then for every odd prime divisor q of m we have q2 11 disc L 
and q4 11 disc K. Now the same is true for every odd prime divisor of mn. O 

The behavior of 2 is considerably more complicated, particularly in case 2 is a 
splitting prime. 

2.3. THEOREM. Suppose that m 2, 3 (mod 4) or m 5 (mod 8). Then a necessary 
condition for K to be of Type U is that for some integer P3 in Fm, we have a _32 

(mod 4), and N(a) is odd. 

Proof. We use Table I extensively. Put L = Fm(Vai)9 and let Da be the relative 
discriminant of L over Fm. First let N(a) be odd and a 132 (mod 4). It is shown in 
[8] that, in this situation, Da is odd. 

Since a' (/3t)2 (mod4), then also the relative discriminant of L(Vg) over L is 
odd. Then for m 2 (mod 4), we have 212 disc K; for m 3 (mod 4), 28 11 disc K; 
and for m 5 (mod 8), disc K is odd. 

Now let m 2 (mod4) and a # 132 (mod4). Write a = a + bVm. If a is odd, b is 
even, and a + b 1 (mod 4), then a 132 (mod 4); otherwise, not. If a is odd, b is 
even, and a + b 3 (mod 4), then 2811 disc L and 216 disc K. If a and b are odd, 
then 210 IIdisc L and 220 I disc K. In both cases, K is not of Type U by Lemma 1.2(c). 
If a is even, b odd, then K is not of Type U by Theorem 2.1(c). (If a, b are even, then 
a is not reduced relative to 2.) 

Let m -3 (mod4) and write a = a + bVm. If a is odd and b 0 (mod4), then 
al 132 (mod 4); otherwise, not. Say that 2' Da. If a is odd and b 2 (mod 4), then 
j 6. If a is even, b odd, thenj = 8. In both cases, N(a) 1 (mod 4) and 2 11 disc J. 
Thus, by Lemma 1.2(a), K is not of Type U. If a and b are both odd and a is-reduced 
relative to 2, then K is not of Type U by Theorem 2.1(c). 

Let m 5 (mod8) and write a = a + bA , where A = (1 + Vm)/2. If N(a) 1 
(mod 4) but a $ 132 (mod 4), then we have disc L is even, while disc J is odd; then K 
is not of Type U. Suppose N(a) 3 (mod 4), so that 24l discJ. From Table I we 
have 2 4 disc L. Since K = J(Vai), the relative discriminant of K over J will be even 
unless a -2 (mod 4) for some y E J. A square in J can be written as (recall 
N(a) = nk2) 

(u + vv)2 = u2 + nv2 + 2uvVn 
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where u, v E Fm. In order that a (u + vn)2 (mod 4) in J, either u or v must be a 
multiple of 2, since 2 is prime in Fm. Then either a u2 (mod4) or a nv2 
(mod 4) in Fe1. But a $ u2 (mod 4) in Fm, and if a -v2 (mod 4) in Fm, then 
N(a) 1 (mod 4), contradicting N(a) 3 (mod 4). Then disc(K/J) is even; 
2' l disc K, and K is not of Type U by Lemma 1.2(a). 0 

2.4. THEOREM. Let m 2, 3 (mod 4) or m 5 (mod 8). Then K is of Type U if and 
only if a satisfies condition (U) and a 1 32 (mod 4) in Fm. If K is of Type U, then it is 
unramified over Fin and not over Fm or Fn. 

Proof. The necessity has already been shown, so let a satisfy (U) and a 132 
(mod 4). Then N(a) 1 (mod 4); n 1 (mod 4). By assumption, N(a) = nk2 is not 
a perfect square, so n must have prime divisors and also (n, Dm) = 1 (by (U)). Then 
K must ramify over Fm. If m 2, 3 (mod 4) then disc K is even, and K ramifies over 
F,1. If m 5 (mod 8), then m has prime divisors, and since (n, Dm) = 1, then K must 
ramify over F,1. 

The previous results allow the computation of disc K, and we now compare this 
with D,7,. In view of Theorem 2.2, we only have to check the powers of 2. If m 2 
(mod 4), then nm 2 (mod 4) and 212 Dn4,m. From the proof of Theorem 2.3, 
212 11 disc K. We also have disc J = D,2%,, and the relative discriminant of K over J is 
one (it certainly cannot be -1); thus discK= (Dnm)4. If m 3 (mod 4), then 
nm 3 (mod 4) and 2811 Dn4,m; 28 11 disc K, and again disc K = Dn4,m. If m 5 (mod 8), 
then all our discriminants are odd and disc K = Dn ,M. 0 

If m 1 (mod 8), then 2 is a splitting prime, and there are more possibilities for a. 
Write a = a + bA , where A = (1 + Vm)/2. 

2.5. THEOREM. Let m 1 (mod 8). Then K is of Type U if and only if a satisfies 
condition (U) and one of the following: 

(a) a 132 (mod4) (i.e., a 1, b 0 (mod4)); 
(b) N(a) 3 (mod 4) (i.e., (a, b) (1, 2) or (3, 2) (mod 4)); 
(c) N(a) 2 (mod 4), and the equation r2 - s2 0 (mod 4) is solvable for some 

r,s E F,^, with r 0 (mod2) (i.e., for m 9 (modl6), (a, b) (0,3) or (3,1) 
(mod 4); for m 1 (mod 16), (a, b) (2, 3) or (1, 1) (mod 4)). 

Proof. We use Table I. (a) If N(a) = 1 (mod 4), then disc J is odd, and a necessary 
condition for K to be of Type U is a 132 (mod 4). Since N(a) is not square, then 
n # 1. Then both m and n have prime divisors; since (m, n) = 1, K ramifies over 
both F,, and Fn. As in Theorem 2.4, when N(a) 1 (mod 4), then K is of Type U if 
and only if a satisfies (U) and a 1 32 (mod 4); then disc K = (Dmn)4. 

(b) Let N(a) 3 (mod4), so n 3 (mod4) and 24IIdiscJ. In J we have the 
congruences 

1 +2A= (1+ + A+ )2 (mod4), 

3 + 2A (A + n + )2 (mod4). 

If N(a) 3 (mod4), then a = a + bA, with (a, b) (1,2) or (3,2) (mod4), and 
there is a y in J so that a = y2 (mod 4). N(a) is odd, so the relative discriminant of 



238 THERESA P. VAUGHAN 

J(Fa ) over J is odd. Hence, 28 l disc K. Evidently K ramifies over Fm and, since 
(m, n) = 1, over Fn also. As before, we find disc K = (DDmn)4, and K unramified over 
F,1rn1 when a satisfies (U). 

(c) Let N(a) 2 (mod4) and write (2) = PP', where P 11(a) and P'II (a'). If 
r 2 a as 2 0 (mod 4) is only solvable with r 0 (mod 2), then 2 5 disc Fm(Vai). Put 
L = Fe1(Va ). Then P' remains prime in L, and the equation u2=-a'v2 0 (mod 4) 
requires at least P' I (u). Then the relative discriminant of L(va7) will be divisible by 
at least the power of 2 dividing N(P')N(a'), where these are norms in L; this 
number is 26. Then at least (25)2. (26) divides disc K, and K is not of Type U. 

On the other hand, if N(a) = 2 (mod 4), and if the equation r2 - s2 0 (mod 4) 
is solvable with some r i 0 (mod 2), then it is solvable with some r E p - p2, 
r t P' (see [8] for details). In this case, 23 11 disc L. In L we have (r')2 - a'((s')2 0 
(mod 4), where r' E P p P p2, r' t P. Now the power of 2 dividing the relative 
discriminant of L(Vg) over L cannot exceed the power of 2 dividing N(P'2)N( a'), 
which is 26 (the norms are in L). The power of 2 dividing disc K is no more than 
(23)2(26) = 212. We also have 26 ldiscJ, and then 212 IldiscK. As before, if, in 
addition, a satisfies (U), then K ramifies over Fm and Fn and is unramified over Fnm. 

3. Applications. Using the construction directly, it is simple to churn out theorems 
like the following: 

3.1. THEOREM. Let m 2 (mod4) and suppose a2 - mb2 = nk2 1 (mod4) 
(where n is square-free). If (n, m) = 1, then Q(V ) has a cyclic unramified extension 
of degree 4 over Q(V ), containing Q(m). 

Proof. If a2 - mb2 1 (mod 4), then a is odd and b is even. Thus one of a + b, 
-a - b is 1 (mod 4), so one of a + bVm, -a - bxm is a square (mod 4), and the 
result follows. O 

Examples. Let m = 2. Since 1 - 2 - 42 = -31, Q( -62) has a cyclic unramified 
extension of degree 4 (and 4 divides the class number). The same thing is true for 
Q(v-14) (-7 = (_1)2- 2 22), Q(r--46) (-23 = 9 - 2 16), Q(V-254) (1 - 2 
64 = -127) and so on. 

3.2. THEOREM. If a2 - 3b2 = n 1 (mod 12) with a odd, b =0 (mod 4), then 
Q( 3n) has a cyclic unramified extension of degree 4 containing F3. Then Q(V3n) has 
an unramified abelian extension of degree 16. 

Proof. The first statement follows from Section 2. Since we have a cyclic 
unramified extension of degree 4 containing Vi, then we can adjoin Vn without any 
further ramifying, which produces a field of degree 8. We can also adjoin VII3 
without ramifying, and so we get a field of degree 16. 

The reverse question is also interesting. For which square-free integers k is there a 
field K of degree 8, normal over Q, with dihedral Galois group, and K unramified 
over Q(Vk7)? Evidently, it is necessary and sufficient that k = mnn, where mn, n "fit" 
into the theorems of Section 2, but this is rather complicated. The following 
necessary condition is easy to see and to use. 
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3.3. THEOREM. Let k E Z be square-free. If there is a K as described in the previous 
paragraph, then it must be that 

(a) k = mn, m # 1, n # 1, and m 1 (4) for some integers m, n; 
(b) every prime factor of n is a splitting prime in Q(Vm) (and vice versa). 

Proof. If (a) does not hold, then Q(Fk) does not even have an unramified 
quadratic extension. If (b) does not hold, then no a E Q(Vm) can satisfy condition 

(U). O 
Example. Let k = +330 = + 2 x 3 x 5 x 11. The factors congruent to 1 (mod 4) 

are 5, -3, -11, 3 - 5 * 11, -5 11, 3 - 11, -3 - 5. It is easy to check that with each of 

these choices of m, the corresponding factor n does not satisfy (b), so there is no K 
of Type U unramified over Q( 330) (or Q( -330 )). 

In the next example we show how to find K, if it exists. 
Let k = +5 x 11 x 19. The divisors congruent to 1 (mod4) are (a) -11, (b) 

-11 x 5, (c) 5, (d) -19 x 5, (e) -19, (f) 11 x 19, (g) 5 x 11 x 19, and we consider 
each in turn. 

For m 1 (mod4), put w = (1 + m)/2. 
(a) In Q( -11), 19 does not split. 
(b) In Q( -11 x 5 ), 19 does not split. 
(c) In Q(V5), 11 and 19 split; N(3 + w) = 11, N(1 + 5w) = -19, N(4 + w) = 19, 

N(1 + 4w)= -11. We find 

(3 + w)(4 + w) = 13 + 8w 1 (4), 

(3 + w)(4 + w') = 14 + w, 

(1 + 4w)(4 + w) = 8 + 21w, 

(1 + 4w)(4 + w') = 1 + 15w. 

Since 5 5 (16), then a = a + bw is congruent to an odd square (mod 4) if and 
only if (a, b) (1, 0),(1, 1),(2, 3) (mod 4). Then we have 

Q(v, s13 + 8w, J13 + 8w' ) 

is a K of Type U, unramified over Q(5 x 11 x 199); Q(V-5 x 11 x 19) has no 
such K containing F5. 

(d) If m = -19 x 5, then 11 splits, and N(1 + 2w) = 11 X 9 3 (4). Here, m 1 
(8), and so Q(J-19 x 5, V1 + 2w, +/1 + 2w') is a K of Type U, containing 
/-19 x 5, unramified over Q(V-5 x 11 x 19). Since all norms in Q(Vm) are 
nonnegative, there is no such K containing Q(19x 5) and unramified over 
Q(V5 x11 x 19). 

(e) In Q( -19), N(2 + w) = 11 and N(w) = 5. Since -19 13 (mod 16), the odd 
squares (mod 4) are a + bw 1, 3 + w,3w (mod 4). We find 

w(2 + w) =-5 + 3w, w'(2 + w) = 7-2w. 

So none of these or their conjugates is congruent to a square mod 4. Then Q(r-19) 
(which has class number one) has no elements of norm 55 and congruent to a square 
mod 4; there is no K of Type U containing Q( -19) and unramified over 
Q(V-19 x 11 x 5), or over Q(119 x 11 x 5) either (since Q( -19) has no ele- 
ments of negative norm). 
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(f) If m = 11 x 19, we already know what happens if n = 5. We check n = -5. 
Fortunately, Q( 209) has class number 1. We find 5 = N(27 + 4w). The fundamen- 
tal unit has norm +1; it is '= 43331 + 6440w 3 (4), so D (27 + 4w) 1 (4), 
and 

K= Q(+ll x 1, +/;(27 + 4w), - (27 + 4w') 

is of Type U, unramified over Q(5/5 x 11 x 19) and contains Q(11 x 19 ). Since 
Q( 209) contains no numbers of norm -5 there is no such K unramified over 
Q(V-5 x 11 x 19). 

(g) Since 11 = 3 (mod 4) we cannot solve the equation -x2 =y- 1045z2 in 
integers. Then there is no K of Type U, unramified over Q(V-5 x 11 x 19) and 
containing Q(VIT). 

In conclusion, L1 = Q(15 x 11 x 19) has just one cyclic unramified extension K1 
of degree 4, and F5 Ee K1. L2 = Q(V-5 x 11 x 19) also has just one, K2, and 
V1T E K2. 

The unramified quadratic extensions of L1 are L1(J5), L1( -11), L1( -19), and 
so KJ( -11) is an abelian unramified extension of L1 of degree 8, with Galois group 
C(2) x C(4). 

Appendix 1. Let Z be a square-free integer. Let w = VZ if Z 2,3 (mod 4) and 
w = (1 + VZ)/2 if Z 1 (mod 4). Then {1, w} is an integral basis for Q(VZ). Let 
a = n + mw and let S be the ring of integers of the field Q(Va). Assume that a is 
reduced relative to 2, that is, the principal ideal (a) is not divisible by the square of 
any prime factor of (2). The discriminant of S, disc S, is the absolute discriminant 
(over Q). 

TABLE I 

(a) Z 2 (mod 4) 

Exact power of 2 
n m dividingdiscS 

odd even n + m-1 (mod4) 26 
odd even n + m 3(mod4) 28 
odd odd 210 
even odd 211 

(b) 7 3 (mod 4) 

Exact power of 2 
n m dividing disc S 

odd 4j24 
odd 4j +2 2 6 

even odd 28 
odd odd 2 
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(c) Z 5 (mod 16) 

Exact power of 2 
n m dividing disc S 

4k+ 1 4j 
4k+1 4j+1 2+ discS 
4k + 2 4j + 3 

all others with n, m not 
both even 24 

2k 2 j (j,k not both even) 26 

(d) Z 13 (mod 16) 

Exact power of 2 
n m dividing disc S 

4k+1 4j 
4k + 3 4j + 1 2 + disc S 

4k 4j+ 3 
all others with n, m not 

both even 24 

2k 2j(j,k notbotheven) 26 

(e) Z 8y + 1 

Exact power of 2 
n m dividing disc S 

4k + 1 4j 2 +disc S 
4k+3 4j+2 22 

4k + 1 4j + 2 22 

4k + 3 4j 24 

2k 4j + 1 (k-y odd) 25 

2k + 1 4j + 3 (k-y odd) 25 

All others with 
211N(n + mw) 23 

4k + 2 4j 26 
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