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Stability of Interfaces with Mesh Refinement 

By Marsha J. Berger* 

Abstract. We study the stability of mesh refinement in space and time for several different 
interface equations and finite-difference approximations. First, we derive a root condition 
which implies stability for the initial-boundary value problem for this type of interface. From 
the root condition, we prove the stability of several interface equations using the maximum 
principle. In some cases, the final verification steps can be done analytically; in other cases, a 
simple computer program has been written to check the condition for values of a parameter 
along the boundary of the unit circle. Using this method, we prove stability for Lax-Wendroff 
with all the interface conditions considered, and for Leapfrog with interpolation interface 
conditions when the fine and coarse grids overlap. 

1. Introduction. In solving a hyperbolic partial differential equation by finite-dif- 

ference techniques, a grid with variable-mesh spacing is required to accurately 
resolve the solution over the entire domain with a minimum number of grid points. 
One simple way to effect this is by an abrupt mesh refinement in space, where the 
mesh spacing on one side of the interface is an integral multiple of the mesh width 
on the other side. A drawback of this approach is that for stability reasons, the time 

step lAt on the coarser side is limited by the smaller mesh width. This has motivated 
the use of mesh refinement in time and space, where the time step on the coarser side 

of the interface is also an integral multiple of the time step on the finer side of the 

interface, though possibly a different integer than for the spatial refinement. 
This situation arises, for example, in the following problem. Consider the scalar 

equation u, = ux, -00 < x < 0, which will be approximated using a coarse grid for 

x < 0 and a fine grid for x > 0. As illustrated in Figure 1.1, the fine grid is refined 

by a factor of 4 in space and time over the coarse grid. If the Lax-Wendroff 
difference scheme, 

= 2(V,+m ) + 2(vm 2vm + vm ?=Vm 2?- 2 v+ V V 

is used on both the coarse and fine grids, one way to match over the interface is as 

follows. To get v1 on the coarse mesh, the Lax-Wendroff scheme is applied at vo, 

taking vo = uo for the missing value to the right. The values uk, 1 < k < n - 1, are 
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obtained by linear interpolation in time using vo and v0, or equivalently, uo and u0 
(see Section 4 for another method). These values are then used in the Lax-Wendroff 
formulas on the refined side. This procedure is now repeated for each coarse time 
step. The numerical scheme is then completely defined. 

In this paper, we present the first stability proofs for the case of an interface 
where the mesh is refined in both space and time. Our result, based on the Kreiss 
[16] and Gustafsson, Kreiss and Sundstrdm [14] stablity theory for the initial- 
boundary value problem, begins with the derivation of a root condition which is 
equivalent to stability for this case. Using this, we can prove stability of the 
Lax-Wendroff difference scheme with several different interface conditions. Oliger 
[17] has an unstable example of the nondissipative Leapfrog scheme with interpola- 
tory interface conditions in the case of mesh refinement by an even integer. We can 
extend our method of proof to the case of mesh refinement in time and space in 
which the fine and coarse grid points do not coincide, but rather where the two 
meshes overlap a bit. The stability of Lax-Wendroff is (not surprisingly) preserved. 
Moreover, the spatial interpolation introduced into the interface equations by the 
overlapping meshes is enough to prove stability for the Leapfrog scheme as well. 
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FIGURE 1.1 
Interface with mesh refinement in space and time by a factor of 4 

The stability of an interface under an abrupt mesh refinement in space only has 
previously been considered by several authors. Ciment [8] has proved the stability of 
the Lax-Wendroff difference scheme under very general interface conditions. In [9], 
he extended his stability results to the case of an interface where a dissipative 
difference scheme was used on at least one side of the interface. Browning, Kreiss 
and Oliger [7] considered the Leapfrog scheme under an overlapping mesh refine- 
ment, and proved stability using interface equations specifying continuity of the 
solution and its first derivative. Goldberg and Tadmor [11] consider stability in the 
case of translatory boundary equations for the outflow variables. Starius [21] proves 
stability for the slightly different problem of overlapping grids with the same mesh 
widths in time and space, where interpolation formulas unite the two computations. 
None of these results apply in the case of mesh refinement in time and space. In fact, 
Trefethen [23] shows by example that complicated boundaries and interfaces can be 
unstable even when all formulas involved are dissipative. 
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There are certainly other important properties of interfaces worth considering 
besides stability. The conservation properties of an interface can be crucial if one is 
computing a discontinuous solution (Berger [3]). Vichnevetsky and Bowles [24] and 
Trefethen [23] have studied reflection and transmission properties of an interface. 

Although the theory lags, computations have been successfully done for many 
years. Starius does simulations using two overlapping meshes in different coordinate 
systems. This is becoming more common in the aircraft industry for problems with 
complex geometries [6]. More recent computations of this type have been done by B. 
Kreiss [15] and by Reyna [20]. Many computations have been done using mesh 
refinement in time and space, in both one dimension (Bolstad, [5]) and two 
dimensions (Gropp, [12]; Berger and Oliger, [4]). These computations use locally 
uniform meshes with grid spacings hl, h2, and time steps k1 and k2 chosen 
appropriately for each grid. This is usually done so that the mesh ratio X = kj/hj = 
k2/h2 is constant on both grids. This mesh refinement technique has proven to be 
very efficient. 

In the rest of this section we will briefly recall the stability theory of Kreiss [16] 
and Gustafsson, Kreiss and Sundstrom [14] that we will use here. In Section 2, we 
derive what we call the root condition for stability of an interface under mesh 
refinement in space and time, where the interface equations come from interpolation 
in time. For this derivation, we assume the finite-difference scheme on both sides of 
the interface has a three-point stencil, so that only one point in space needs a special 
boundary equation. We are thus led to the root condition which unstable eigensolu- 
tions (if there are any) must satisfy. In Section 3, we make use of the maximum 
principle to show that the root condition cannot hold for the roots of the Lax- 
Wendroff difference operator, and thus prove that Lax-Wendroff with interpolation 
interface conditions is stable. In Section 4, we briefly repeat the same type of 
derivation as in Section 2, but where the interface equations come from the Coarse 
Mesh Approximation Method (Ciment, [9]), rather than interpolation. In this case, 
the root condition is more complicated, and we resort to the computer to verify that 
for the case of Lax-Wendroff, it cannot hold. Our use of the maximum principle, 
however, reduces the numerical verification to values of a parameter on the boundary 
of the unit circle. The use of the computer in checking stability is not new; see, for 
example, Pereyra, Proskurowski and Widlund [19], Coughran [10] or Gustafsson 
[13]. In Coughran's work, it was necessary to check stability for a range of values 
within the unit circle. Gustafsson has reduced the problem to checking values near 
the boundary of the unit circle. Neither of these approaches, however, is easily 
adapted to cover the case of mesh refinement in time and space. In Section 5, we 
again consider the case of interpolation in time for the interface conditions, but this 
time, where the grids do not meet exactly at a grid point. If the one-dimensional 
grids overlap, interpolation in space is also necessary to determine the interface 
solution values. This mimics more closely the situation in two-dimensional mesh 
refinement calculations. It is no surprise that this case is stable if the nonoverlapping 
case is. In fact, the additional interpolation in space adds enough smoothing to 
stabilize the unstable Leapfrog configuration with interpolation interface equations 
when the grids do match up evenly. This has previously been observed by Reyna [20] 
for the case of mesh refinement in space only. 
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The stability theorems of Kreiss [16] and Gustafsson, Kreiss and Sundstrom [14] 
can be stated roughly as follows. Consider a Cauchy stable difference scheme for the 
constant coefficient hyperbolic initial-boundary value problem 

ut=Aux+Bu+F(x,t), O <xs 00, 

where A, B are constant n by n matrices, u and F E RW. Denote the solution of the 
difference scheme by um = u(vh, mk). We will look for normal mode solutions of 
the form 

(1.1) am = Zmf 

where ? is the solution to the characteristic equation of the difference scheme. This 
results from a discrete Laplace transform in time and the subsequent recurrence 
relation in space. The solution 4 is thus a linear combination of solutions 

(1.2) Ov = E P(V, j)Kj(Z), v > ?09 
|K1 < 1 

where the Kj = Kj(z) are the distinct roots of the characteristic equation, and the 
degree of the polynomial P with respect to v is one less than the geometric 
multiplicity of the corresponding root Kj. An important proposition of Gustafsson, 
et al. [14, Lemma 5.2, p. 660] shows that for any z with IzI > 1, there are n/ linearly 
independent solutions with IKI < 1 and nr solutions with IKI > 1, where / and r are 
the number of points in the difference stencil to the left and right of center 
respectively. For the solution 4 to be in '2, the sum in (1.2) is taken over those roots 

1K1j < 1, and includes roots 1K1j = 1 only if they are roots which approach the 
boundary of the unit circle from the inside as Iz I -1* from outside the unit circle. If 
there are no solutions of the form (1.1) and (1.2) with Izi > 1 and 1jKj < 1 or Izi = 1 
and 1K1j < 1 then the difference approximation is stable. 

In the case of an explicit, two-level dissipative scheme applied to ut = Aux, 
stability implies the estimate (Kreiss, [16]) 

(1.3) jlu(-, t)IIx < KTIIU(, O)IIX. 

Under certain circumstances, results of Osher [18] give the same estimate for 
nondissipative models also. But for general nondissipative or multi-level schemes, we 
only get the weaker estimate (Gustafsson, Kreiss and Sundstrbm, [14]) 

a o 1 1 
_ctv11 

2+ 1 

1+ ak ) E e v I1l ? 1? +k) ak e 
(1.4) ? 

V= 
?leO~kFlt 

?, [( 1I ,k le - art +k)^| + Ile - a( + k) II x, 

for some a0 and all a > a0, and for all sufficiently small k. In this definition t = mk, 
g is the boundary data, and F is a forcing function. In (1.4), the norm of the solution 
in the interior of the domain is taken in both space and time. Recent results of 
Gustafsson [13] give conditions so that an 12-estimate exists for nondissipative 
schemes as well. See Trefethen ([22] and [23]) for a more detailed exposition of the 
stability theory for initial-boundary value problems. 
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The last point we make concerns the so-called folding trick (Ciment, [9]). Consider 
a scalar problem with an interface at x = 0, with one difference scheme on the left 
and a possibly different difference scheme on the right, and some interface equa- 
tions. The stability of the combined scheme can be determined by folding the left 
side along the line x = 0, thus transforming the problem into an equivalent 2 by 2 
system of equations for x > 0, with boundary conditions determined by the interface 
equations. Then, we can apply the initial-boundary value theory. For example, to 
approximate U, = aux, we can approximate the equivalent system 

Ul 8=a 08 U, 
VU2 

t 
0o -aJU2 x' 

where ul(x) = u(x) and u2(x)= u(-x) for x > 0. It is unnecessary to actually go 
through the folding before applying the initial-boundary value problem theory, 
especially since it tends to confuse the notation. We point out that by using this and 
definition (1.4), the solution at the interface will receive special weight that does not 
appear in definitions of Cauchy stability. Trefethen [22] has shown that if one 
applies the folding trick to the Cauchy problem for u, = ux, and applies Leapfrog at 
all grid points including the interface point, the result has a generalized eigenvalue. 

2. Derivation of Root Condition for 3-Point Difference Schemes. In this section we 
derive the root condition for stability of an interface under mesh refinement in space 
and time. Consider the scalar wave equation, ut = ux, with the coarse grid on the left 
of the interface x = 0, and the fine grid on the right. Later, we will consider the case 
Ut= -ux, or equivalently, the case when the fine and coarse grid locations are 
reversed. Let the coarse grid be refined by an arbitrary integral factor n. An equal 
refinement factor in time and space is not an essential part of this derivation, but for 
simplicity we will assume it. We will assume that the difference operator applied on 
both the coarse and fine grids has a three-point stencil, so that only at the one point 
where the stencil cannot be applied do we need a special boundary condition. In this 
derivation, it is not necessary that the difference operator on the coarse and fine 
grids be the same. 
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FIGURE 2.1 
Interface with mesh refinement in space and time 
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The situation we model is illustrated in Figure 2.1. In Figure 2.1, we have drawn 
the intermediate time steps on the fine grid, but in fact we can view the difference 
scheme on the right as being one application of Q', where Q is a three-point 
finite-difference operator with mesh ratio X. The GKS theory says to look for modes 
which grow geometrically in time. Let this factor in time be Zn, instead of z in (1.1). 
The difference equations form a three-term recurrence relation for the spatial part 4 
in (1.2), which has two roots. By the previously mentioned proposition of Gustafs- 
son, et al. there are as many roots Kj, 1K1j < 1, of the characteristic equation as there 
are points to the left of center in the stencil for the difference operator. Correspond- 
ingly, there are as many roots with lKil > 1 as there are points to the right. For 
example, for the Lax-Wendroff difference operator, 

Vm+l = V + 
X 

- ? - ? VP~ VP (V I A2 (DmlVm l) + A2 (DV I - 2vm + v~m l) 

the characteristic equation is 

(2.1) =1?~~~~ 1) X 

(2 .1) 1=I + A _ - K ) ? + - (K - 2+ K1). 

The two roots of (2.1) are 

z - 1+ 2+ (z _ 1)2 + X2(2z - 1) 
(2.2) K+ 

The root K_ is inside the unit circle, K + is outside. Henceforth, we call the roots Kin 

and Kout' 

Since for 3-point difference schemes, there is only one root inside the unit circle, 
the normal modes (1.1) and (1.2) take a particularly easy form. Therefore, on the 
coarse grid to the left of the interface we look for the modes vm = constant(zs 
where for simplicity we will normalize the constant to 1. We use X for the root of the 
resolvent equation for x < 0. Since the coarse grid points are numbered with 
negative indices, for the solution vP to be in '2 we want the root X for which I1i >? 1. 

On the right of the interface, n applications of a difference operator Q has a 
stencil n points to the left of center. By the lemma above, there must be n roots of 
the characteristic equation inside the unit circle. Let x>, j = 0, 1,. . . , n - 1 be the n 
roots of unity; zag are then the n roots of zn . For every value zag there is a 
corresponding root K1 of the difference scheme. Each such mode K1 satisfies the 
requirement that after one global repetition of the difference equations, or n steps on 
the fine grid, the solution in space is multiplied by zn . There are n such modes Kj, 

and since the mapping from the zj = zap with modulus >1 to Kj inside the circle is 
one to one, the Ki are distinct. The general solution represented on the fine grid must 
therefore be of the form 

n-1 

Uv= EpK(Zj)m, 

j=O 

where the pi are constants. This is illustrated in Figure 2.2. 
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FIGURE 2.2 

Normal modes of the solution 

We point out that the solution on either side of the interface must take the form of 
the normal modes at all grid points up to and including the boundary point. On the 
left, we have a three-point scheme which can be applied at all grid points but v0, 
where we must specify one boundary condition. Similarly, at each fine grid time step 
we can apply the difference operator Q at each point u^, v > 1, and specify n 
conditions for the u0, i = 1,... ,n. 

We now examine the interface conditions that these modes must satisfy. The first 
requirement is that the grid point at the interface belong to both the coarse grid and 
the fine grid, v0j = u0, or 

(2 .3) E pj = 1. 
I 

Next, to compute v0 we use a coarse mesh approximation, i.e., we use the grid 
point un? for vi. Since we are looking for normal modes, and v7, v%, and z are already 
determined, this means that the point u? must fit into the normal mode of the coarse 
grid as the point v al, or 

(2 .4) = EPK 

For the remaining n-i grid points uc ba at the interface we will use linear 
interpolation in time, 

giving us the equations 

k 

(2.6)1+-(3-1)P= z = 1., k=1..n-1 

n~~~~~~ 

j, 
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Equations (2.3) and (2.6) together give n conditions that the constants p1, j= 

O ... , n - 1, must satisfy. We can write this as the linear system Wp =b, 

1 1 1 *-- 1 Po 

W0 WI W2 
.. 

n-I Pi 

2 2 2 2 

n-I n-I n-I n-I 

1 
1 +1 (Zn1) 

z n z 
1 2 (zn 1) 
Z2 n Z 

+ (n- ) (Zn_1) 

Z n-I n Zn-I 

Since the matrix W on the left-hand side is a Vandermonde matrix, and the roots of 
unity are distinct, we can solve uniquely for the pj. Furthermore, if we normalize the 
matrix W, defining F = WI/ v, then F is unitary, F*F = I. 

We then solve for p = F*b to get 

(2.7) pi 
= E W((JA)k] + ( 

2n 
1) [ ()k J] 

The last two terms in (2.7) can be summed explicitly. In particular, we use the 
relation 

n-1 

Zkrk= r [rn(n 1)-nrn-I 1]. 
k=0 (1-r) 

Summing and simplifying finally gives the expression for the constants 

(2.8) pi 
= 

)2 2 n-I 
(Z - )2 n zn- 

There is still one equation from the interface conditions, (2.4), that we have not used. 
Substituting the expression for the p1 into (2.4) gives the root condition 

(2.9) T = E (-) n2z KO. 

Let us summarize at this point. If there are eigenvalues or generalized eigenvalues 
that satisfy both the difference equations and the interface equations, they must 
satisfy (2.9). If (2.9) has an 12 solution with IzI > 1, or a generalized 12 solution for 

zi = 1, then the difference equations are unstable. In the next section, we will show 
that for any two-step three-point dissipative scheme, in particular, using the Lax- 
Wendroff difference operator on both the fine and coarse grids, linear interpolation 
for the interface equations is stable. 
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3. Stability of Lax-Wendroff. In Section 2, we derived the root condition for 
interpolation interface conditions assuming the difference scheme could be applied 
at all points up to, but not including, the interface. In this section, we show that for 
the particular choice of the Lax-Wendroff difference scheme on both the fine and 
coarse grids, the root condition cannot hold. In fact, this is true for any three-point 
two-step explicit finite-difference scheme. For multi-level dissipative schemes, an 
additional condition must be satisfied. Since the stability proof for the special case 
of Lax-Wendroff is so simple and straightforward, we prove it separately before 
considering the more general dissipative case. 

THEOREM 3.1. For Lax- Wendroff with interpolation interface conditions, mesh 
refinement in time and space by any integer is stable. 

Proof. To prove this, we must show that the root condition (2.9) cannot hold for 
z I >? 1. The idea of the proof is to apply the maximum principle (see, for example, 

Ahlfors, [1]) to the right-hand side of the root condition (2.9), call itf(z), 

n-1 Ini 2 

(3.1) f(z) E n - 2za K 

We will show that for Iz 1> 1 there are no singularities, and that f(z) is regular at 00. 

It follows that the maximum modulus of f(z) occurs for IzI = 1. We know that T, the 
left-hand side of the root condition (2.9), satisfies I1I > 1. The last part of the proof 
consists of showing that I f(z) < 1 - 8, 8 > 0, for IzI = 1, and so the root condition 
cannot hold. 

First we check for branch points in f(z) in the region Iz > 1. This can only 
happen if there are branch points in the characteristic roots K and X of Lax-Wendroff. 
From (2.2), this occurs for 

(Z _ 1)2 + 2(2z - 1) = 0. 

This is a quadratic in z with roots 

z =(1 - X2) ? iX X2. 

The modulus of the roots is 

1Z12 = (1 -2)2 + X2(1 _ X2) =1 _ x < 1 

since for Cauchy stability for Lax-Wendroff, 0 < A < 1. Therefore, for jzj > 1 there 
are no branch points. 

Next we examine the expression f(z) for large z, by checking the behavior of the 
KI as jzj -x oc. The characteristic equation (2.1) for Lax-Wendroff shows that the 
product of the two roots Kin and K out satisfies 

K inlcout ; + I 

with sum 

K~0 +K 2(z + 
A2- 1) 

in +out A2 + ? 
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Furthermore, the root Kin stays inside the circle for lzj > 1. Otherwise, there would 
be a point where Ki crosses the circle, 'K- = 1 with IzI > 1, violating the von 
Neumann stability condition. Therefore, as z -x 00, 

(3.2) K out otX2 + X 
and 

(3.3) K 2(X l) 

Recalling that Kj = K(zj), and substituting (3.3) into (3.1) gives 

f(Z) 
-n 2 

)] 
it~~~~ n z z 

which is clearly bounded for large I z 
Since f(z) is regular at ox and has no branch points, the maximum modulus 

principle holds, which states that if f is analytic in the interior and continuous up to 
the boundary of a region R, then the maximum modulus I f (z) I occurs on the 
boundary. We will show that the maximum modulus of f is less than, and bounded 
away, from 1 for IzI = 1. 

It is easy to show, as is done in Lemma 6.1 of Gustafsson et al., that the roots of 
Lax-Wendroff for ut = ux satisfy 

J~n < 1 - am |Z >1 

IKout I> 1, |Z| > 1, z = 1, 

K out =1, z=1. 

Therefore the root T in (2.9) satisfies IT-I > 1 for IzI > 1, and all the K1 satisfy 
1KjI < 1 - 6. We therefore have 

(3.4) f(z) (1 -I 

By (2.3) we have that Epj = 1. Using (zn -1)2 = (zn - 1)(1 - z-n)zn and the fact 
that z1 = z for z on the unit circle, the expression (2.8) for the pj can be rewritten 

I IZn _ 112 

n2 -z _12 

Since the p1 are real positive numbers, we have 

(3.5) E IO = 1. 

Therefore, in (2.9), the right-hand side I f(z) I < (1 - 8)n, whereas the left-hand side 
IT > 1. Thus the root condition cannot hold for IzI > 1, and so our approximation is 
stable. EJ 

We now assess the generality of the preceding methods. For general multi-level (in 
time) but three-point (in space) explicit difference schemes, the maximum principle 
still applies (Proposition 3.1). In fact, in the dissipative case, it is only necessary to 
check a finite number of z values on the unit circle to determine stability. In the case 
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of a two-level scheme, this can be done in general (Theorem 3.2). Note that the class 
of explicit dissipative three-point two-level schemes includes only Lax-Wendroff and 
various first-order schemes. 

We show first that the maximum principle can still be applied. For jzi > 1, the 
roots of the characteristic equation satisfy IK-nl < 1 < IKouti, or else the von Neu- 
mann stability criterion would be violated. Thus (2.9) has no branch points for 
z I > 1. Next, the characteristic equation for an s time-level scheme is 

s-1 
zsQ - L z aQ)v = O. 

a =O 
For three-point explicit schemes, this gives a polynomial 

P(z, K) = Z K + Z (Co-l1 + COOK + C0o1K) ? ... = 0. 

As z -o, we must at least have K = O(l/z). Since p1 = O(z'-1), the expression 

f(z)j= Ejp1K' stays bounded. Thus, for general explicit three-point schemes, it is 
again necessary to check the root condition only for values of z on the unit circle. 

Since the root T always satisfies IXI >,1, and the pj are real and positive with 

Spj = 1, we can only have ji j = jp if ITI = jKjj = 1, and in fact, if 

(3.6) T(z) = K(Z1j), j = O,... ,n - 1. 

We summarize this in 

PROPOSITION 3.1. A three-point explicit finite-difference scheme (or combination of 
them) is unstable for mesh refinement in time and space with interpolation interface 
conditions if and only if it admits modes satisfying (3.6) for some Iz I = 1. 

Various cases are now possible. If the coarse grid scheme is dissipative, the only 
root 1X1 > 1 on the unit circle is X = 1. If the scheme is two-level, by consistency this 
implies Zn = 1. It is left to check the behavior of Kj = K(ZWj), 0 < j < n - 1. If we 
use the same scheme on the fine grid as the coarse grid, and note that the root at 
z = 1 T= 1 is simple (see Goldberg and Tadmore, [11]), we must have K(Zwj = 1) 

1 for some j. By dissipativity, K1 ? 1 implies I z < 1. Such an instability is 
therefore impossible, and we have the more general 

THEOREM 3.2. Any two-level three-point explicit dissipative finite-difference scheme is 
stable for mesh refinement in time and space with linear interpolation at the interface. 

Dissipativity guarantees that for a root IKI = 1, K # 1, its amplification IzI < 1. 
For multi-level dissipative schemes it is possible to have K = 1 for z = 1 as well as 
other values I z = 1. Therefore, in our case it is possible to have the root X = 1 with 
Zn = 1. It is thus necessary to check stability for the finite number of values of z for 
which T(zn) = 1. Goldberg and Tadmore exclude this case in their work by 
requiring the boundary scheme to satisfy the sufficient condition 

(3.7) P(z, K = 1) O, IZI = 1, Z ? 1. 

For three time-level schemes, Goldberg and Tadmor show that the only case to 
exclude is z = -1. 

Finally, if only the fine grid scheme is dissipative, overall stability is still assured if 
condition (3.7) is satisfied. 
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We make two remarks about these theorems. First, for dissipative schemes the 
stability results continue to hold for the equation u, = -u,. This is due to the 
separation of roots K, T inside and outside the unit circle. In a dissipative scheme, 

IzI = 1 implies only one of K = 1 or X = 1 holds, and the other root is off the circle. 
Thus, the root condition (2.9) cannot be satisfied. For nondissipative schemes, this is 
not necessarily the case. If Leapfrog is used to solve ut = u, the parameters z = 1, 
T=1, Ko01 = ? 1 yield an instability. However, if Leapfrog is used to solve ut = -u, 
there is no instability for this mode, since for z = 1, we now have X = -1. There is 
an asymmetry depending on whether the fine grid is on the upwind or downwind 
side of the interface. 

The second remark concerns the case of unequal refinement factors in space and 
time. Our method of proof can be readily modified to cover this case as well. Let the 
fine grid be refined by a factor n in time, but m in space. The derivation of the 
constants p1, j = O,... , n - 1, remains the same. The change comes from the final 
interface condition, which becomes vo = uo, or 

11-1 

T = E p1K7m. 

j=0 

Our results for dissipative schemes continue to hold in this case. For mesh refine- 
ment in space only, n = 1, we get the required matching condition X = Kml. For mesh 
refinement in time only we get 

1?-1 

(3.8) T = pjKj. 
,J=o 

The only interesting thing in this case is that even the nondissipative Leapfrog 
scheme is stable, for n > 1. As in (3.6), T(Zn) = K(Zwj), Vj, is necessary for 
instability. But for Leapfrog, the mapping between z and Kin is one to one, and so 
the K1 are distinct. For the case n = 1, (3.8) degenerates to the transparent interface 
problem with no mesh refinement, which has a generalized eigenvalue. 

4. Stability of the Coarse Mesh Approximation Method. We next consider the 
stability of an interface where the intermediate boundary values on the fine grid are 
determined by the Coarse Mesh Approximation Method (CMAM), instead of by 
interpolation in time. Recall from Section 2 the method of computing the coarse grid 
point at the interface: vs is computed using the fine grid point uo for the missing vo. 
The CMAM uses this same method to compute the u , 1 < k < n. For the case of 
Lax-Wendroff, this is 

(4.1) uk = v0 + 2h (u0 - v l ) + k (uo - 2vo + vol). (4.1) ~ 0 0 2h Un 2h 2 n 0 + 

The time step Atk = kAt/n < At, where At is the time step on the coarse grid, so the 
boundary formulae are at least Cauchy stable. The advantage of this interface 
condition is that the equations are the same order of accuracy as the integration 
method, instead of the one order lower accuracy of linear interpolation. 
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To examine the initial-boundary value stability of this configuration, we again 
look for modes 

(4.2) VP= (z)m'r, v = 

(4.3) uW =zm E P1K;((j)), v = 0,1, 2. 
,J=O 

The condition uo = Vo gives 

p, P= 1. 
j=O 

The CMAM interface conditions (4.1) give 

a?-1 

zk EP<=gk k =1,... ,n -1, 
,J=0 

where k is the amplification factor for the Lax-Wendroff operator with mesh ratio 
kX/n, 

(4.4) 9k = 1 + -X(T - T_ 1) + 
(k/ 2 

(T - 2 + T 1). 

Again, we get the linear system 

1 1 1 ... 1 P0o 
'o WI W2 .. n-I Pi gl/Z 

2 2 2 22 
Wo W1 W2 

. 
n-I P2 g2/Z 

@0 1znl z>2 _ 1 . .. evn- Pn-I gn - I/Z 

with solution 

-1 g kj 

pi = E 

The root condition comes from substituting this expression for Pk into the last 
interface condition, vo = u?, or equivalently X = E2n-ZP Kjn, to get 

(4.5) T = L Kn 
k=0 J=0 

This double sum is a much more complicated expression than the root condition 
in Section 2. As before, we know that for values of z with IzI > 1, IXI > 1. We would 
like to show that the right-hand side of (4.5) is always strictly less than 1. Again we 
use the maximum principle. To see that the right-hand side of (4.5) is bounded as 
Izi -x oc, recall from Eq. (3.1) that K1 -X(1 - X)/2zj, so Kn decays like z-n. This 
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is needed to balance the growth of the terms gk in (4.4), which are functions of T. 

Recall that T is the root of Lax-Wendroff outside the unit circle, T-1 is inside, and 
this remains true for all IzI > 1. As z -x oc, from (3.2) we know TX 2z /(X2 + X), 
and so gk grows like z . Thus, for each term in the sum, the growth in gk is exactly 
cancelled by the decay in K1C. This leaves the term (1/z)i, which only helps. 
Therefore, the maximum modulus of the right-hand side of (4.5) occurs for Izi = 1, 
where (4.5) can be written 

n F, F'9 ( WkZ) sk' 
j k 

This sum is difficult to work with analytically, and we turn directly to the 
computer to verify that for Iz I = 1 it has modulus less than 1. Table 1 shows a 
typical calculation checking the magnitude for two refinement ratios n = 2 and 
n = 4, and three mesh ratios X = .2, X = .5, and X = .8. In this table, we evaluate 
the right-hand side for 19 values of z along the boundary of the unit circle; the 
modulus is nowhere close to 1. Based on numerical experiments, we are convinced 
this holds for all mesh ratios X < 1. 

TABLE 1 

Modulus of right-hand side of (4.5) for several 
different refinement ratios n and mesh ratios X. 

9 X = .2 . .5 X = .8 

(z = e i) n = 2 n = 4 n = 2 n = 4 n = 2 n = 4 
.3142e + 00 .8337e - 01 .6427e - 02 .1087e + 00 .1085e - 01 .1230e - 01 .1425e - 03 

.6283e + 00 .1637e - 01 .1789e - 03 .5754e - 01 .2516e - 02 .1148e - 01 .6516e - 04 

.9424e + 00 .6110e - 02 .1789e - 03 .2020e - 01 .2516e - 02 .8706e - 02 .6516e - 04 

.1256e + 01 .2313e - 02 .6427e - 02 .7385e - 02 .1085e - 01 .4980e - 02 .1425e - 03 

.1570e + 01 .2042e - 03 .1975e + 00 .1148e - 03 1236e - 01 .2912e - 02 .1524e - 03 

.1885e + 01 .2313e - 02 .6427e - 02 .7385e - 02 .1085e - 01 .4980e - 02 .1425e - 03 

.2199e + 01 .6110e - 02 .1789e - 03 .2020e - 01 .2516e - 02 .8706e - 02 .6516e - 04 

.2513e + 01 .1637e - 01 .1789e - 03 .5754e - 01 .2516e - 02 .1148e - 01 .6516e - 04 

.2827e + 01 .8337e - 01 .6427e - 02 .1087e + 00 .1085e - 02 .1230e - 01 .1425e - 03 

.3141e + 01 .4444e + 00 .1975e + 00 .lllle + 00 .1236e - 01 .1234e - 01 .1524e - 03 

.3455e + 01 .8337e - 01 .6427e - 02 .1087e + 00 .1085e - 01 .1230e - 01 .1425e - 03 

.3769e + 01 .1637e - 01 .1789e - 03 .5754e - 01 .2516e - 02 .1148e - 01 .6516e - 04 

.4084e + 01 .6110e - 02 .1789e - 03 .2020e - 01 .2516e - 02 .8706e - 02 .6516e - 04 

.4398e + 01 .2313e - 02 .6427e - 02 .7385e - 02 .1085e - 01 .4980e - 02 .1425e - 03 

.4712e + 01 .2042e - 03 .1975e + 00 .1148e - 03 .1236e - 01 .2920e - 02 .1524e - 03 

.5026e + 01 .2313e - 02 .6427e - 02 .7385e - 02 .1085e - 01 .4980e - 02 .1425e - 03 

.5340e + 01 .6110e - 02 .1789e - 03 .2020e - 01 .2516e - 02 .8706e - 02 .6516e - 04 

.5654e + 01 .1637e - 01 .1789e - 03 .5754e - 01 .2516e - 02 .1148e - 01 .6516e - 04 

.5969e + 01 .8337e - 01 .6427e - 02 .1087e + 00 .1085e - 01 .1230e - 01 .1425e - 03 

It would be more satisfying to be able to prove stability analytically for all 
refinement ratios n and mesh ratios A. But, since we only need to check a single 
inequality for a smooth function of the one real variable 6, the computer analysis is 
simple, quick, and we believe, as convincing as a complicated analytical proof. 
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5. Overlapping Grids. In this final section we look at the modifications in the 
interface equations and stability conditions that occur when two grids do not meet 
exactly at a coordinate line. This mimics more closely the situation in two-dimen- 
sional calculations. If different coordinate systems are used in different parts of the 
domain (e.g., body-fitted coordinates around different parts of an airplane), it is 
simpler to have each grid end a short distance past the start of the other, rather than 
forcing a smooth transition from one system to another. Calculations using this 
principle have been successfully done by B. Kreiss [15] and Reyna [20]. Another 
example of this two-dimensional nonaligned interface is seen in Berger and Oliger, 
[4]. In their work on adaptive mesh refinement in time and space, they use refined 
grids which are rectangles rotated with respect to the coarse grid coordinate system. 
Again, spatial as well as temporal interpolation is used in the interface equations, 
since the boundaries of the fine and coarse grids do not coincide. 

The situation we model in this case is the following. 

1 1 n n 
V-2 V-1 UO U U 2n 

3 
UO 

1- 

0 0 00 0 0 
U0 U1 U2U3 Un U2n 

0 0 
V-2 V-, V0 

FIGURE 5.1 
Overlapping grids with mesh refinement in space and time 

In Figure 5.1, the fine and coarse grids overlap by a distance d. It is no surprise 
that if we use Lax-Wendroff to integrate the coarse and fine grids, we can prove that 
this overlapping mesh configuration is stable. Instead, we show that for the Leapfrog 
difference scheme, although the nonoverlapping case is unstable for the refinement 
ratio n = 2 (Oliger, [17]), if the meshes overlap, the smoothing effect of linear 
interpolation is enough to stabilize the system. 

We first make the small modifications needed in the root condition to account for 
the overlap. Proceeding as in Section 2, we look for modes v' = (zn ) mT' for v < 0, 
and KCj = zmjn-0pjKv(,)m for v > 0, where we use p for the constants now. The 
interface condition u0 = v0 is no longer correct. Instead, we use linear interpolation 
in space to determine the fine grid value, 

(5.1) u0 = vo + (h d)( 0 -v 0 

along with linear interpolation in time, 

(5.2) uk= 
k - u0), 0 < k < n. 
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This gives the same linear system as before, but with a modified right-hand side, 

1 1 1 ... O 

Wo W1 ... Wn-1 PA 

2 2 2 2 * n 
W00 W 1 W2 

.. 
Cn-1 P2 

n-1 n-1 n-1 n-1 

1 
1?+1 ( ~Z 1) 

z n z 

1 n-i (z - 1) 
+ 

Zn-1 n Zn-1 

As above, this system is easily solved and simplified to give, as before, 

A 

(zn-1) 
"" 

(a +(1 - a)Tr') = pj(a +?(1 -a) ) 

(z - ) 2nn-1 

where the p, are the constants from the previous nonoverlapping case in Section 2. 
Here we use a = (h - d)/h. 

The last interface condition specifies the value to use for vo. It is set by 
interpolation from the fine grid. Let the underlying coarse point v1 lie between fine 
points us and us +, so s = n + [dn/hJ. We have 

(5.3) v? r) uO + ruo 
where r is the distance from v1 to us, r = d - sh/n, which means 0 < r < 1. After 
substituting the normal modes into (5.3) we get the modified root condition 

(5.4) T [(1 - r)EpjK + rEp>2K p1 j(a +(1 -a) T1). 
.j i 

We point out that in the nonoverlapping case (take r = 0, a = 1 and s = n in (5.4)), 
the characteristic roots K1 = -1, K2= I and T= I corresponding to z= 1 are a 
solution of the root condition, and yield the generalized eigenvalue for the refine- 
ment ratio n = 2. 

To show there are no solutions of the root condition for Iz > 1, we again use the 
maximum principle, and therefore only check for solutions to (5.4) for IzI = 1. The 
characteristic roots for Leapfrog satisfy the following estimates for z = e'6 (Lemma 
6.2 in Gustafsson, et al. [14]), 

IKinj < 1, IKouti > 1 for |sin 61 > X, 

jKinj = 1, IKOuti = 1 for jsin j1 < X, 

Kin = -1, Kout I for O = 0, 

Kin 1, Kout = -1 for 6 = sT, 

Kin = Kout = +i forsinO = +?X. 
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The left-hand side of (5.4), T, satisfies ITI > 1. The factor a + (1 - a) T1 on the 
right-hand side is always less than 1, except when T = 1. Since, using (3.4), the 
remaining part of the right-hand side is always less than or equal to 1, it is only 
necessary to check for equality in the case T =1. Recall that T is a function of 
z11 = ein?6, which equals 1 only for 6 = 277j/n, j = 0,1,... ,n - 1. For these values 
of 6, we check whether 

(5.5) (1-r)2pjK' + rEpK+= 1. 
tj .j 

We can check this explicitly, using the representation (2.8) for pj, and the fact that 
the p,'s sum to 1. Let z = Sk. Then pj(z = Wk) = 3j(n-k)' and so (5.5) becomes 

(1 - r)p-k Kn-k + rpn-kKflk n 1. 

Since pn-k = 1, it remains to check whether Kn-k= 1 for z = Wk. Looking at the 
characteristic equation for Leapfrog, and remembering that Kn-k is the root corre- 
sponding to the amplification in time ZWn-k, we get 

(Zwn-k) 
2 

|(-(Zion-k )2)2 + 
1/2 

Kn-k = 

- \2kI 
2X(Z&n-k) 4 4A ( -k 

It is easily determined that for z = Wk, Kn-k = -1, and not 1. Thus, there are no 
values z and K for which the root condition (5.4) holds, and so Leapfrog with 
overlapping meshes and mesh refinement in time and space is stable. 

We point out that we have not considered the case where the fine and coarse grids 
overlap by a distance d where d is a multiple of the fine mesh width h/n. This 
corresponds to taking r = 0 in (5.5). In this case, spatial interpolation is not needed 
in computing v0. Equation (5.5) reduces to determining if Ks k= 1. One could 
presumably find values of s and n for which this holds. Reyna [20] has observed that 
straight injection at the interfaces in conjunction with Leapfrog is unstable in the 
case of mesh refinement in space only. 
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