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Stepsize Restrictions for Stability of One-Step 
Methods in the Numerical Solution of 

Initial Value Problems 

By M. N. Spijker 

Abstract. This paper deals with the analysis of general one-step methods for the numerical 
solution of initial (-boundary) value problems for stiff ordinary and partial differential 
equations. Restrictions on the stepsize are derived that are necessary and sufficient for the rate 
of error growth in these methods to be of moderate size. These restrictions are related to disks 
contained in the stability region of the method, and the errors are measured with arbitrary 
norms (not necessarily generated by an inner product). 

The theory is illustrated in the numerical solution of a diffusion-convection problem where 
the error growth is measured with the maximum norm. 

1. Introduction. 
1.1. The Relevance of A[D]-Stability. In 1963 Dahlquist [4] introduced the concept 

of A-stability in the analysis of numerical methods for solving initial value problems 
for ordinary differential equations. This concept is based on the error propagation in 
a numerical method when it is applied to the simple scalar test equation dU(t)/dt = 
XU(t) with X E C. Between 1976-1979 the criterion of A-stability proved to be of 
great relevance in a rigorous analysis of error propagation in methods for solving 
problems that are essentially more general than the scalar test problem (cf. [2], [8], 
[1], [13], [5]). A priori estimates were obtained of error propagation in general 
one-step methods applied to arbitrarily stiff linear systems of ordinary differential 
equations and linear partial differential equations (cf. [2], [8], [1]). 

After 1963, the concept of a stability region S in the complex plane (cf. Subsection 
1.2) was studied, which led to several weaker versions of A-stability (cf., e.g., [14]). 
One of these versions, A(a)-stability, can also be applied successfully in a rigorous 
analysis analogous to the above (see [2], [20]). 

In the present paper, we focus on some other weaker version of A-stability namely 
A[D]-stability (cf. [14], [9], [10] and Subsection 1.2). Here D denotes a disk in the 
complex plane (bounded by a circle passing through the origin) and it is required 
that D c S. In contrast to the requirements of A-stability and A(a)-stability, the 
requirement D c S can be fulfilled by explicit methods. 

Under the assumption of A[D]-stability, we give in this paper an analysis of error 
propagation in a framework that has similarity to those mentioned above (cf. [2], [8], 
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[1], [20]). We shall arrive at conditions on the stepsize that are (necessary and) 
sufficient for the rate of error growth, in a given method, to be of moderate size. 
These conditions will be illustrated in the solution of a diffusion-convection prob- 
lem. 

Further, we shall relate the concept of A[D]-stability to some other known 
stability concepts (spectral stability condition, von Neumann stability condition, 
weak and strong stability, contractivity). 

We note that, under the assumption of A[D]-stability, already rigorous results on 
error propagation were obtained for linear k-step methods by Nevanlinna [13] and 
Dahlquist [5]. These results are more general than ours in that the differential 
equations considered were allowed to be nonlinear, and k was allowed to be > 1. On 
the other hand, the norms we shall deal with need not be generated by an inner 
product, and the number of stages in the numerical schemes that we shall consider is 
not restricted to 1-as was the case in [13], [5]. 

1.2. Notations and Definitions. With 4 we denote a given rational function, 

0() = Pj(t)/PO(t), where PI, P0 are polynomials with real coefficients, no common 
zero and P1(0) = P0(0) = 1. For any s x s matrix Twe say that 4)(T) exists, and we 
write + (T) = PI(T)Po(T)-1 whenever the matrix Po(T) is regular. 

We shall be concerned with the rate of growth of vectors un Ee RS that are 
computed from the recurrence relation 

(1.1) un= p(hA)Un-1 (n = 1,2,3,...). 

Here h > 0 is the stepsize, and A denotes a given real s x s matrix. 
In many applications u,, stands for an approximation to U(nh). Here U(t) E RS 

denotes the solution to a given initial value problem for a system of ordinary 
differential equations 

(1.2) d U(t) = AU(t) (t > 0), U(o) = u0. 

Many known numerical methods for solving ordinary differential equations, such as 
Runge-Kutta methods and Rosenbrock methods, result, when applied to (1.2), in a 
procedure of type (1.1). 

Further, many numerical schemes for solving initial-boundary value problems in 
partial differential equations can be written in the form (1.1) (see, e.g., Section 7, and 
[17], [8], [19], [23], [26]). Here s will often stand for the (large) number of gridpoints 
involved at any fixed time level t = nh. 

In this paper, the rate of growth of the Un will be related to the size of h and of 
quantities r and R that we are now going to define. 

The stability region S of 4 is defined by 

S = {I E- C and 0 is regular at t with 1 1 . 

The disk D = 9(t, p) in the complex plain is defined by 

D = {t t E CandI - l < p- 

for ( E C, 0 < p < x. Further, the procedure (1.1) is called A[D]-stable if D c S. 
We define the stability radius r E [0, o.] of 4 by 

r= sup {pI0 < p < x and9(-p, p) c S}. 
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Finally, R e [0, ox] is defined by 

R = sup { p I p = 0, or 0 < p < x and 4 absolutely monotonic on [-p,01 } 
(a function is called absolutely monotonic on an interval if the values of the function 

and of all its derivatives are finite and > 0 on that interval). For reasons becoming 

evident in the subsequent we call R the contractivity radius of 4. 
In this paper, we deal mainly with matrices A such that (1.2) is stable in the sense 

that the solution to (1.2) remains bounded as t -x o (for each starting vector 

uo E Rs). We aim at transparent conditions on the stepsize h > 0 that guarantee an 

analogous stability-behavior for the vectors un satisfying (1.1). Similarly to the 
frameworks in [2], [8], [1], [20], and motivated by the applications to partial 
differential equations mentioned above, we shall focus on stability results for (1.1) 
which hold uniformly with respect to the dimension s. 

In most applications, it is the growth of the difference between two solutions, say 

un and in, to (1.1) which is significant. For instance, un may stand for the numerical 

approximation obtained in the presence of a rounding error v0 = ui - u0. Since the 

resulting error Vn = Fn - U n then also satisfies (1.1), our stability results on the 

growth of u,, will also be relevant to the growth of errors vn in the application of 

method (1.1). 
1.3. Organization of the Paper. In Section 2 we introduce the classes of matrices A 

for which we shall analyze the stability of process (1.1). We prove a theorem on these 
classes that was already applied in [22]. 

In Section 3 we deal with a recurrence relation for un that can be viewed as 

originating from an application of method (1.1) to a simple (but nonscalar) 

testproblem of type (1.2). This recurrence relation enables us to relate in a natural 
way A[D]-stability to a number of well-known other stability concepts. 

In Theorem 4.1 of Section 4, we present a condition (in terms of the radius r) on 

the stepsize h > 0 which is necessary and sufficient for (a weak version of) stability 
of the general process (1.1). At the end of Section 4, we also present stability results 
for the case where h in (1.1) is replaced by a variable stepsize hn > 0 (n = 1, 2, 3,...). 

Theorem 5.1 in Section 5 is concerned with an analogous condition (in terms of 

the radius R) on the stepsize h > 0 which is necessary and sufficient for the stronger 

version of stability called contractivity. 
In Section 6, we discuss modifications of Theorems 4.1, 5.1. 
Section 7 contains an illustration of the material of Sections 2, 4, 5 in the 

numerical solution of a diffusion-convection problem. 
We note that the tools used in the proofs in Sections 4, 5 mainly consist in power 

series expansions for matrix-valued functions and Parseval's formula for complex 
functions. Our arguments are therefore more elementary than those used in the 

proofs of the important paper by Brenner and Thomee [1] referred to in Subsection 

1.1. 

2. Two Classes of Matrices A. Let RS denote the s-dimensional real vector space 

equipped with an arbitrary norm I . Let a, T, a E R with X> 0. 
Following [23], we denote by Y(Rs,, T), the collection of all real s x s matrices 

A such that 

(2.1) JJA + T-1J < T1 + C. 
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Here denotes the (lub-) matrix norm induced by l I, i.e., 

II TI| = sup{ ITxI: x E RS with lxI = 1) 

for any s X s matrix T. 
Further, we denote by V(Rs, w, a), the collection of all real s x s matrices A such 

that 

(2.2) IIA II a, u[A] < w 

Here ,[ .1 denotes the logarithmic norm induced by - l, i.e., 

M[A] = lim t-1(III + tAll - 1) 

(cf. [3]; I denotes the identity matrix). 
The inequality (2.1) implies that the spectrum of the matrix A is contained in the 

disk 9 (-T1, -I + w). For normal A and the Euclidean norm this spectral property 
is even equivalent to (2.1). In [10], [23] property (2.1) was called a circle condition. 
For further interpretations of the class Y(Rs, T, ), see [10], [23]. 

The inequalities in (2.2) only involve the (logarithmic) norm of A itself so that the 
intuitive meaning of the class V(Rs, a, a) is even more easily grasped than that of 
Y(R, CO, T). Therefore, the following Theorem 2.1, relatingY(RsW, T) to V(Rs, , a) 
is of importance. 

We refer to Section 7 for an example involving the classes Y(Rs,, T), V(RS ~, a). 
With R., we shall denote RS when equipped with the pth Holder norm IxIp = 

(EIj IIP)l/P (when 1 < p < x), IxIp = maxjI jI (when p = ox) for x = 
(41, 42, . . 45)T E Rs. The corresponding matrix norm is denoted by 11 .- 

THEOREM 2.1. (Relations between Y(Rs, T, ) and (Rs , w, a).) Let X, a E R with 
a > w. Then 

(i) _(Rs, a, a) D Y(Rs, a, 2(a - )-1) for each norm I - I in Rs; 
(ii) -(Rs, a, a) = Y(Rs, a, 2(a - w)1) when the norm in RS is given by IxI = IQxIp 

where Q is a regular s x s matrix and p = 1 or p = x . 

Proof. 1. Defining T = 2(a - w) -, we have for any A GE Y(RS, W, T), the inequali- 
ties 

I|A II _ T-'-<, IIA + T -'II < W4 + T-', 

and therefore, 

h|AIl < w + 2T1 = a. 
This proves (i) since u[A]< T_'1(III + TAII - 1) < T-1(T(W + T-1) - 1) = w (cf. [3]). 

2. In order to prove (ii) we first assume p = x, Q = I (the identity). Let 
A E w, a), A = (aix). 

For x = ...' y= (n... )T E RSW with IxIK = 1, y = (I + TA)x we 
have 
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Hence, 

'ii < Oi(1 + Tain) + (1 
- 

0i)(-1 
- 

Taii) + T Eaija (1 < i < s) 
,j * 

with 0i = 0 (when 1 + Taii < 0) or 0i = 1 (when 1 + Taii > 0). Consequently (cf. 

[3]), 

!i| < . {1 + Tai T E laiil} +?(1 - 0)( 1 
- 

Taij + T E laij} 
j=*i J*i 

< 0,(1 + TW) +(1 - 0,)(-1 + T1JA Jj) 

< 0j(1 + TW) +(1 - 0,)(-1 + T- ( + 2T-1))= 1 + T. 

Therefore, I(I + TA)xlIo = IyIOO < 1 + TW, which proves A E Y(RS<, T). Hence, 

2(RW., 4, a) = ?(RW., , T). 
3. We note that for any s x s matrix A = (aij) we have IhAII1 = lIATllo, ji1[A] = 

MIjAT]. From w o, a) = Y7(Ro, T) a4 we thus conclude that also (1, to, a) 
= (RWI, CO, ). 

4. Let I * I be any norm in RS for which we have (RS, 0 a) = Y(Rs, 4,, T). Let Q 
be a regular s X s matrix and put IxI* = IQxI (for x E Rs). The matrix norm and 
logarithmic norm induced by I l* are denoted by jj * u,*[ *I. 

For any s X s matrix A we have 

l*[A] = t[QAQ-1], IIAII* =jjQAQ-111 and |A + T-111* =-jQAQ-1 + T-11. 

From these relations it easily follows that also 4(Rs, 4, a) = (, 4,, c ) with 
respect to the norm I - 1*. 

In view of the parts 2, 3 the proof is now complete. E 
Remarks. 1. By part (i) of the above theorem, we have for each A e Y((RS, 4 ), 

the inequality u[A] < co, and therefore (cf. [3]), 

| U(t) I< exp(,t) ju0j (for t > 0) 
for the solution to (1.2). If 4 < 0, the solution to (1.2) is thus bounded uniformly for 
0 < t < x. 

2. One easily verifies that statement (ii) in the above theorem is not valid in case 
Q = I and p = 2. 

3. Statement (ii) with Q = I, p = x, is a basic means for proving the expression 
for the stepsize threshold that was presented, without full proof, in [22]. 

3. Relating A[D]-Stability to Other Stability Concepts. In order to obtain insight 
into the possible rate of growth of vectors u,, computed from (1.1) when A belongs to 
one of the classes defined in Section 2, it is useful to consider the case 

(3.1) Un = k(As)un-l (n = 1,2,3,...). 

Here As denotes a bi-diagonal s X s matrix of the form 
~ 

p 0 ... 0 

0 p 

(3.2) As= : . * . 

0 ... 0 
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with (, p E R, p > 0. Moreover, the subsequent stability analysis will relate A[D]- 
stability in a natural fashion to a number of other stability concepts. 

THEOREM 3.1. (Necessary condition for weak stability of (3.1).) Let 4(D) be regular 
at D = a, and let 1 < p < x. Assume there exist y, q < x, such that 

(3.3) IunIp < ynq _ 
|U01 ( for aln> 1, s >1, uo E RsI) 

whenever un satisfies (3.1). Then, 

(3.4) 9(t, p) c S. 

Proof. Apply Lemma 3.2, to be given at the end of this section. E 
The above theorem, constituting the main result of this section, shows that there is 

weak stability (in the sense of (3.3)) only if there is A[D]-stability with disk 
D = 9( , p). This contrasts with the familiar spectral condition for stability, which 
for (1.1) requires that the spectrum of the matrix hA is contained in (the interior of) 
S. The latter condition reduces for the case of (3.1) to the requirement 1I(4)j < 1. 
This is, generally, a much weaker requirement than (3.4). Similar shortcomings of the 
spectral condition for stability (uniformly with respect to s) were stated, e.g. in [16], 
[17, p. 152], [11, pp. 258-261], [12], [19], [26]. 

We note that Theorem 3.1 can also be proved, slightly differently, by using the 
Godunov-Ryabenkii criterion for stability (cf. [17, p. 153]). We have preferred the 
proof via Lemma 3.2 since it is more direct and shorter. 

It is interesting, and not surprising in view of the Godunov-Ryabenkii criterion, 
that condition (3.4) can be arrived at in a heuristic fashion by putting s = x in (3.1). 
The components u jof the vector un would then satisfy 

00 
kl)k Zn> , Un j= E ! P un-l,j+k j E Zon ) 

k=O 
k 

and the von Neumann condition for stability (cf. [17]) applied to this difference 
scheme, reads 

(3.5) |_ pkeikt < 1 (for-o < t < o). 

Clearly (3.5) is equivalent to (3.4). 
We conclude this section with 

LEMMA 3.2. Let the rational function 44(D) be regular at D = a, and let 1 < p < x. 
Then 

(i) lims ool1[[(As)]njjp= 00 (for each n > 1) when 4(r) has a singularity in 

?(,P); 
(ii) 2 - II[4(A)]II > Mn - g(s, n) (for each n > 1) with lima s g(s, n) = 0, 

M = max{t I(4)1: ' E 9(t, p)} when 4 (D) is regular on 9(t, p). 

Proof. With E we denote the s x s matrix all of whose entries -ij vanish with the 
exception of -i i+l = 1 (1 < i < s - 1), and we define yj= (j!)1(i)(t) pi (for 

j = 0,1,2,...). 
For n > 1, we have 4(A )s = SY Yj.2 *- - .j * Eil+i2 + +i where the summa- 

tion is for all integers j, > 0, 12 > 0,.. .* n > 0 withjl +12 + * +in <1 S - 1 (cf. 

[6]). 
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Denoting also for complex vectors y E Cs the pth Holder norm by IyI P, we have 
for I < p < x and for anyy = (no, 2,- . . q)T E- Cs with IyIP < 1, the inequality 

2 -41(A5) IP > 10(A5)nYI = E E kP1+k| 1i/p 

where 

13k = iE Y11 Y1 , Y.n (k >o ). 
jl + - + j,,= k 

Let 0 E (O, 1] be such that 4(4) is regular on 9(t, Op). Choosing y = 

(rX1, qs2,--- )T E Cs with 'qk = rq00k exp(ikt) (for 1 < k < s), o = si/p (when 
0 = 1), qo = -1(1 - 0P)i/P (when 0 < 0 < 1), t E R, we thus obtain 

2 .1+(A5) nP > o E 9p(s m)| L Ik0kexp(ikt) 
rn=O k=O 

Writing D = ?Op exp(it), we have 
i 

kn lim P /Bk0 exp(ikt) = 0(D) 
m-o>o k=O 

From this relation, we can conclude that, for 1 < p < x, 

2 - 1(A) I > 
| +(D) I-g(s, n, 0) 

with lim5 sg(s, n, 0) = 0. Since II4(AIs)In = II4(As)Ill, this result is also valid 

forp= x. 
Statement (i) of the lemma follows easily by varying t and 0 appropriately, and 

statement (ii) follows by choosing 0 = 1 and t such that I4Q + p exp(it))l = M. 
E 

Remark. Although it is not essential in the stability considerations concerning 
process (3.1), it is worth mentioning that the factor 2 occurring in statement (ii) 
(Lemma 3.2) can be omitted. This follows from a proof communicated to us recently 
by M. Crouzeix. 

4. On the Relevance of the Radius r to the Stability of (1.1). 

4.1. A Necessary and Sufficient Condition for Stability of (1.1). In this section, we 
give a stability analysis of (1.1) based on A[D]-stability with D = 9(-r, r), where r 
is the stability radius defined in Subsection 1.2. 

In the present subsection, we state the main result of this analysis in Theorem 4.1. 
The proof of the theorem will be based on Theorem 3.1 and on two corollaries to the 
technical Lemma 4.2. This lemma will be presented in Subsection 4.2 while its 
corollaries are given in Subsection 4.3. The corollaries in the latter subsection also 
contain some conclusions that have not been incorporated into the main Theorem 
4.1, among other things a conclusion on the variable stepsize version (4.1) of (1.1). 

The subsequent Theorem 4.1 provides a restriction on the stepsize h > 0 (see (si)) 
which is sufficient for weak stability of the process (1.1) (uniformly with respect to s; 
see (s3)). Further, the theorem implies that restriction (si) is also a necessary 
condition, already for a weaker version (namely (s2)) of the weak stability property 
(s3). Finally, the theorem shows that, under some additional condition on A, the 
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stepsize restriction (si) is even sufficient for (strong) stability of (1.1) (uniformly 
with respect to s; see (s4)). 

An illustration of Theorem 4.1 is presented in Section 7. 

THEOREM 4.1. Let h, Tr, p be given with 0 < h < x, 0 < T < xc, 1 s< p < 0o. Then 
the following four statements (sl)-(s4) are equivalent to each other. 

(sl) 0 < h < rT; 

(s2) k(hA) exists and (1.1) implies lungI < yn qujOP (for each n > 1, s > 1, 

Uo E Rs, A = As (see (3.2)) with -t = p = T-1). Here y, q are constants independent 
of n, s, uo; 

(s3) 4(hA) exists and (1.1) implies IuI < -yn 1/2IuoI (for each n > 1, s > 1, uO E RS, 
A GE (RS, 0, O) and each norm I in Rs). Here 'y is a constant independent of n, s, u0, 
A, I -; 

(s4) k(hA) exists and (1.1) implies JunI < [(-OWT)(2 + 0T)] -1/21UOI (for each n > 1, 
s > 1, uo E Rs, < 0, A E Y(RsW, a T) and each norm I - I in Rs). 

Proof. 1. Assume (sl). Then (s3) follows easily from Corollary 4.3 stated in the 
next Subsection 4.3. We only have to apply this corollary with h = h, co = 0 and 
p = r (when r < oo) or p e [ho1w, 0o) (when r = ox). 

Further, (s4) follows immediately by applying Corollary 4.4. 
2. Since A = As with -I = p = -1 (see (3.2)) belongs to the class (RWp, 0, T), one 

easily sees that (s3) implies (s2) with q = 2 

Applying Theorem 3.1 (with (, p replaced by ht, hp), we see that statement (s2) 
implies 

2(-h-1, hTw1) = 2(ht, hp) c S. 

Hence, (s2) implies (si). 
3. It remains to show that (s4) implies (si). 
Let 0 1+<o>0 and A=A with =-T 1, p= +T-+. Since Ae 

(p O, T), statement (s4) implies that +(g) is regular at h = Thyl, and that 

II[p(hat)I]I nP < Y (for all s > 1, n >? 1) 

with y = [(-W T)(2 + CrT)] -1/2. An application of Theorem 3.1 (with q = 0, = 

-hTX-, p = h(X-1 + a)) shows that 

.9(-hT-, hTr1 + ho) c S. 

Since S is closed, it follows, by letting X -* 0- , that 

.2(-hT-1, hTal) C S. 

Hence, ho T r which implies (si), and completes the proof of the theorem. D 
Remarks. 1. In the majorization (s4) the factor n'12, which is present in (s3), has 

disappeared. This is compensated by the factor T-1/2 in (s4), which satisfies 

T-1/2 < r1/2h-1/2 = (r/t)1/2 * n1/2 with t = nh. 

2. The constant y in (s3) can be chosen, to some degree, independently of the 
parameters h E (0, Go) and X E (0, Go). 

Assume (si) and r < Go. Then (s3) holds with y only depending on 4. 



NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS 385 

Assume (si) and r = x. Let hT' 1 p < x. Then (s3) holds with y only depend- 
ing on 4 and on p. 

These two conclusions easily follow from Corollary 4.3. 
4.2. Formulation and Proof of Lemma 4.2. In this subsection we deal with a slightly 

generalized version of procedure (1.1). We consider the recurrence relation 

(4.1) un= =(hnA)un-1 (n = 1,2,3,...) 

with arbitrary stepsizes 

hn > 0 (n = 1,2,...). 

The subsequent lemma is a convenient means for obtaining upper bounds for IunI 
under various conditions on A and hn. 

We introduce some notations needed in the formulation of the lemma. 
For t e C, 0 < p < x, we define , p) = x when 4 has a singularity in 

2(t, p), and .#(t, p) = maxt 1{ (t)1: t E 2(t, p)} when 4 is regular on 2(t, p). 
We assume r, c, 0 E R with 

(4.2.a) T > 0, 1 + COT > 0, > 0, 

and we define Xn,un (for n = 1, 2, 3,.. . ) by 

(4.2.b) An = (-hnT-, (1 + CT)hnT 

(4.2.c) =n .k(-hnTj', 0 -1h,Tr 1). 

LEMMA 4.2. Assume (4.2) and XA < x, ,U< x (n =1,2,3,...). Let m be an 
arbitrary integer > 0. Then, for each n > 1, s > 1, A E Y (Rs, C, T) and each norm 
in Rs, the following statements (4.3), (4.4) are valid. 

(4.3) 4)(hnA) exists, 

II1)(hnA) . 4 (h2A) 0 (hA)II 
(44)( ){ m 1 1X)22 (I?TA)k } 

~ 2 IT)2kllj+T)k 

+ ( al 
E 

)(L 2kll(j + TA) k|) 
j=l k=m 

The first sum in the right-hand member of (4.4) stands for zero when m = 0, and it 
stands for 1 when m > 0, (1 + WT) = 0. 

Proof. Defining (n = -hnT-v we have, in view of (2.1), for any A E Y(Rs, , T) 

the representation hnA = n- nB where the s X s matrix B satisfies 

B =I + IA, ||BI < 1 + WT. 

From (4.2.b), Xn < owe see that 4 is regular on -((n I1n(1 + WT)I). Therefore, 
using the above representation for hnA, it follows (cf. [6]) that (4.3) holds. 

From (4.2.b), (4.2.c), Xi < x, ,ji < x (for 1 < j < n),we see that the rational 
function f defined by 
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is regular for all D E C with 1 < max[(1 + WT), 6-']. Denoting the coefficients of 
the Maclaurin expansion of f(') by Yk, we thus have 

(4.5) f () = TO + Y1, + y2 2 + * (for 1j1 < max[(1 + am), W -'I). 
Consequently (cf. [6]), 

(4.6) .p(hnA) . 4 4 - 0(h2A) p(hA) = f (B) = yo + yjB + y2B2 + 

From (4.6) we obtain, by two applications of Schwarz' inequality, the upper 
bound 

( 
m-1 ) 1/2 m-1 1/2 

Ilf () < (-yk ( + COT) 
k 

{ y 1+ T2kJIB kII2} 
k=O k=O 

00 1/2 ?? 1/2 

{k r (.Yko k)2} E0k I 1/2 
k=m2 k=m 

For any a with 0 < a < max[1 + an, 6-1], we obtain from (4.5), by applying 
Parseval's formula, the relation 

I (Yk~a)2 = (2)-1 I2'f(e it)I2dt. 
k=O 

In view of the definition of f, it thus follows that 

k=O j=1 

Applying the last inequality successively with a = 1 + an and with a = -1, we 
easily obtain from the above upper bound for lf(B)/I the inequality (4.4). C 

4.3. Upper bounds for junl. We now state three interesting corollaries to the above 
lemma, the first two corollaries of which were essential in our proof of Theorem 4.1. 

COROLLARY 4.3. Let 0 < T < x0, 0 < p < x, p < r and 0 < hn < pT. Assume 
X > 0 and 4 regular on 9(-p, (I + Wr)p). Then 4)(hnA) exists and (4.1) implies 

lunI < yn1/2L nuU0 (for each n > 1, s > 1, uo E Rs, A E 2F(Rs, W, T) and each 
norm I j in Rs). Here y only depends on 4, p and on the product coT. Further, 
L = J(-p,(1 + w'T)p), andL = 1 when w = 0. 

Proof. We shall apply Lemma 4.2 with 6 > 0 such that 

1 + oT < '-1, M(-p, 6'p) < 00. 

Clearly, the relations (4.2) are fulfilled with 

Xn <: L = M(-p, (I + COT)p) < x0, 11n < M = M(_p, gy-p) < 00 

Note that L = 1 when c = 0, since 0(0) = 1, p < r. 
Let n > 1, s 1, u E RS, uo # 0 A E Y(RsW , T) and I be given. By Lemma 

4.2 we then have (4.3), and (4.1) then implies 

oo 1/2 

IunI/IUj| < L m"'2 + M k 2k(m + )2k} 

k=m 

Choosing m = nj, we thus have 

IunI/ju0L < Ln(jn)1/2 + { M[6(1 + T )]'j} n _ {1- 2(1 + T)2}-1/2 
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Taking the integer j so large that M[0(1 + WT)]j < L {1 - 02(1 + WT )2}1/72 there 
follows IunI/Iu0I < (j1/2 + 1)L'n'/2, which proves the corollary since y = (j1/2 + 1) 
only depends on 4, p, WT. El 

COROLLARY 4.4. LetO < T < x, O < h < x and O < h < rT. Assume w < 0. Then 
4)(hA) exists and (1.1) implies 

|un1 < [(-WT)(2 +WT)] 
- 

uOI 

(for each n > 1, s > 1, uo e Rs, A E Y(Rs, W, T) and each norm in Rs). 

Proof. When A E Y(Rs, W, T), we can apply Lemma 4.2 with hn-h, 0 = 1, 
m = 0. By (4.3) the matrix 4)(hA) thus exists, and by (4.4) we easily arrive at 

114(hA) {k(O (Iki+A)k2} ) 

In view of (2.1), we have II + TAIl 1 + WT, and, consequently, 
00 

()n,12 ? (1 + )2k = [(-WT)(2 + WT)]'. f 
k=O 

The next corollary is obtained by applying Lemma 4.2 similarly as in the proof of 
Corollary 4.4 with hn h, m = 0, but with 0 = (1 + WT/2)'. Since the proof is 
analogous to the above, we omit it. 

COROLLARY 4.5. LetO <iT < < xO < h < x andO < h < rT.Assumew < 0. Then 
0(hA) exists and (1.1) implies IunI < yMnIuoI (for each n > 1, s > 1, u0 E RS, 

A E Y(Rs, W, T) and each norm I - in Rs). Here y = (2 + WT)[-WT(4 + 3W T)]-1/2, 

and M = .,k(-hT - , (1 + WT/2)hT-l) satisfies M < 1 (provided the rational function 
4 is no constant). 

This corollary implies that when w < 0, A E Y(Rs, W, T) and h is restricted as in 
Theorem 4.1, any un satisfying (1.1) damps out exponentially when n -x o. This 
asymptotic behavior of the approximations un , U(nh) is desirable since an analo- 
gous behavior is shown by the true solution U(t) to (1.2) (cf. Remark 1 of Section 2). 

5. On the Relevance of the Radius R to the Stability of (1.1). In this section the 
parameter R, defined in Subsection 1.2, will be compared with the radius r and 
related to the stability of the process (1.1). 

The definition of R implies that, for any p E (0, R), the Taylor coefficients 

Yk = (k!) 0(k)(_p) satisfy Yk > 0 and 

Y0+YP+Y2P 2+ - (O )= 1. 

Consequently, procedure (1.1) is A[D]-stable for any D = 9(-p, p) with p E (0, R), 
so that 

(5.1) R < r. 

The subsequent Theorem 5.1 has a structure similar to the one of Theorem 4.1 in 
the above section. Comparing both theorems we see that, in view of (5.1), the 
stepsize restriction (S1) occurring in Theorem 5.1 is, generally, more severe than the 
analogous restriction (si) in Theorem 4.1. This is in agreement with the fact that the 
corresponding stability result (S3) in the subsequent theorem is much stronger than 
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the analogous result (s3) in Theorem 4.1. The property Iui u luol occurring in (S3) is 
often called contractivity (cf., e.g., [23], [26]) and is related to what sometimes is 
called practical stability (cf., e.g., [12]). 

An illustration of Theorem 5.1 is presented in Section 7. 

THEOREM 5.1. Let h, T, p be given with 0 <h < xc, 0 < T < xo, and p = 1 or 
p = 00. Then, the following three statements are equivalent to each other. 

(SI) 0 < h < RT; 

(S2) p(hA) exists and (1.1) implies junjp < luolp (for each n > 1, s > 1, uO e RS, 

A = As (see (3.2)) with -S = p = X I 
); 

(S3) 0(hA) exists and (1.1) implies IuJ < IuoI (for each n > 1, s > 1, u0 e RS, 

A E Y(RsO, O) and each norm It in Rs). 

Proof. 1. (S3) implies (S2) since A = As with -_ = p = Tr1 belongs to Y(Rp, 0, O). 
2. Assuming (S2) we prove (Si). With A as in (S2) we have 4(hA) = yo + yl(f3E) 

+ *. * + ysi(3E)s-l, where /3 = hp, Yk = (k!)Y- (k)(-,/) and E is the matrix 
defined in the proof of Lemma 3.2. Consequently, 

1 > 11k(hA)Ilp = myol + IY1j/3 + + Kys-1/I:' 

for each s > 1. We thus obtain 
00 00 

> E I YkI3 > E Y.k3 = (p(?) = 1. 
k=O k=O 

It follows that 0(k)(_/)> 0 and +(D) is regular on (-9 , /3). 
For any t E [-/3, 0] we thus have 

?(k)(t) - 4+(k)(_#) +(t + 3)0(k+1)(_#) +(2!) (t + :)2+(k+2)(_A) + ... > 0 

(for all k > 0). Hence ,8 < R, which proves (Si). 
3. Assume (SI) and let A GE ?(Rs, 0, T). In view of (5.1) we have, similarly as in 

the beginning of the proof of Lemma 4.2 (with n = 1), 

k(hA) = yo + y1B + y2B2 + 

with Yk - (k!) -(hT-l)k(k)(-hT-l), IIBII < 1. Hence, 

110(hA)II < I-YOI + IY1I + IT21 + = TO + 71 + 72 + = 00) =1 

which completes the proof of (S3). [U 
Remark. The implication (Si) - (S3) follows immediately from [23, Theorem 3.3]. 

We have included the above proof of this implication since it is very short and keeps 
the paper self-contained. 

6. Modifications of Theorems 4.1, 5.1. Suppose the norm in RS is generated by an 
inner product, i.e., IxI = <x, x)1"2 (for all x E Rs). Then, an interesting modification 
of Theorems 4.1, 5.1 is possible. 

One arrives at this modification by a straightforward application of Theorem 3.1 
and a theorem of J. von Neumann (see [18, p. 432], [8], [2]). The latter theorem, 
applied to the situation at hand, says that for any s X s matrix T with lub-norm 

IT II < 1 and rational f mapping 9(0, 1) into 9(0, 1), one has the bound IIf(T)II < 1. 
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By choosing f(t) = 4(-h '(1 - c)), T = I + TA, one thus obtains 

THEOREM 6.1. Let h > 0, T> 0 be given. Then, the following three statements are 
equivalent to each other. 

(a1) 0< h ,rTr; 
(a2) 4)(hA) exists and (1.1) implies junJ2 < ju012 (for each n > 1, s > 1, uo e RT, 

A = As (see (3.2)) with -s = p = I); 

(a3) 0(hA) exists and (1.1) implies Iuni < luol (for each n > 1, s > 1, uo e R, 
A GE 2(Rs 0, O) and each norm I - in RS generated by an inner product). 

By this theorem we thus have contractivity (see (a3)) for stepsizes h subject to 
(al). This stepsize restriction is, generally, weaker than restriction (Si) in Theorem 
5.1 (cf. (5.1)). On the other hand, (a1) equals restriction (sl) of Theorem 4.1, but 
(a3) cannot be deduced from the stability statement (s3) of that theorem. 

From Theorem 6.1 we conclude that in Theorem 5.1 one cannot allow p = 2. Only 
for 4 with R = r, Theorem 5.1 remains valid with p = 2, but this is exceptional (cf. 

(5.1)). 
We conclude this section by briefly discussing the possibility of replacing the 

factor (yn'/2) in statement (s3) of Theorem 4.1 by a factor, say y0, only depending 
on 4. For A E Y(RS, 0, T) the true solution U(t) to (1.2) is, by Remark 1 of Section 
2, bounded (uniformly for 0 < t < ox). Therefore, one might hope for an analogous 
boundedness behavior in (s3) for the approximations un U(nh) (uniformly for 
n > 0). 

Unfortunately, without additional conditions on 4, Theorem 4.1 does not allow 
such a modification. In fact, 0(') = (1 - t/2)-'(l + '/2) provides a counterexam- 
ple with r = oo. Using arguments taken from [25, pp. 280-287], it can be proved 
that for A = E - I E ?(R= , 0, 1) (with E as in the proof of Lemma 3.2) one has 

SUp11[0(hA)]n110, = oo, the supremum being for s > 1, n > 1, h > 0. 

7. Illustration in a Diffusion-Convection Problem. We turn to the application of 
the above to the stability analysis of difference methods for solving partial differen- 
tial equations. Due to the framework we have been using, applications seem possible 
with arbitrary norms and any number of space variables, any boundary conditions, 
variable coefficients and variable space discretizations. On the other hand, due to the 
generality of the above theorems, one would not expect that in any actual applica- 
tion sharp, or refined, stability results can be obtained. 

As an illustration, we consider the problem 

a a~ ~ ~~2a 
(7.1.a) -U(x, t) = a2U(x, t) + b(x)3U(x, t) + c(x)U(x, t), at ax2a 
(7.1.b) U(0, t) = U(1, t) = 0, 

(7.1.c) U(x,0)= U=(x)9 

where 0 < x < 1, t > 0 and U0, b, c are given bounded real functions (which need 
not be smooth) with 

c(x) '< co ( < x <1) 

The following finite-difference scheme has been constructed according to well- 
known principles (cf. [12], [7], [26], [24], [15]). 
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h1(u_ - = 32(1 - + ,ijj)(Ou>n +(1 - O)u . ') 

(7.2.a) + 8-2 (2 - 2ej/,j + c}82)(Ou7 +?(1 - O)un-) 

+82(1 + j + ejijj)(OUn I +(1 - 6)un+1) 

(7.2.b) U =n- un-1 = 0, 

(7.2.c) u5? = U0(j8), 

where j = 1, 2, ... ,s and n = 1, 2, 3,.... In (7.2) we use the notations h = At > 0, 
8 = AX > 0, (S + 1)8 = 1, /j = 8 - b(j8)/2, c; = c(j8), Un U(j8, nh), and e 
[0, 1], 0 E [0, 1] are parameters specifying the method. The choices 0 and E. 1 
yield central finite-difference and fully upwinded finite-difference approximations to 
aU(x, t)/ax, respectively. The choices 0 = 0, 2 , 1 correspond to the explicit, the 
Crank-Nicolson and the fully implicit schemes, respectively. 

With the definitions u, = (u n, un,. . . ,un)T and 

OM = (1 +(1 - ) )(i - q)-1 

the relations (7.2.a), (7.2.b) become equivalent to the recurrence relation (1.1.) 
provided the matrix A = (ai1) is given by ai = OIi -(i I> 1), 

a jyj-l = 8-2(1 - i + -ji/3li) (2 <j < s), 

ajj = s- 2(-2 - 2eI/jI + c182) (1 < j < s), 

a1ij+ I = 8 -2(1 + #j + eljAl) (1 < j < s - 1). 

Using the maximum norm in Rs, we have (cf. [3], [26]) 

IIAIoo = max E laiji, 1j[A] = max(aii + E JaJi). 
i jJ Pi 

Consequently, choosing ej such that 

(7.3) 2> (- < ) 

we have ji[A] < , gIIAIK0 < a 8-2(4 + 28X + 821C1), where 

X = max k1jb( j8)I, Icl = sup Ic(x)l . 
J x 

In view of (2.2), we have A E (Rs(W, w, a), and from Theorem 2.1, we thus obtain 

(7.4) A Ei2Y(Rs W T), T = 82 .(2 + A + 82(Ic - 

One easily verifies that, with 4 as defined above, 

(7.5.a) r = (1 - 20)1 (0 < 0 < 1 ) r = (2 < 0 < 1)9 

(7.5.b) R = (1-0)1 (0 < 0 < 1), R = o (0 = 1). 

From Theorem 4.1 it thus follows that the solution to (7.2) satisfies the stability 
estimate 

(7.6.a) max| n 8' .kor""2(2 + 8A + 82(wcl- w)/2)1/2 max u?| 
.J .J 
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whenever w < 0, (7.3) and 

( .-) 2 < (1 - 20)-1(2 + 8X + 62(IcI - o)/2)' (for O <, 6 < 

{h8-2<x (for 06s 1). 

Similarly, Theorem 5.1 yields the estimate 

(7.6.b) max IUnJ |< max |uO1 
I1 J 

whenever w < 0, (7.3) and 

(7.7.b) fha-2 < (1 - )-1(2 + 8X + 82(Icl - w)/2)1 (for 0 < 6 < 1), 

h8-2<00 (for6=1). 

Further, Corollary 4.3 yields estimates when w > 0 and the stepsizes h n> 0 vary 
under restrictions similar to (7.7.a). 

Of course, (7.6) can be used in a standard way (cf. [17], [11]) to obtain maximum- 
norm bounds for the global error uj - U( j, nh). Here the factor 8-1 in the 
right-hand member of (7.6.a) (as well as the factor np/2 appearing in Corollary 4.3) 
need not stand in the way to obtain bounds for the global error that are of the same 
order as the local discretization errors (cf., e.g., [17, pp. 124-130], [21]). 

We conclude with comparing the above estimates to some stability estimates 
obtainable from the literature. 

For h8-2 < xo, 2 < 6 < 1, an estimate that is essentially sharper than (7.6.a) 
follows from the general theory in [1]. But, for 0 < 0 < 2, the estimate (7.6.a) is no 
direct consequence of that theory. Also, the variable stepsize result mentioned above 
does not follow from [1]. 

For the case 6 = 0 and the pure diffusion-convection equation (7.1.a), with 
c(x) 0, b(x) constant, Griffiths et al. [7] presented restrictions on je and on 
h8 -2 that are necessary and sufficient for (7.6.b) to be valid. It is interesting to note 
that for this case the conditions (7.3), (7.7.b) neatly reduce to the restrictions 
presented in [7]. 
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