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The Numerical Solution of Weakly Singular 
Volterra Integral Equations By Collocation 

on Graded Meshes 

By Hermann Brunner 

Abstract. Since the solution of a second-kind Volterra integral equation with weakly singular 
kernel has, in general, unbounded derivatives at the left endpoint of the interval of integration, 
its numerical solution by polynomial spline collocation on uniform meshes will lead to poor 
convergence rates. In this paper we investigate the convergence rates with respect to graded 
meshes, and we discuss the problem of how to select the quadrature formulas to obtain the 
fully discretized collocation equation. 

1. Introduction. In this paper we present an analysis of certain numerical methods 
for solving the (nonlinear) Volterra integral equation 

(1.1) y(t) = g(t) + | (t -s)' a k(t, s, y(s)) ds, t E- I1:= [O. T], T < xo, 

where 0 < a < 1, and where g and k denote given smooth functions. In practical 
applications one very frequently encounters the linear counterpart of (1.1), 

(1.2) y(t) = g(t) + t 
(t -s)-a K(t, s)y(s) ds, t E I (O < a < 1); 

in the subsequent analysis we shall, for ease of exposition, usually utilize the linear 
version of (1.1) to display the principal ideas. 

The numerical methods to be analyzed will be collocation methods in the poly- 
nomial spline space, 

(1.*3) SJ1 ( Zm )- {u : U I a, =: Un _ m1,0 < n A N- I- } 
associated with a given partition (or: mesh) 11N of the interval I, 

11 : ? = t(N) < t(N) < ... < t (N) = T 

(the index indicating the dependence of the mesh points on N will, for ease of 
notation, subsequently be suppressed). Here, m - 1 denotes, for given m > 1, the 
space of (real) polynomials of degree not exceeding m - 1, and we have set a0:= 

[to0 t1], an:= (tn, tn+1] (1 < n < N - 1); the set ZN:= {tn: 1 < n < N - 1} (i.e., 
the interior mesh points) will be referred to as the knots of these polynomial splines. 
In addition, we define 

(1.4) h := max{hn: 0 < n < N - 1}, h' := min{hn: 0 < n < N - 1), 
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418 HERMANN BRUNNER 

where hn = tn+ - tn; the quantity h is often called the diameter of the mesh rN 

(Note that, according to the above remark on our notation, both h and h' will 
depend on N.) 

In order to describe these collocation methods we rewrite (1.1), for t E a., in 
"one-step form", 

(1.5) y(t) = F,(y; t) + JX (t- k(t, s, y(s)) ds, 

where 
n-1 

(1.6) F,(y; t):= g(t) + ti+ (t -s)- k(t, s, y(s)) ds 
i=O t 

(0 < n < N -1). 

For given parameters { c; } with 0 < cl < * < cm < 1 we introduce the sets 

(1.7) Xn = (tni = tn + cjhn 1 < i < m 0 < n < N-1), 

and we define 
N-1 

X(N):= U Xn; 
n=O 

the set X(N) c I will be referred to as the set of collocation points, while the cj's will 
be called collocation parameters. A numerical approximation to the exact solution y 
of (1.1) (or (1.2)) is an element of S-Al(ZN) satisfying the given integral equation on 
X(N); i.e., by (1.5), this approximation u is computed recursively from 

un(tnj) = Fn(U; tnj) 

(1.8) + hula tf (c; - v) a k(tn1, tn + vhl, u + vhn)) dv 

(1 < j m 
where 

n -1 

(1.9) Fn(U; tnj):= g(tnj) + E 
fti+ (t - s)- k(tnj, s, ua(s)) ds 

,=O t 

(0 < n < N - 1). 

It follows by a standard contraction mapping argument that, for any continuous 
k(t, s, y) with bounded partial derivative ky(t, s, y), and for any mesh 1-N whose 
mesh diameter h tends to zero as N tends to infinity, (1.8) will define a unique 
approximation u E Si-)(Z) for all sufficiently large N; once the values {un(tnj): 
1 < j < m } have been found we have 

m 

(1.10) un(tn + vhn) = L Lj(V)Un(tnj), tn + vhn E- an (O < n < N - 1), 
j=1 

where Li denotes the jth Lagrange fundamental polynomial for the m collocation 
parameters {cj); i.e. 

m 

(1.11) L1(v):= H (v - 
Ck)/Cj 

- Ck (1 <j < m). 
k=1 
k ?j 
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We note in passing that the particular choice: cl = 0 and cm = 1, implies that the 
approximating element u will be continuous on the entire interval I; that is, u is then 
an element of the smoother polynomial spline space 

Sm ) ( ZN ) = SVJ (ZN ) n C( I) - 
In the following, we shall be interested in studying the attainable order of 

convergence of u on I, as N -x oo. It is well-known that, were the exact solution y of 
(1.1) (or (1.2)) in Cm(I), then we would obtain, for a uniform mesh (where 

hil= h = TN-'), 

(1.12) Ily- Ujoo = 9(N-m). 
Unfortunately, smooth g and k (or K) in (1.1) (or in (1.2)) lead, for 0 < a < 1, to an 
exact solution y which behaves like y(t) = C(t` a) near t = 0; it has thus un- 
bounded derivatives at t = 0 (compare [16], [12], [14], [3]). As a consequence, the 
collocation approximation u E SAVI(ZN) given by (1.8), with the underlying mesh 
being the uniform one, satisfies only 

(1.13) Ily- u|jK = - (N-(1`)) 
and this order is best possible for any m > 1. (Compare also Section 3 below.) 

In view of results from classical approximation theory (see, e.g., [22, pp. 409-425]) 
this disappointing result is no surprise. However, it has been known for some time 
that by using polynomial spline functions of degree m - 1 on certain nonuniform 
meshes tailored to the behavior of the function f(t) = t1-a (so-called graded meshes; 
cf. Section 4 below) one can restore the convergence behavior shown in (1.12) 
(compare [17], [2], [6], [26], and [21, pp. 268-296]; related results on the use of 
graded meshes in numerical quadrature for integrals containing weakly singular 
functions in their integrands may be found, e.g., in [19] and in [13]). 

This idea has recently been employed to devise high-order methods for the 
numerical solution of Fredholm integral equations of the second kind with weakly 
singular kernels: see [7] and [20] for studies of product integration methods on 
graded meshes; [9] and [10] for Galerkin methods; [23] and [25] for collocation 
methods (compare also [24] for a comprehensive survey). A survey of collocation 
methods for Fredholm and Volterra integral equations of the second kind with 
weakly singular kernels, as well as additional references, may also be found in [4]. 

As far as Volterra integral equations of the forms (1.1) and (1.2) are concerned, [5] 
presents a study of product integration techniques (extending the functional-analytic 
techniques used in, e.g., [7], [9], [20]). In order to construct high-order methods on 
uniform meshes it is necessary to abandon polynomial spline spaces in favor of 
special nonpolynomial spline spaces reflecting the behavior of the exact solution of 
(1.1) or (1.2) near t = 0. This approach has been investigated in [18] (for a = 1/2) 
and in [3]. 

In the present paper we carry out an analysis of the convergence properties of 
collocation approximations in S(-1)(ZN) to the solution of the Volterra integral 
equations (1.1), (1.2), both for quasi-uniform sequences of meshes and for graded 
meshes. Moreover, we extend this analysis to the fully discretized version of the 
collocation equation (1.8) in which the integrals have been approximated by ap- 
propriate quadrature processes (note that the above-mentioned analyses for Fred- 
holm integral equations are all based on the assumption that the integrals be 
evaluated exactly). 
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2. The Attainable Order of Convergence. In this section we state the results on the 
attainable order of convergence of the collocation approximation u E SmJ1(ZN) 
with respect to the two types of mesh sequences mentioned above, assuming that the 
integrals occurring in (1.8) and (1.9) are known exactly. The fully discretized 
collocation equation will be investigated in Section 5. We shall formulate these 
results for the linear integral equation (1.2) so as not to be burdened with too many 
technical assumptions; when giving the proofs (in Sections 3 and 4) we shall indicate 
how these results can be extended to the nonlinear case (1.1). 

A sequence of meshes for the interval I is called quasi-uniform if there exists a 
finite constant y such that, for all N E N, 

(2.1) h/h' < Y 

holds (recall the notation introduced in (1.4)). It is easily seen that such a mesh 
sequence has the property 

(2.2) n < h < -y h TN-1, 0 < n < N-1 (Ne N); 

hence, h = C9(N-1) for any compact interval I. This holds, of course, trivially for 
uniform meshes, where we have y = 1 and hn = TN-1 for all n. 

THEOREM 2.1. Let the functions g and K in (1.2) satisfy g E Cm(I) and K E Cm(S) 
with m > 1, and assume that neither function vanishes identically. If u GE S- )(ZN) is 
the collocation approximation defined by (1.8), and if y denotes the exact solution of 
(1.2), then 

(2.3) Ily - u 11 = C9(N-(1-a)) 

for any quasi-uniform mesh sequence. The exponent 1 - a in (2.3) is best possible for 
all m > 1 and for all collocation parameters { c; } with 0 < c1 < ... < cm < 1. 

Consider now graded meshes of the form 

(2.4) t := ( .) TV O < n < N-1 (N > 2), 

where the grading exponent r E R will always be assumed to satisfy r > 1. (We again 
suppress the index showing the dependence of tn on N.) For any such mesh we have 
0 < ho = h' < h1 < ... < hN = h, and, in analogy to (2.2), 

(2.5) h,1 < h < r - TN-1 0 < n < N- I ( N E =-N). 

Thus the mesh diameters of a sequence of graded meshes of the form (2.4) behave 
like h = C9(N -1) on compact intervals. 

THEOREM 2.2. Let the functions g and K in (1.2) satisfy the conditions stated in 
Theorem 2.1. If u E Smi)i(ZN) is the collocation approximation defined by (1.8), and if 
y denotes the exact solution of (1.2), then 

(2.6) Ily - uIj = C9(N-m), 

provided we employ the sequence of graded meshes (2.4) corresponding the the grading 
exponent 

(2.7) r = m/(1 - a). 

This holds for all collocation parameters { cj } with 0 < C1 < ... < Cm < 1. 
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Note that the choice (2.7) for the grading exponent leads to optimal (global) 
convergence, in the sense that the exponent m in (2.6) cannot be replaced by m + 1. 
This agrees, of course, with the well-known result in approximation theory which 
states that 0 (N-m)-convergence is best possible when approximating a function 
f e Cm(I) in Sm,-)(ZN) or in Sml) I(ZN)- 

3. Proof of Theorem 2.1: Convergence on Quasi-Uniform Meshes. For g E Ctm(I) 
and K E Ctm(S) the (unique) solution of (1.2) is in C[0, T] n Cm(0, T]; more 
precisely, it has the form 

00 

(3.1) A~t) = g(t) + E {kJt) * t( a t E 1, 

k=1 

where 4'k E Ctm(I) (k > 1), and where the series converges absolutely and uniformly 
on I (compare [3]; see also [16] and [14]). If a is rational, a = p/q (with p and q 
coprime), then (3.1) may be written as 

q-1 

(3.2) y(t) = vO(t) + E vS(t) ts(l-a), t E I 
s=1 

with vs E Cm(I) (0 < s < q - 1). (See also [12] for the case a = 1/2.) For the sake 

of simplicity of notation (and, not least, in view of practical applications where one 
usually encounters the values a = 1/2, a = 1/3, and a = 2/3) we shall give the 

proofs of Theorem 2.1 and Theorem 2.2 for the case of rational a; the generalization 
of the ideas involved in the subsequent arguments to irrational a is straightforward. 

On the initial interval a0 = [to, tj] (where to = 0) the exact solution (3.2) is not 

continuously differentiable (unless y(t) 0; this case has been excluded by assum- 
ing g(t) - 0 and K(t, s) t 0). However, since vs E C'(I), we may write 

m 

vs(to + vho) = E c8s)v'-1 + hmRoj(v), v E [0,1], 
1=1 

where we have set 

(3.3a) c vS) vs('1-)(t0)h-y1/(l - 1)!, 

and 

(3.3b) ROJ(v):= V5(m)(40) VM/m! (to < 40s < to + vho). 

Thus, by (3.2) (setting (to + vho)s(la) = /io(1-a) [1 + (S( -a) - 1)]), we obtain 
rn 

(3.4) y(to + vho) = E c0lv1- + h -a* C0(v) + ho * RO(v), V E [0,1] 
1=1 

with 
q-1 

C =E h sO(l-a). csl) 

(3.5) s= 0 
q-1 n 

CO ( V):= X, h (OS -l( a) * VS(1 a) _ *RCS)V 1-1 
S=1~~~~~~~= 

and 
q-1 

( 3 .6) Ro(v)= E hs(N - aR(v ) .vs(l -sa) 
s=O 
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For 1 < n < N - 1 we have, sincey E Cm[tl, T] (t1 > 0), 

nt 

(3.7) y(tn + vh") = + cn1v1 ? h. * R (v), t, + vh e ae , 
n=1 

with 

(3.8) c y(-)-1), 

and 

(3.9) Rn(v):= y(m)(tn + nvhn) vm/m! (0 < On < 1). 

Suppose now that the restriction of the approximation u E SIl) (ZN) to the 
subinterval an is given by 

un(tn + vhn) = ani 
1=1 

Thus, the error e:= y - u (with en:= Y - Undenoting its restriction to an) assumes 
the form 

{~~~ ~ nt 

| lOjv'-' + hl-aCO(v) + hmRO(v) if n = 0; 
(3.10) en(tn + vhn) = { m 

fl EAjv' 1 + hnmRn(v) if 1 < n < N - 1 

where we have defined JPnl:= cO1 - n (1 < / < m; 0 < n < N-1). 

Subtracting the collocation equation (1.8) (with k(t, s, y) = K(t, s)y) from the 
integral equation (1.2) (with t = tnj), we obtain 

en(tnj) = hlf- (cj - v) a - Kn1(tn + vhn)en(tn + vhn) dv 

(3.11) + E hl-fl ( Nh i- v Knj(ti + vhi)ei(t1 + vhi) dv 

( 1 < j < m ;O < n < N-1). 

Here, we have set Knj(.) K(tnj, ). The expressions for the errors ei given in 
(3.10) can now be used in (3.11) to derive a recurrence relation for the components 
of the vectors8n f= (pnj 1.3. p4n)T E Rm (0 < n < N - 1); it reads 

E Bnz(Cj - ( a ( - v) -. Kj(t ? vh )v1dv} 

(3.12) -i mh - Pi, - -v) Knj(ti + vhi)v'-ldv + q 
i=O 1=1 
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where the remainder terms q"; are defined by 

q = -hmR -(c ) + h- f i (c- v)-- Knj(tn + vhR)(hnRn(v)) dv 

(3.13) + hV"*f| ('h v) Knj(ti + vhj)(h7mRj(v)) dv 

tj t - 
+ f1h (l l ) Knj(to + vho){h aCo(v) + hmRo(v)} dv. 

For the initial interval ao we obtain, in particular, 

EI fo,{ c/' - lh a . fr (cj - v *n. Koj(to + vho)v{'dv} 

(3.14) = h { -CO(cj) - hr " * R0(c1) 

+h"-al (c1-v)a K01(t0 + vh )(Co(v) + hmo + Ro(v)) dv} 

(1 <j <m). 
We shall now show that, for quasi-uniform mesh sequences, all vectors 83n have 
11-norms satisfying 

(3.15) I|fnII,1 = @(N(l-a)) (0 < n < N - 1; N -x cc, with Nh < yT). 

This result will then be used in (3.10) to establish the assertion (2.3) of Theorem 2.1. 
We begin by observing that, since the kernel K(t, s) is bounded on S and since we 

have hp. = O(N') for 0 < n < N - 1 (recall (2.2)), the matrices Vm - h"La Cn,, 
with 

(3.16) Vm := (c>'), and C":= (f (c -v) Knj(tn + vhn)v''dv) 

(1 <j, I < 

occurring in (3.12) and (3.14) possess uniformly bounded inverses for all sufficiently 
large N (note that Vm is a Vandermonde matrix corresponding to the collocation 
parameters { c1 } satisfying 0 < cl < ... < cm < 1). Hence (3.12) and (3.14) define a 
unique sequence of vectors f3n for all sufficiently large values of N, and there exists a 
finite constant Co such that 

(3.17) (Vm-ha * Cnn) 1 < Co, 0 < n < N-1. 

In order to show that the sequence { 11,f3 I, } is governed by a generalized Gronwall 
inequality, we require the following result. 

LEMMA 3.1. Consider a quasi-uniform sequence of meshes for I. Then, for 0 < i < 

n - 1 (n < N - 1), andfor all {cj} with 0 < cl < ... < cm < 1, we have, 

(3.18) | ( ih i-v v''dv < Y (1 + ) (n - < (1 j, /< m). 

Proof of Lemma 3.1. For i = n - 1, we have 

p (1 ?+ c-h n- v) v'l-dv < 
1 (1 -v)-adv = 1/(1 - a) < 

since y > 1. 
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Suppose, then, that i < n - 2. Since Cj e [0,1], we obtain 

I tn - ti -a I tn - t 
Ini(a):= J1 ( t - v'- dv f ( V - 

1 ( tn ti )1 [-( tn ti - 1)1 ) 

= 

I~~~ 
Application of the Mean-Value Theorem yields 

(-(t- = ( -ta)*(tn ti t 
( 

n 
h ja )( ) ( h i ni h.i ) 

(with 0 < Oni < 1), and we thus find 

(3.19) Ini(a) ( ( i) (1- 6(tni i) ) 

So far, we have not specified the type of mesh sequence containing the points { tn }. 
Suppose now that the mesh sequence is quasi-uniform. Hence, by (2.1), 

tn - t 
>1 (n -iOh >1 y-1 .(n-) 

hi h 

Moreover, since i < n - 2, 

1 - ( ( th + 1 - 6 ( + -(+ h 1 

> 1 -(1 + h'/h)1 >1 -(1 + 1/y) = (1 +y 
Using these results in (3.19) we obtain, for 0 < a < 1, 

Ini(a) - ya( + y)G (n- < aa(1 + Y)(n- [ 

LEMMA 3.2. Let the assumptions of Lemma 3.1 hold. Then: 

(3.20) >3h>l.f - v dv _< Ta/1 -a, 1~n~N 

Proof of Lemma 3.2. Using the initial argument of the previous proof, we find 

>Jh a. J( -v)cdv < E hi dv 

= 1 n af( th- _ / tntj+1 ) 

_ 1tn-i 
= 1 - a E {(tn -t) -(tn - t +a)la} = tl a/(1 - ) 

< Tl-a/(l-a) forn < N. E 
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Note that (3.20) will also be valid for graded meshes; this fact will be used in 
Section 4. 

We now return to (3.12): for 0 < i < n - 1, define the matrices Cni by 

Cn n(j ( tv Knj(t1 + vh )1)1dv (1 < j, 1 < m 

and introduce the vectors qn = (qn1,..., qnn)" with components defined in (3.13). 
Thus, (3.12) can be rewritten as 

(3.21) f -n = -hlaCn) ({Z hV Cnii + qf3 

provided N is sufficiently large. If Ko: max{ IK(t, s)I: (t, s) E S} then, by Lemma 
3.1, we find 

(3.22) <C~ii1 < C(a) (n - i) 0 < i < n - 1, 

where C(a) :=K0 m -y'(1 + y)G/(l - a). This can be used, together with (3.17), to 

obtain 
n-1 

(3.23) M A < C h1-a Y. (n -i)-c. - 
13ill, + CO - Jjqn111 (0 < n < N - 1), 

i=o 

with C0:= Co C(a). This represents a generalized discrete Gronwall inequality 
(compare [15], [8], [1]), and it follows that 

(3.24) 119n|l = o(9qjqn1), 0 < n < N-1, 

since Co (given in (3.17)) is a finite constant, and since Nh < yT. 
It is clear from (3.13) that the order of IlqnI I will essentially be governed by that of 

the terms h7mRi(-), with Ri(v) defined in (3.9) and (3.6); for i > 1 these terms 
involve the m th derivative of the solution y (if i = 0 then, by (3.6) and (3.3b), 

hmRO(v) = C9(N-m)). It follows from (3.2) and from the Leibniz product rule that 
this derivative has the form 

_ ~~~q-1 a) 
y(m)(t) = Vo(m)(t) + k=O 

k) 
a) - 

s( m-k)(t) tsl. - 

(3.25) s=1 k= ) 
t > O. 

Thus, upon setting 

(s:=( )(s(1 - a)) k!! Ms, max{ Vv4) (t) | t EI, 

we are led to 
q-1 m 

(3.26) hm IRi(v)K< hm2 i MOm + kIY(s) * Msm-k(ti + 6ivhi) )} 
s=l k=0 

This, in turn, reveals that the order of himRi(v) will depend on the orders of the 
products h71 * t s(I-a)-k. To be precise, we state 

LEMMA 3.3. Consider any quasi-uniform sequence of meshes for I, and assume that 
1 < k < m. Then,fors> 1, 

(3.27) h71M ts(l-a)-k / O(Nm), if s(l - a) - k > 0; 

i((N-(1`)), if s(1 - a) - k < 0. 
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Proof of Lemma 3.3. Assume first that s(1 - a) - k > 0. The first part of (3.27) 
then follows trivially since t'(l a) k < Ts(l-a)-k and, by (2.2), hi = ((N-1) for 
1 < i < N -1. 

Now let s(I - a) - k < 0. In this case we have, for i > 1, 

ti > t1 = ho > h' > h/y > y-1TN-1, 

and hence, by (2.2), 

h*z. ts(l-a)-k < (yT)mN-m (y-1T)s(l-a)-k. N-(s(l-a)-k) 

= (yT)m .(y-1T)s(l-a)-k .-(m+s(l-a)-k) 

< (yT)m .(y-1T)s(l-a)-k .-(-a) 1 < i < N - 1, 

since m + s(I - a) - k > s(1 - a)> 1- a > 0 for all k with 1 < k < m, s>, 
and a E (0,1). C 

Consider again (3.26): for a E (0, 1) there is at least one pair (s, k), with 
1 < k < m, s > 1, for which s(1 - a) - k < 0 (take (s, k) = (1, 1)). Consequently, 
(3.26) yields 

(3.28) hmIRi(v)l = d(N-(l-a)), v E [0,11 (1 < i < N - 1), 

where the exponent cannot be replaced by some , > 1 - a. 
If we now use the results (3.26), (3.27), (3.20) in (3.13) we verify readily that 

Iq | = (ff.(1-a)) 1 j < m (0 < n < N- 1), 

and hence 

(3.29) 1q|11| = OP(N-(l-a)), 0 < n < N - 1. 

To bring the proof of Theorem 2.1 to its conclusion we return to (3.10): since (3.24) 
and (3.29) imply 1/8n II, = ?!(N l-a)) for all n we find 

len(tn + vhn)I < 1113nill + C(N-(l-a)) = c9(N-(l-a)), 

tn + vh1, E- an, , < n < N -1 (as N -x c, Nh < yT). This is equivalent to 

(2.3). [1 
We conclude this section with two remarks. 
(i) As has been mentioned above,the proof is easily extended to the case of 

irrational a: this follows from the fact that the infinite series in (3.1) converges 
absolutely and uniformly on I, and by Lemma 3.3 which holds for all s > 1. 

(ii) If the given integral equation is nonlinear, i.e. (1.1), then we can use a result 
due to Lubich [14] which states that if g(t) is of the form g(t) = G(t, ti-a) near 
t = 0, and if G and the kernel k are real analytic functions in a neighborhood of the 
origin (excluding the trivial cases g 0, k 0), then the exact solution of (1.1) near 
t= 0 is given by 

(3.30) y(t) = Y(t, tla), 

where Y is a real analytic function in a neighborhood of (0,0 ). It is then easily seen 
that by expressing Y as a power series, the solution y near t = 0 can be written in a 
form analogous to (3.1). In the corresponding error analysis the role of Knj(ti + vhi) 
will then be taken by the partial derivative ak(t-,, t1 + vh., y)/ay, evaluated at 
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some suitable value of y (stemming from the application of the Mean-Value 
Theorem in the linearization of the error equation); in order that the analogue of 
(3.17) hold, ak/ay has to be bounded. 

4. Proof of Theorem 2.2: Convergence on Graded Meshes. The proof of Theorem 
2.2 proceeds in complete analogy to the one of Theorem 2.1 given in the previous 
section, except that now we shall obtain a different estimate for lIqI11, and hence for 

III8nII, (cf. (3.29) and (3.24)). 
Let us begin by stating two simple properties of graded meshes of the form (2.4) 

with r > 1; namely, 

(4.1 a) tn = n r- tj, I < n < N. 

with 

(4.1b) t1 = ho = TNr; 

and 

(4.2) h/h' = N r .(I -(1 -N 

(This last result shows, incidentally, that a sequence of graded meshes with r > 1 is 
not quasi-uniform, since h/h' -*oo as N -> oc.) 

For graded meshes we obtain the following analogue of Lemma 3.1: 

LEMMA 4.1. Consider any graded mesh of the form (2.4) and with grading exponent 
r > 1. Then, for 0 < i < n - 1 < N - 1 and for all collocation parameters {c;} 

satisfying 0 < c1 < ... < Cm < 1, 

(4.3) f ( - - v-ldv 1 - a .(n -i)- (1 sj, < m). 

Proof of Lemma 4.1. The first half of the proof of Lemma 3.1 carries over without 

any change: there, we have shown that, for i < n - 2, 

Ini(X) |I njh -v .i vn d 
t 
i I _ (1 Oni (nhi 

t 
) 

with 0 < Oni < 1. For a graded mesh (2.4) with r > 1 we obtain 

tn -ti hn-1 + + hi (n - 0 hi 
= > =~~~n-i, hi hi hi 

since 0 < h0 < ... < h N, (= h). Moreover, since i < n - 2, we have 

-1~~~~~ _ tn -to >1 (tn -to) hi _h+ h,+, 

= 1-(1 + hi+1/hi) 
- 

> 1-1 + 1 = 1/2, 

and this yields 

(1-6ni (nh i) < 20a < 2'/ (I at) 

Hence, 
2a a 

In i (a) < 1 (n i) , < i < n-1 
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Since the mesh diameter h of a graded mesh satisfies h = 62(N -1) (recall (2.5)) we 
may use again the contraction mapping argument of Section 3 (cf. (3.16) and (3.17)) 
to show that, for all sufficiently large N, (3.12) defines a unique sequence of vectors 

{ n := (Ionl__ ,..nm)T: 0 < n < N - 1), for which the generalized discrete Gronwall 
inequality (3.23) holds. Note that here we have made use of Lemma 3.2 which is 
valid both for quasi-uniform and for graded mesh sequences. 

As an immediate consequence, the 11-norms of these vectors f8n satisfy again (3.24). 
However, the estimate for hm7Ri(v) (which will eventually determine the order of 

,BIIIL) turns out to be rather different than that for quasi-uniform mesh sequences 
given in (3.28). This is due to the following results. 

LEMMA 4.2. Consider a graded mesh of the form (2.4), and assume that the grading 
exponent r is given by 

(4.4) r = m/(1 - a). 
Then, for I < k < v < m andfor s > 1, 

(4.5) h* ts(l-a)-k < C . N- 1 < i < N-1, 

where c:= r . 2 (r-1). Tv-k+s(I-a) 

Proof of Lemma 4.2. Since r > 1 we find, using (4.1) and the Mean-Value 
Theorem, 

j s 
- 

ti = ((i + 1) -_ir) to = i r _((I + i - ) r _1) .TN- r 

= r jir-I .(I + Oi .r-I TN-r, withO < Oi < 1, 

and hence hi < r 2r-1. T ir- 1 N - r. This yields, again employing (4.1), 

v . tis(l-a)-k (. r-1 . ) ip(r-1) . -Pr .r . TN-r)sGl-a)-k 

= C .i(r-1)+rs(1-a)-rk . -Pr-rs(I-a)+rk 

= ir(P-k)+rs(1-a)-v . -r(P-k)-rs(1-a) 

with the constant c as defined in Lemma 4.2. 
For r = m/(1 - a) this reduces to 

P . ts~l-a)i 
r( - k) 

' 
hi. * tia)-k 

. 
C (.) . NmSV . Nrns 

where the exponent of i satisfies ms - v > ms - m = m(s - 1) > 0, since s > 1. It 
thus follows that, for all i < N, and with 1 < k < v < m, 

his . tis(l-a)-k <, C . Nms-P . N'ms = C A- NP 

If we now use the result of Lemma 4.2, with v = m, in (3.26), we find with no 
further difficulties the estimate 

(4.6) hi t IRj(v)I = e(N-M), v E [0,1] (1 < i < N - 1), 

where the exponent m is best possible. By (3.13) this then leads to 

(4.7) Jjqn111= c(N-m), 

since, by (4.1b), h = TNr; hence h10-'a = T1' a . N - r(I - a) = T1' a N m. By (3.23) 

and (3.24) we have thus shown that 

(4.8) 11fBn11i = e(N-m), 0 < n < N -1 (N -* o, Nh < rT), 
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provided the grading exponent r is as in (4.4). Using once more the expression (3.10) 
for the error function en(tn + vhn), together with the fact that ho-a = 6)(N - m) for 
the above grading exponent, we obtain assertion (2.6) of Theorem 2.2. Z 

The above proof is easily modified to deal with the case where, instead of (4.4), we 
have 

(4.9) r = ,u/(loa), I < P < m . 
We now find, for 1 < k < v < m, 

.rf v-k) 

h. ts(l-a)-k 
r - 

. .rs(l-a)-v .v-rs(l-a) 

Ac V`P-N-As, < Ai N. 
If Ps - v > 0, then hV ts(l-a)-k = ((Nv). However, since yI < m, we shall also 
have Its - v < 0 for some values of (s, v) (e.g., for (s, v) = (1, m)), in which case the 
above estimate will no longer be valid. Instead, writing M = m - (m - ,i), and 
observing that ms - v > 0 and m - P > 0, we obtain 

v , . ts(l -a) -k < ~-('10)s'- v.N -(m-(m-[L))s 
hi i < c i. 

<. C* Nms-v . i-(m-IL)s . N-ms+(m-[L)s 

< c N-(v-(m-[))s, 1 < i < N (s > 1). 

For the value of v relevant in our analysis, v = m, this becomes 

(4.10) hit . ts(l-a)-k < c . N-Ls, s > 1. 

Hence, if the grading exponent r in (2.4) is given by (4.9), then there results the 
estimate lIqnI11 = d(N -) (note that now h"7a = T" -a N-A) and, by (3.24), III 
= )(Nf-) (O < n < N - 1). By (3.10) we then readily establish the following result. 

THEOREM 4.1. Let the functions g and K in (1.2) satisfy the smoothness hypotheses 
stated in Theorem 2.1, and let u E Sm,-)(ZN) denote the collocation approximation 
defined by (1.8), with collocation parameters { cj} satisfying 0 < c1 < ... < cm < 1. 
Then, for the sequence of graded meshes (2.4) corresponding to the grading exponent 
r = M/(l - a) (1 < P < m), the collocation error behaves like 

(4.11) Ily - u| = O(N-). 
In particular, the choice yI = 1 (i.e., r = 1/(1 - a)) will yield collocation ap- 

proximations which, on I, converge linearly to the solution y of (1.2), independent of 
how one selects m. 

The proofs of the above results are again easily extended to linear integral 
equations (1.2) with irrational a, and to nonlinear integral equations (1.1). We refer 
to the remarks made at the end of Section 3. 

5. Discretization of the Collocation Equation. Until now it has been assumed that 
the integrals 

nj1 ( h i - k(tnj1 ti + vh1, ui(ti + vhi)) dv, 

(.)4nii[] = 0 < i < n-1 
f (cj - V)- k(tnj, tn + vhn, un(tn + vhn)) dV, i =n 

(1 j i sm 
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occurring in the collocation equation (1.8) are known exactly; i.e., that the colloca- 
tion approximation u E Sm-i(ZN) is obtained from what we shall refer to as the 
exact collocation equation 

n-i 

Un(tnj) = g(tn.) + hl-a IQ[Vi ] + E hl-a I!VI[ui] 
(5.2) ~~~~~~~~~~i=O 

(1 S j <s m; 0 < n < N- 1). 

In practical applications this will rarely be possible, making a further discretization 
step necessary which will involve numerical quadrature. Suppose, then, that the 
integrals in (5.1) are approximated by 

I 1 

(5.3) Z(DI)[ui]:= 0 < i < n-i, 

l wj(a) 
- 

k(tnj, tn + dj1hn, un(tn + dj1hn)), i = n 
I=1 

(1 j m); 
for the case where cl = 0 we set ID [un] := 0 (= 0(l)[u"]). It will be assumed that 
the quadrature abscissas in (5.3) are characterized by the parameters 

(5.4a) 0 < di < ... < d 
ILI 

< 1 , 

and 

(5.4b) ? < dj1 < ... < djo <Cj (1 ?j < mi), 

with ,i > 1, L1 > 1 (and, usually, /o < m, is < m). (Note that due to the choice 

(5.4b) the quadrature formulas D,"Qn[un] will only involve kernel values k(t, s,*) 
lying in the domain of k; in general, it may not be possible to extend k(t, s,*) 
smoothly to points (t, s) with s > t.) Moreover, we shall assume that the quadrature 
weights in (5.3) are given by 

(5.5a) wji ')(a):= f| (ih '-v X(v) dv (1 ? /1 < t; 1 < j < m), 

and by 

(5.5b) wj1(a):= f (cj - v)a* X1j(v) dv (1 < 1 < ytt; 1 < j < m), 

where 

XA(v):= I1 (v-dk)/(dI-dk) and Xj1(v):= H (v-djk)/(dj,-djk) 
k=1 k=4 
k*I k*l 

represent, respectively, the Lagrange fundamental polynomials for the points given 
in (5.4). In other words, we consider the discretization of the exact collocation 
equation (5.2) by quadrature formulas based on product integration (compare also 
[19] and the references listed there). 

The fully discretized collocation equation is obtained from (5.2) by replacing the 
exact integrals (5.1) by the corresponding approximations (5.3). In general, one will 
now generate an approximation u e S-14(ZN) which will be different from the one 
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defined by the exact collocation (5.2); i.e., u will be given by 

n-1 

(Un(tnj) = g(tnj) + h' a [n] + E h ()[u] 
(5.6) i=0 

(1 j < m; 0 < n < N -1), 

where, in analogy to (1.10), we write 

m 

(5.7) un(tn + vhn) = s Lj(V) * Un(tnj), tn + vhn E 'gn 
J=1 

Setting e:= y - ', e:= y - u, and E:= u - U', it follows from e = (y - u) + 
(u - Ci) that 

(5.8) |IeK| < 11ellKc + H|EKl00. 
Global convergence results for uC will thus be obtained by estimating the order of the 
perturbation E due to the full discretization of (5.2), and by using the results on the 
behavior of e derived in the previous sections. For simplicity, we shall state the 
results again for the linear equation (1.2); according to the remark at the end of 
Section 3, their extension to nonlinear equations is straightforward. 

THEOREM 5.1. Let g and K in (1.2) be m times continuously differentiable on their 
respective domains. Assume that u, UC E Sm-i)(ZN) denote the solution of the exact 
collocation equation (5.2) and that of its fully discretized version (5.6), where the 
quadrature formulas (5.3), satisfying (5.4) and (5.5), have been used. Then the 
perturbation E:= u - u behaves like 

(5.9) IIElloc = ((N-l), 

where j := min(i0 + 1 - a, y,), and this holds for quasi-uniform sequences of meshes 
as well as for graded mesh sequences (2.4) with r > 1. 

Proof. Let 

(5.10) En(/)[ui]:= Fd! [uH] - 

Hence, subtracting (5.6) from (5.2) and setting k(t, s, y) = K(t, s) y, we obtain 

n-1 

En(tnj) = ha 'jnQ[En] + E h nJi 
(5.11) i=O 

i 

+ >Shl-a E,(J)[ui] (1 < m;0 < n < N-i), 
i=O 

where En(t) denotes the restriction of E(t) to the subinterval on. Since En E 7Tm-1 we 
may write 

5L 

(5.12) Cn(tn + vhn) = so L,(v) *Cn(tn + c~hn), tn + vhn E(n 
Il=1 
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with L,(v) representing the /th Lagrange fundamental polynomial associated with 
the m collocation parameters. The terms Fn(j)[ej] in (5.11) are thus of the form 

| { / ~W ')(a)- K ,(t1 + dh -) L(ds)) ei(t1 + ch;), i < n, 

(Dni [Ei] w 
E E 

wjs(a) 
Knj(tn + djshn) 

L,(djs)) en(tn 
+ 

chn), 

i = n 

(1 < j< m ) . 
Let Qni(a) (O < i < n < N - 1) denote the square matrix of order m whose 
elements are 

| E i)() nj(ti + dshi) L,(d), 0 < i < n - 1, 
(5.13) qj/n" )(a): = { + ) ) 

E wjs(a) * Knj(tn + djshn)Lj(djs), i =n 
s=l 

(1 <j, < m) 
and define the vectors 

rn i = nil[ i ] n~i)[ hi ) m 

,qi :=(Ei(ti + c1hi), . . ,ei(ti + Cmhi)) 
T 

With this notation, Eq. (5.11) can be expressed in the form 
n-1 n 

(Im 
- Qhnn(a)) t= E 

- 
Qni(a)i + E hl-a * rni 

(5.14) 
n Q .'qn 

i=O i =O 

(O < n < N -1), 
where Im is the identity matrix of order m. Consider the matrix multiplying n: since 
the elements of Qnn(a) are bounded (this follows from the boundedness of the 
kernel K(t, s) and from that of the quadrature weights (5.5b)), and since hn = (9(N -1) 
(n < N - 1) both for quasi-uniform and for graded mesh sequences (recall (2.2) and 
(2.5)), there exists a finite constant Q' such that, for all sufficiently large N, 

(5.15) (in- hlJ-a Qnn(a)) 1 < Q' 0 < n < N - 1. 

In order to show that the /1-norms of the vectors On are governed, in analogy to 
(3.23), by a generalized discrete Gronwall inequality we require the following 

LEMMA 5.1. The quadrature weights W"(n')(a) (i < n) defined by (5.5a) satisfy 

(5.16) |(n i)(a)|I < w(a) -(n - i) ( <m IuA) 

where the constant w(a) is given by 

A1 for quasi-uniform meshes 
w(a):= a(+a 

{ 
.-XX 

A 1 for graded meshes (2.4); 

here, A1 max{E l AIX,(v)l: v E [0, 1]) denotes the Lebesgue constant associated 
with the quadrature parameters { dl, . . , dL }. 
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The proof of this assertion is an immediate consequence of Lemma 3.1 (for 
quasi-uniform mesh sequences) and of Lemma 4.1 (for graded meshes). E 

The above lemma allows us to derive bounds for the norms IIQni(a)III: using (5.13) 
we find 

IIQni(a)lll = max{ Eq~j(a()| 1 < / < m} 

< Q(a) -(n-i an < i< n- I ( n < N- I), 

with the constant Q(a) depending on the bound for K(t, s) and on the Lebesgue 
constant Al. Applying the above results in (5.14) we obtain 

n-1 n 

11qn1l < Q0 -hl - E (n - i)'- a jqjlk + Q- E hul -Jrnjjj 
(5.17) i=o i=o 

(0 < n < N-1), 

with Q0 := - Q(a). This is the desired generalized discrete Gronwall inequality; 
in analogy to (3.24), the order of the quantities IImnIl will be given by the order of 
the terms Oh IlrnI1. 

LEMMA 5.2. Let the assumptions of Theorem 5.1 hold. Then we have 
al 

(5.18) E hly | = -((N-L), 0 < n < N - 1, 
i=O 

with ,i:= min(M0 + 1-xa, I,), independent of whether we consider quasi-uniform or 
graded mesh sequences. 

Proof of Lemma 5.2. Recall that the components of rni are the quadrature errors 
introduced in (5.10). According to the hypotheses imposed on the quadrature 
formulas (5.3) these quadrature errors are bounded; specifically, we have 

h IL, ( tnj-ti _) dv if i < n-1 
(5.19) |E(j)[ui]l < h j 

Y0h~o f' (c1 - v) a dv if i = n (1 < j < m), 

with yo and y1 denoting suitable constants. To show this, let i < n, 

tfnj(ti- + vhi):= Knj(ti + vhi)ui(ti + vhJ) 

and denote by 4nj, I vhj) the interpolating polynomial (of degree It) for onj with 
respect to the points { t1 + d~hi: 1 < s < It}. Since onj has continuous derivatives of 
order m on av, the interpolation error has the form 

,n(t + vhi) - 
'Pnj(ti + vhi) = O4/),)(~j 

- h~i - H (v -d 
s=1 

with (i E as, and for all It < m. An analogous expression holds when i = n, with M1 
replaced by po. According to (5.5), E(/j)[ui] is equal to the weighted integral of the 
above interpolation error, with weight functions as in (5.5); from this, (5.19) follows 
immediately. 
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We thus obtain, setting first i < n - 1 and using ty - ti> tn -ti 

lIrnJIl = E E(J)[u]l A m - y1hP 1 (t nhti._ v)ad 
j=1 

-m h1 - 
-yh1 

i - a * hl* {(tn-ti)la -(tn-ti)l a}; 

if i = n we find 

I -r-yIIh 'lona 11rnn111 < I a { 

It now follows that 

n n-I 

E h -a r irni|ll = h" IlrenII + E h"aI1rniIl 
i=O i=O 

i=O ~ ~ ~~~~~= 
< ()hyo+i-a + hell 2 {(t~ - t1)1a-(t,,-t l ) 

< y(a){ht'o+1-a + hPit71-} < y(a) -h {h-o+l-a-1 + T" -a htL-, 

with y(a) := max(m * yo/(l - a), m - yl/(l - a)), and with IL defined as in Lemma 
5.2. Since the factor multiplying ht' is uniformly bounded, we have established (5.18). 

We now return to the Gronwall inequality (5.17): since the mesh diameter h 
satisfies h = 6(N-1) for both types of mesh sequences considered here, (5.17) 
implies I1mqnL1 = 6(Nf-), on the basis of the above result. On the other hand, (5.12) 
leads to 

|En(tn + vhn)I < ?I 111L 1I1%IIk1 < A I lIn1i1 tn + vha E an (O < n < N - 1), 

and the result of Theorem 5.1 follows, since the Lebesgue constant A corresponding 
to the (fixed number) m of collocation parameters { cj } is bounded. Cl 

We are now in a position to derive our results on the attainable order of 
convergence of the approximation ui E Sn-7(ZN) defined by the fully discretized 
collocation equation (5.6); since quasi-uniform mesh sequences are of no interest in 
practical applications (recall Theorem 2.1), we shall state only the result for graded 
meshes. The proof of the following theorem is, of course, a direct consequence of 
(5.8), Theorem 2.2, and Theorem 5.1. 

THEOREM 5.2. Let g and K in (1.2) be m times continuously differentiable on their 
respective domains I and S, and let u E Si1)(ZN) denote the solution of the fully 
discretized collocation equation (5.6). Moreover, assume that the quadrature approxi- 
mations (5.3) used in (5.6) correspond to 

[t = Pi = m, d, = c,, dj, = cjC1 (1I j < m) 

Then for the graded mesh (2.4) with grading exponent r = m/(1 - a) we have 

(5.20) IIY -U||O = O(N-m). 
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It is clear that the above result can be generalized to cover the cases where the 
quadrature parameters (5.4) are not related to the collocation parameters { cj ), and 
where the grading exponent is given the value r = ji/(1 - a), 1 < p < m (compare 
Theorem 4.1). By (5.8), Theorem 5.1, and Theorem 4.1, the corresponding results are 
obvious, and we therefore refrain from stating them explicitly. 

6. An Example. Consider the fully discretized collocation equation (5.6) where the 
quadratures Dni )[Ci] are characterized by uo = , = m, d, = c1, dj1 = CjC1 (1 < j, / < 

m). Setting 

Yi := tUi(ti + cshi) (1 < s < m), 

and using (5.7), the quadrature approximations in (5.6) assume the form 

F A 

l W(n i)() * k (tnj, t + c1hci, I c if < i < n i- 

(6.1) (Dni [Ui M nM 

t ,wj ( a) - k (tnj,j tn + cjclh n E Ls ( c-cl) 
. 

Yns if i =n , 
l~~~~l ~~s=1 

with tnj ,= t n+ cjhhn (1 <j < m). In the expressions (5.5) for the quadrature 
weights we now have X,(v) = L,(v), and hence the above weights become 

(6.2a) w,("i(a) = f (t, t1 - * L,(v) dv, 

and 

w.(a) = f (cj - v) 1 (v - CjCk)/(Cj(Cl - k)) dV (1 < j, 1 < m). 
0 ~~~k=1 

k*l 

This last expression can be simplified by an obvious substitution; we find 

(6.2b) wj1(a) = C 1a f (1 - v)-a - L(v) dv. 
0 

Thus, according to (5.6) and (6.1), the fully discretized collocation equation, 

(6.3) Yn% = Fn( ; tnj) + h7" a IjDi"] (1 <j < m), 

with 

n-i 

(6.4) Fn('; tnj) = g(tnj) + ? . * <)[u,] (0 < n < N - 1), 
i=o 

consititutes, for each n, a system of m nonlinear algebraic equations for 
{Y Y,..., 1) }; once these values have been determined, the approximation u on an 
is given by 

(6.5) Un(tn + vhn) = L(v) Ynj 
j=I 
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For m = 2 (i.e., ui Ee S(-1)(ZN)), the quadrature weights (6.2) are: 

w a = ((2 - a)c2 - 1) CJ .(i -(2 - a))cl) 

%ilJa) (1 -a)(2-a)(c2-c1 ) (1 -ax)(2-a)(c2-c1) 

(1 - a)(2 - a)(c2 - cl) 

* ((tnh t) ((2 -a)c2 - i ) 

- ( h~ )t~ ((2 - a)(c2 - 1) - hl )) 

,2 (a) (1 - a)(2 - a)(c2 - cO) 

(( t ) t1) ( tfl -(2-a(i-i) 

(j hj i 

(j= 1,2;O C i n-1). 

The corresponding fully discretized collocation equation reads 

+hlj-. { w11(a) k(tnj, tn~ + cyclhn, L1(cycl)Ynl + L2(jclc)Yn2) 

+w12(aX) *k(tnj, tn~ + cyc2hn, L1(cyc2)Yn1 + L2(cyc2)Yn2)} 

(1= 1,2), 

with 
n-1 

A1(ci; tnj) = + E * {wy(fl'i)(a) * k(t, ti + cthi, Yij) 

+wj.(n'~)(a) k(tnj, ti + c2hi, 5;2)) 

(0 - n a N -1). 

For the graded mesh tn = (n/N)r T(O < n < N), we obtain 

n87(N-2)a if r = 27(1-a), 

IIY- ||IK = (N-1), if r = 17(1-a), 

(N(1a)), if r = 1 (uniform mesh) . 
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