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Estimation of the Error in the Reduced Basis Method 
Solution of Nonlinear Equations* 

By T. A. Porsching 

Abstract. The reduced basis method is a projection technique for approximating the solution 
curve of a finite system of nonlinear algebraic equations by the solution curve of a related 
system that is typically of much lower dimension. In this paper, the reduced basis error is 
shown to be dominated by an approximation error. This, in turn, leads to error estimates for 
projection onto specific subspaces; for example, subspaces related to Taylor, Lagrange and 
discrete least-squares approximation. 

1. Introduction. Consider the equation 

(1.1) F*(.p) = 0, 

where F*: R' -- R'. The reduced basis method is a technique for approximating 
solutions of (1.1) by way of solutions of a related equation, 

(1.2) FR(Z) = 0, 

where FR: Rm -- Rm and m < n. The relationship between (1.1) and (1.2) is such 
that if a solution of (1.2) is known, then the n-dimensional approximation of 4, say 
OR, follows in a trivial manner. The power of the method derives from the fact that 
for many systems (1.1) of practical interest, mappings FR can be constructed that 
provide highly-accurate approximations PR when m << n. 

The method has been applied to a variety of structural shell problems [1], [2], 
[6]-[9] and, more recently, to a problem in steady fluid flow [10]. Although the 
effectiveness of the reduced basis method is numerically established in these papers, 
no error estimates are given. 

In the papers [3], [4], Fink and Rheinboldt address the error analysis question for 
nonlinear equations in a Banach space setting. They consider one-parameter families 
of finite-dimensional problems and show that as the parameter tends to zero, 
solution segments of these problems converge to a solution segment of the infinite- 
dimensional problem. However, no estimate of the order of the error is given for any 
fixed finite-dimensional segment in the family. Indeed, the existence of a finite-di- 
mensional solution segment is assured only if the dimension of the associated 
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approximating subspace is sufficiently large.** In contrast to this, the finite-dimen- 
sional case considered here allows order estimates of the errors resulting from 
approximations of any fixed lower dimension. 

The reduced basis method proceeds from the notion of an imbedding of the map 
F* into a family of maps. The imbedding produces a manifold of solutions in place 
of the point solutions of (1.1). This is the same idea that lies at the heart of 
continuation methods (see, for example, [11]). Accordingly, in the next section we 
define the manifold problem and use it in Section 3 to formulate the reduced basis 
problem (1.2). To develop (1.2) we employ a projection of Rn onto an m-dimensional 
subspace YR. Thus, the reduced basis method may be regarded as nothing more than 
a composite projection-continuation method. 

In Section 3, we establish the existence of solutions of (1.2) and then develop an 
estimate of the error 4 - OR in terms of an approximation error in Y'R. This allows 
us, in Section 4, to obtain error estimates for specific choices of the subspace Y'R. In 
particular, we consider subspaces related to Taylor, Lagrange, and discrete least- 
squares approximation. Interestingly, the order of the error is the same for each of 
these seemingly disparate subspaces. Finally, in Section 5, we present some perfor- 
mance data derived from previous applications of the method. 

2. The Manifold Problem. Suppose that the mapping F* of (1.1) is obtained as a 
restriction of a one-parameter family of maps. That is, suppose that we are given a 
map F: Rn X R -- Rn such that F*(4) = F(4, 4.) for some fixed 40. Solving (1.1) is 
then equivalent to the following problem. Given 40, find a point (4, E) E Rn x R, 
such that 

(2.1) F(4, 0) = 0, 

(2.2) doe 

In attempting to solve problems of the type (2.1), (2.2), it is very useful to regard 
their solutions as particular points on a curve of solutions in Rn, the parametrization 
of the curve being in terms of the component (. Indeed, it is important to generalize 
this idea even further by not according any particular component the special status 
of a parameter; instead, one simply considers sets in Re +l whose members satisfy 
(2.1). Obviously, without further hypothesis, this so-called manifold problem admits 
completely general solution sets. 

A particularly simple situation results when the solution manifold is again a curve; 
this time in Rn I. To describe this situation, we set (4, () = x e Rn,1 and write 
F(4, 9) = F(x). Then the regularity set of F: R n1 -, Rn is 

JR(F)- {x e R IrankDF(x) = n}, 

where DF(.) denotes the Jacobian matrix of F. With regard to solution manifolds 
that are curves, Rheinboldt [11] has proven the following existence theorem. 

**Note added in proof. In more recent work (Technical Report ICMA-84-70, University of Pittsburgh, 
Pittsburgh, PA, 1984) Fink and Rheinboldt remove this existence question by assuming that a certain 
finite-dimensional linear operator is nonsingular. In the proof of Theorem 3.2 of this paper we show that 
when the original problem is finite- dimensional, such an operator always exists. 
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THEOREM 2.1. Suppose that F is at least twice continuously differentiable on Rn 
and that x" E (F) satisfies F(x0) = 0. Then there exists an open interval J and a 
unique, simple, C' curve x: J -- R(F) such that 

(i) F(x(s)) = O, s E J, 

(ii) x passes through x0, 
(iii) x has no endpoint in t#(F), and 
(iv) dx/ds # O s E J. 

This result does not require that the parameter s coincide with one of the 
components of x. Indeed, to avoid the possible occurrence of turning points, it is 
essential that such an identification be avoided. However, if DjF denotes the n X n 
S3bMZ Oh taZnod- D. 5E 3y.a 2e'ein'js; to .t40h zol33umn; le-hen. A;e X F ,; for. 

each so E J, it is always possible to find an index j such that D F(x(so)) is 
nonsingular. It follows from the implicit function theorem that at each point on the 
solution curve, it is possible to give a local parametrization of the curve in terms of 
one of its components. Thus, we assume that at' x0 = x(so) an index j has been 
chosen for which DjF(x0) is nonsingular. Defining the change of variables, 
T: Rn+1 -* Rn X R, T = (y, X), T(x) = (x1 - X10.. . ,X11 -X 1, x1~ - 

Xj + 19 . .. xn+ 
l- 

x19xj-XJ) and the mapping G: R X R -Re 

(2.3) G(y, X) = F(T-1(y, X)), 

we see that for some XA > 0 there exists an interval Al = [-X1, XA] and a C' curve: 
y: A R n such that 

(2.4) G(y(X), X) = O, X e A1, 

(2.5) y(O) = 0. 
Furthermore, it is clear that the solution curve x(X) may be recovered from y(X) by 
the trivial inversion x(X) = T-1(y(X), X). 

3. The Reduced Basis Approximation and Error. In view of the preceding, we 
assume that we are given a mapping G: Rn X R -- R , G = (g,.. .,gn) T, continu- 
ously differentiable for each (y, X) E Rn x R, and satisfying G(O, 0) = 0. We also 
assume that DYG(O, 0) is nonsingular, where DYG is the n X n Jacobian matrix having 

8gilayj as the element in its ith row and jth column. 
We are interested in approximating the solution curve y that satisfies (2.4) and 

(2.5) by a curve YR lying in an m-dimensional subspace 9'R of Rn. The curve YR is 
defined by a projection method. Specifically, we let P denote the projector from Rn 
onto YR relative to some complement of Y'R. Then, we seek an interval AR= 

[-XR, XRI XR > 0, and a curveYR: AR 9'R, such that 
(3.1) PG(yR(,X), X) = 0, X e AR, 

(3.2) YR (0) = 0. 

Problem (3.1), (3.2) is called the reduced basis problem, and we now show that for 
each m, 1 < m < n, it has a unique solution. 

We begin with a lemma on the existence of a simultaneous complement of two 
subspaces. 

LEMMA 3.1. Let Yand Y be m-dimensional subspaces of Rn. Then there is a subspace 
& that is a complement of both 9and . 
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Proof. Let the columns of S1 and T1 be respectively bases for Y9and $', and let U 
and V be n X n nonsingular matrices such that 

us= [ ] VT1 = [T11 

where S11 and T,, are m X m and nonsingular. Then the n - m columns of S2 and 
T2 are respectively bases for complements of wand Y if and only if 

U[S1S2]= [i S22 and V[T1T2]= [Tol T2] 

where S22 and T22 are nonsingular. It follows that if 

[=n UV- 
[S22 ] [T22]l 

and T12, T22 can be chosen so that 2222 and S22 are nonsingular, then the columns of 
S2 form a basis for a common complement of Sand Y. 

If we write 

uv-1= 
[wI w12] 

where W22 is (n - m) X (n - m), then the matrix [W21 W22] has a set of n - m 
linearly independent columns, say columns k... .kn k Let e' denote the ith unit 
coordinate vector in Rn and set 

[ 712] 
= 

(ek,9 ... 9ekn) - 

The matrix C is singular only by virtue of certain zero rows, i. .is, and columns, 

j*1 ..,j. If the index sets {i^}, {I]} are not void, let E(e) denote the (n - m) X 

(n - m) matrix with e in row ii, columnjo p = 1,... ,s and zeros elsewhere. Now set 

T22 =C + E(e). Since S22 = W21T12 + W22(C + E(e)) is nonsingular when e 0, 
and since T22 is nonsingular for all e # 0, by continuity both matrices are nonsingu- 
lar for some e $ 0. Q.E.D. 

The existence of a solution of the reduced basis problem may now be established. 

THEOREM 3.2. For each subspace ?"R of dimension m, m = 1, 2,... ,n, there is a 
projector P: Rn --R such that problem (3.1)-(3.2) has a unique solution. 

Proof. Define the m-dimensional subspace 
9= {DYG(0,0)wIW E=9"R1 

By Lemma 3.1, ?"R and J` have a common complement ?. Let P be the projector 
onto YR relative to 0&. It is known [5] that P has a representation 
(3.3) P = YUT, 

where the columns of Y form a basis for YR and the columns of U are biorthogonal 
to those of Y. Thus, the reduced basis problem (3.1)-(3.2) is equivalent to finding an 
interval AR = [-AR, AR] AR > 0, and a curve z: AR -4 R " such that 

(3.4) UTG(Yz(A), A) = 0, A E AR, 

z(0) = 0. 

Let H: Rm X R --R 

H(z, A) = UTG(Yz, A). 
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Then solution of (3.4) is tantamount to solving the equation H(z, X) = 0 for z as a 
function of X. But H is continuously differentiable on Rm x R, and H(O, 0) = 

UTG(O, 0) = 0. Furthermore, DZH(O, 0) = UTD G (0, O)Y. We assert that this matrix 
is nonsingular; in which case an application of the implicit function theorem 
concludes the proof. 

To see that DZH(O, 0) is nonsingular, observe that DyG(O, O)Yz e - for any 
z e Rm. If UTDvG(O, O)Yz = 0, then PDyG(O, O)Yz = 0, and hence also DyG(O, O)Yz 
e q. But e n -consists only of the zero vector. Thus, DyG (O, O)Yz = 0; that is, 
z = 0. Q.E.D. 

Having established the existence of solutions y and YR of the manifold problem 
(2.4), (2.5) and the reduced basis problem (3.1), (3.2) on the interval AR A1 n AR, 

we turn to an examination of the error y - YR. Let be a vector norm on R'. We 
have the following theorem relating the reduced basis error to the projection error. 

THEOREM 3.3. Let Y0R and P be related by (3.3). Then there is an interval 

A* = [-X*, X*], X* > 0, and a constant C such that 

(3.5) IIy(X) - yR(X)II < CIIPy(X) - y(X)II, X E A*. 

Proof. From (2.4) and (3.1) it follows that for X E AR, 

PG(YR(X), X) = 0 = PG(y(X), X), 

P[G(Py(X), X) - G(YR(X), X)] = P[G(Py(X), X) - G(y(X), X)]. 
Since P has the representation (3.3), this equation may be written 

U T[G(YUTy(X), X) - G(YR(X), X)] = UT[G(Py(X), X) - G(y(X), X)]. 

Letting w(X) = UTy(X) and recalling thatyR(X) = Yz(X), we see that 

(3.6) UTG(Yw(X), X) - UTG(YZ(X), X) = UT[G(Py(X), X) - G(y(X), X)]. 

For each X e AR, we now define the mapping HA: RM P4 R"', Hx(u) = 

UTG(Yu, X). Clearly, HA is continuously differentiable on R" x R. Moreover, 
DuHO(O) = UTDvG(0, 0)Y, and this is nonsingular. Therefore, by the inverse function 
theorem there is an interval A H = [-X H, X H], AH > 0, a positive number p, and a 
ball Bp = {u E R'| IIuII < p} such that for each X e AH, HA maps Bp in a i-to-i 
manner onto a closed neighborhood of HA(O). Moreover, regarding the inverse 
mapping HA1, there is a constant C1 such that IlDuHA1(u)ll < C1, (u, X) E Bp X AH. 

If we let u(X) = Hx(w(X)), and v(X) = Hx(z(X)), then (3.6) reads 

(3.7) U(X) - V(X) = UT[G(Py(X) X) - G(y(X), X)]. 

Since u(O) = v(O) = 0, by continuity there is an interval AO = [-XA, XO], XO > 0, 

such that u(X), v(X) E Bp for all X E AO. If A* AH n Ao, then by (3.7) and the 
mean value theorem, 

(3.8) IIw(X) - z(X)II = JJHA1(u(X)) - HAj(v(X))D < C111u(X) - v(X)II 

(38 C11 UTII ||G(Py(X)A X) - G(y(X), X)II, X E A*. 
Furthermore, since Py(X) and y(X) are contained in some finite ball Br, there is a 
constant C2 such that IlDuG(y, X)jj < C2 for all (y, X) E Br X A*. It follows from 
(3.8) that for X E A* , 

IIPY(X) -YR(X)II = IIY(W(X) - Z(X))II < IIYII IIw(X) - Z(X)II 
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But then 

1LY(X) YR(X)II IY(X) - Py(X)lI + 11PY(X) YR(X)I 

< (1 + K)j|Y(X) - PY(X)I! C1IY(X) - Py(X) QE.D. 

Although (3.5) relates the reduced basis error to the projection error, it does not 
directly yield the order of the approximation under various choices of the subspace, 

YR. For this purpose it is necessary to supplement (3.5) by a majorization of the 
projection error in terms of an approximation error in YR. If P is the orthogonal 
projection onto YR i.e., the subspace & in Theorem 3.2 is the orthogonal comple- 
ment of Y'R, and w(X) is any curve in 5YR then in terms of the Euclidean norm, 

21 112' we have the simple majorization 

IIPY(X) - Y(X)112 -< IY(X) - W(X)l!2. 
For other projections and norms the following lemma generalizes this inequality. 

LEMMA 3.4. Let YR be a subspace of R' and let P be the projector onto YR relative to 
a complement A1. Then, there is a constant K such that 

(3.9) Ily-Pyll < KfJy-wjl, W G Y. 

Proof. Let u = y - Py, v = Py - w. If u or v vanishes, then (3.9) holds for any 
K > 1. If u and v are nonzero, then 

U/[fUM12 E {f E I f K112 1} - B1, 

V/jII2 E= {g E R |!gj2 = 1} }B2. 

But as B1 and B2 are compact sets satisfying B1 n) B2 {0}, we have 

supifTg- I 3< 1, 

where the supremum is taken over all f E B1, g e B2. Therefore, 

fily - wj|2 ? I|U|t2 + j|v| - 2-u~vj ? 1UI12 + t|V1t2 - 2I3ulIU2I11V|2 

IlulI? (11v112 - 13_u112) - I32JJul2 > (1 32)ItuN12 

Consequently, 

11Y - PY112 <, (I - /2)l/2jy 
_ W112. 

This establishes (3.9) for the Euclidean norm and the general case then follows from 
the norm equivalence theorem. Q.E.D. 

By combining (3.5) and (3.9) we obtain the estimate 

(3.10) y(X) YR(A)1IS L|y(/X) - w(X)j, X E A*, 
where L = CK and w(X) is any curve in YR. 

In the next section we shall use (3.10) to obtain error estimates for some specific 
choices of the subspace ,R. 

4. Some Reduced Basis Subspaces. Before proceeding to the definition of the 
subspaces, we note that in general we do not know the solution curve y for X > 0. 
Indeed, the whole idea of the reduced basis method is to provide an approximation 
for this part of the curve. As a practical matter then, in defining the subspaces of this 
section, we do not require any information beyond the knowledge of a finite number 
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of points on that part of the solution curve corresponding to X E [ -X , 0], where X * 

is the constant guaranteed by Theorem 3.3. 
The Taylor Subspace. In this case, assuming that y has M derivatives at X = 0, we 

take 

(4.1) R span u'I u' = d'y i = ) 

In other words, we form a subspace ?"R of dimension m < M from linear combina- 
tions of the first M derivatives of the solution curve at A = 0. This subspace has been 
extensively used by Noor and his coworkers to solve finite-element discretizations of 
nonlinear structural shell problems [6]-[9]. In this work the elements uJ are referred 
to as "global basis vectors" or "path derivatives". Peterson [10] has also used the 
Taylor subspace to generate finite-element solutions of the stationary Navier-Stokes 
equations. 

If G is sufficiently smooth, then the vectors u' may be obtained from successive 
differentiations of (2.4). Thus, 

D(G (42 G) u(=)u =-DG (0, 0), 

DpG(0,0)U2 = -DPyG(0,0)u'u1 + 2DxYG(0,0)ul + DxxG(O.0)] 

etc., where D , DAY and D x are the coordinate representations of the indicated 
second derivatives of the mapping G. We observe that each u' may be obtained from 
its predecessors by solving an n X n linear system having the same coefficient matrix 
DG(O, 0). Thus, as noted in [7], only one matrix factorization is required to obtain 
the u'. However, in the most general case, it is clear from (4.2) and succeeding 
formulas, that when j > 2, it will require O(nj+1') multiplications to form the 
right-hand side of the linear system defining ui! The computational efficiency of the 
Taylor subspace in shell and fluid dynamics problems is apparently due to the fact 
that in these instances each coordinate function gi is a low-order (e.g., quadratic or 
cubic) polynomial in only a few of the variables y1. Hence, the right-hand sides of 
(4.2) and its successors may be computed in significantly fewer multiplications than 
the O(n + 1) estimate of the general case. 

Using (3.10), it is easy to estimate the error resulting from projection onto the 
Taylor subspace. Note that it suffices to establish such an estimate for any particular 
norm. We use the x -norm, 1 1 , where for y = (yli . . ,yn), A* = [-A*, Aa*], 

Ilyll 0- max sup jyi(A)I 

COROLLARY 4.1. Suppose that d M+ ly/d AM+ 1 is continuous on A *. If"R is given by 
(4.1), then 

(4.3) IIY - YRIIoO =O(M* ) 

Proof. Let u0 = 0 and define the Taylor polynomial, 
MAj 

YT()= E U 
j=O 

Using (3.10) and the fact that y(X) E ?"R, we have 

(4.4) IYY I LIIY(A)-YT(A)II K E.D.LjjdM+ly/dAM+ljjXAM+ 
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By Corollary 4.1, the Taylor subspace provides an approximation of y which is of 
order M + 1 in A. However, as we have seen, it may be costly to implement. We now 
consider two other subspaces that yield the same asymptotic order of accuracy 
without the need to form and solve equations such as (4.2). 

The Lagrange Subspace. Suppose that for j = 1,. . . , M, the points AX E [-A *,, 0) 
are distinct and y(Aj) is known. The Lagrange subspace is given by 

(4.5) RR= span( uIui=y(Aj),I= 1,...,M}; 

that is, it is the set of linear combinations of M points on the solution curve. A 
subspace of this type was employed by Almroth and associates in their numerical 
treatment of nonlinear structural shell problems [1], [2]. 

Con~erningih~ ertot wet hane~ hen same C~jmatEaahe~oreJS sQ .b~ SZiSAtX = 

u ? = 0, and define the Lagrange interpolating polynomial 
M 

YL(A) = E Ij(x)uj, 
j=0 

where 1 (A) H k=O;koj(A - Ak)/(A1 - Ak). Then, as in the proof of Corollary 4.1, 
M 

(4.6) IIY-YRIlL < L y(A)- E lj(A)y(Aj) 

But it is well-known that for each A E A *, there is an q E A *, such that 
M F, Hm=( k)d~y 

yi(X A- E bj(A)yi(Aj) - (M + 1k)! dAmyil,() 
j=0 

+1 dm1 

Hence, 
M 2M+1 

<l (m+ Idm~y/dAIIl00A*,~ I 
I- E Ij(A ) y( j)l (|M+ y 

iA+ 1lIXA 9 y- 
0 

E( y( 
00 

and this combined with (4.6) establishes the estimate. 
As a final example, we consider a subspace related to discrete least-squares 

approximation. 
The Discrete Least-Squares Subspace. Assume, as in the case of the Lagrange 

subspace, that Y(Ak) is known at distinct points Ak E [-A*, 0], k = 1,... ,K. For 
0 < M < K - 1, let { Pj, j = 0,. . . , M } be a set of polynomials of degree at most M 
that are orthonormal on the set { A k ). That is, 

K 

(Pi, P9) E Pi(Ak)Pj(Ak) =ip 
k=1 

The discrete least-squares subspace is defined as 

(4.7) "R = span( ui I uj = (y, Pj)j = 0 ... 9,M }, 

where (y, Pj) ((yl, Pj),. . ., (y, Pj)). 
Under the hypothesis that y E CM+ '(A*), we again obtain the estimate (4.3). For 

a proof, we let Q(A) = Pji(PX(A)uj. Then, as before, 

(4.8) IIY - YRI0 < LIly(A) - Q(A)|IK. 
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Writing Q(X) = (q1(X),. . . ,q(X)), we note that for i = 1,... ,n, qj is the least- 
squares approximation of yi on the set { Ak }. But then, it is not difficult to show that 
qj interpolates yi at distinct points Oij = O... . , M, of [-A *, 01 (see for example [12]). 
Therefore, as in the case of the Lagrange subspace, we have 

H - '( A-Oj ) dM tyQ('n) y,(A) q1(A) (M + 1)! dAM+l 

and the result follows from this and (4.8). 

5. Applications. In Table 5.1 we present a summary of some performance data that 
has emerged during the course of past applications of the reduced basis method. 
Unfortunately, only reference [2] contains reduction factors for the computation 
times involved when the reduced basis system (3.1) is solved instead of the full 
system (2.1). However, even from these few cases we see that the average reduction 
factor exceeds 2t and inu rtmns~are~ that for l e f this. tIy.p.eo, iii- 
as large as 5. 

In all of these applications, the systems (2.1) resulted from finite-element discreti- 
zations of the corresponding infinite-dimensional operator equations. We also note 
that in accordance with the error estimates presented in Section 4, the reduced basis 
solutions were remarkably accurate. Details of the various implementation strategies 
used are contained in the given references. 

TABLE 5.1 
Performance Data 

Ref. Subspace Original System Reduced System Reduction 
Size (n) Size (m) Factor 

Compression of-pear 2 Lagrange 1300 ? 6 2.5 
shaped cylinder 

Bending of long 2 Lagrange 939 < 9 3.1 
cylinder 

Point force on a 2 Lagrange 1966 < 11 2.0 
spherical cap 

Panel in 2 Lagrange 3044 < 8 1.4 
compression 

Compression of 2 Lagrange 7055 < 7 2.8 
cutout cylinder 7 Taylor 2996 7 

Clamped cylindrical 6 Taylor 500 5 and 6 
panel 7 Taylor 287 6 

Buckling of 6 Taylor 500 4 and 5 
spherical shell 

Buckling of 24-ply 9 Taylor 714 8 
rectangular plate 

Buckling of 8-ply 9 Taylor 793 8 
rectangular plate 

Steady driven 10 Taylor 700 5 
cavity flow 
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