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Aitken Sequences and Generalized Fibonacci Numbers 
By J. H. McCabe and G. M. Phillips 

Abstract. Consider the sequence (v,,) generated by v,, ? = av, - bvy,,, n > 2, where vl = 1, 
t7, = a, with a and b real, of which the Fibonacci sequence is a special case. It is shown that if 
Aitken acceleration is used on the sequence (x,,) defined by x,, = v,,+l/v,,, the resulting 
sequence is a subsequence of (x,,). Second, if Newton's method and the secant method are 
used (with suitable starting values) to solve the equation x2 - ax + b = 0, then the sequences 
obtained from both of those methods are also subsequences of the original sequence. 

1. Introduction. Recently, the second author [5] showed that if Aitken acceleration 
is applied to the sequence of ratios of consecutive Fibonacci numbers, the resulting 
sequence is a subsequence of the original sequence. Specifically, let ul =U2 = 1 and 
Un+1 = un + un-,, n > 2. Define the sequence (x) by 

Xn = Un+ll"n n = 1, 2, ....9 

and the Aitken sequence (x"*) by 

(1) *~- 1Xn+lX2 + 
x nn> 2. 

Phillips [5] showed that 
(2) Xn* = X2n, n > 2, 
and found that the repeated use of Aitken acceleration also gives subsequences of 
the original sequence (with repeated doubling of the suffix as above). This procedure 
will be stated more precisely in Section 4. 

The sequence (x") converges linearly to (1 + V;)/2, the 'golden number', the 
positive root of the equation x2 - x - 1 = 0. See Vorob'ev [6]. Phillips [5] also 
showed that when Newton's method and the secant method are applied to the 
equation x2- x - 1 = 0 with suitable starting values, the resulting sequences are 
again subsequences of (x"). 

The purpose of this paper is to show that all of the above results generalize when 
the Fibonacci sequence is replaced by 

(3a) vn+ = avn - bvn-1 n> 2, 
(3b) v1 = 1, V2= a, 
where a and b are real numbers chosen so that no vn is zero. (Necessary and 
sufficient conditions on a and b are given in the next section.) Then, as before, we 
define (x") by 

(4) xn = v"+llVn- 
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The original case is recovered by choosing a = -b = 1. We note that another very 
simple case is that for which a = 2, b = 1, which yields vn = n. 

The generalization of the result (2) was prompted by a well-known relation 
between certain Pade approximants and Aitken acceleration [1, Section 3.1]. It is 
possible to justify the generalization of (2) by using continued fraction representa- 
tions of the sequence of these Pade approximants. However, this leads to a 
presentation which is, to our taste, less satisfactory than the more direct method 
which we use here. Moreover, our direct method is compatible with the verification 
of our results in Section 5 on the Newton and secant methods. 

2. The Recurrence Relation. In this section we obtain necessary and sufficient 
conditions on the real numbers a and b for the sequence (3) to have no zero 
members, so that xn is always defined by (4). Obviously, we require a * 0 and we 
will also avoid b = 0, which gives a trivial case. (It is possible to allow a and b to be 
complex, but we will not pursue this.) 

There are three cases to consider, depending on whether x2 - ax + b = 0 has 
roots which are real and equal, real and unequal, or complex. If the roots are equal, 
we readily find that 

(5) vn = n(al2 
l 

and hence vn * 0 for all n. Note that, in this case, the sequence (x") converges to 
a/2. 

If the roots, say a and /3, are unequal, we obtain 

(6) vn = (atn _ n)1(a l) 
Since a # /3 and a # -/3 (because a + /3 = a # 0), we conclude that vn # 0 for all n 
when the roots are real and unequal. We also observe that in this case the sequence 
(x") converges to the root of larger modulus. 

The other possibility when the roots are unequal is that they are complex. In this 
case we have /8 = 6. Let us write a = re'+. Since a + /3=a and a1 = r2 = b, we 
find that 

cos- 2a/4 

and, from (6), 

(7) n = b2 1sin n4/sin 4. 

In fact, we can write 

(8) v" = b2 Un-1)"_(t) 

where t= 2a/ and UnL is the Chebyshev polynomial of the second kind, 
defined for -1 < x < 1 by 

Un 1(x) = sin n 0/sin G, where x = cos O. 

These satisfy U0(x) = 1, Ul(x) = 2x and the recurrence relation 

U?+l(x) = 2xUn(x) - Un_(x), n > 1. 

The zeros of Un_(x) are easily seen to be x = cos(k r/n), 1 < k < n - 1. Thus, for 
all v, to be nonzero, we need to ensure that t = 2a/ F is not a zero of any of the 
polynomials Un_(x). This entails that 
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where k and n are integers such that 1 < k < n - 1. As an example of an 
inadmissible choice of a and b we cite the case a = 1, b = 3, for which we find that 

v6= 0. Note that, in the case of complex roots, the sequence (x") has no limit. 

3. Some Identities. We require the following three identities: 

(9) vn+lVm -bvnvm-1 = vn+mg 

(10) VnVm + -ivn+lvm = bmvn-m, 

(11) vn2 - vn+mvnm = bn-m2. 

The first identity is valid for n > 1 and m > 2 and the other two for all n > m > 1. 
The identity (9) is easily shown to be true for m = 2 and all n and also for m = 3 
and all n. The proof of (9) is completed by an induction argument, with induction on 
m. The same procedure serves to verify (10), except that we take 1 and 2 as the 
initial values of m. Thus, in verifying (9) and (10), all that we require besides 
induction is the recurrence relation (3) with its starting values. 

To justify (11) we may proceed as follows. Let us write 

w 2 -,_ v,1, n > 2, Wn = Vn -Vn+ lVn-19 n>2 

and it is clear that w2 = b. We can show from (3) that wn - bwn_- = 0 and hence 
that 

(12) wn = vn2- v+lv,-l = b 

This is (11) with m = 1. For a general value of m we now substitute for vn+m and 
Vnr- in (11) from (9) and (10) respectively. The verification of (11) then follows after 
a little manipulation in which we need use only (3) and (12). For the special case of 
the Fibonacci sequence ((3) with a = -b = 1), the identities (9) and (11) are quoted 
in Hoggatt [3]. 

It is interesting to observe that the sequence (v"), as defined by (3), can be 
extended so that vn is defined for all integers n, and not simply for positive integers. 
Thus we find that vo = 0 and 

Vn = -b-nvn, n > 0. 

Then the identity (10) is obtained from (9) on replacing m by -m. 
Before leaving these identities we note that it is also interesting to interpret them 

(and verify them) in terms of the explicit forms which we obtained earlier for v", 
where vn is written in one of the following ways, depending on the roots a and /3 of 
the equation x2- ax + b = 0. 

(13) Equalroots: vn = n(a12)n, 

(14) Complex roots: -n = b(- 1)/2sinn4/sin4, 

where = cos1( a/b), 

(15) Distinct real roots: vn = (a n _ n )/(a - /3). 

The identities (9), (10) and (11) are easily verified for vn given by (13), in which 
case we note that b = (2a)2. We see that the exponential factor (a/2)y- which 
occurs in vn factors out and the identities behave as if b = 1 and vn = n. In this case 
the identities are concerned with the natural numbers. 
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For vn given by (14), again the exponential factor b(n-1)/2 can be factored out. 
This time we have identities involving the sine function. 

We are thus encouraged to look again at the form of vn in (15). There are different 
cases to consider depending on the signs of the roots of a and /3 which, without loss 
of generality, we can consider satisfy lal > 1/31 > 0. For example, if a > /3 > 0 we 
can rewrite (15) as 

(16) - = b(n-1)/2sinhnX/sinhX, X = coshl( a/x/), 

and, in fact, the form (8) serves to describe both (7) and (16). 

4. Aitken Acceleration. Here we show that 

(17) XnrXnr -xn =x2, n > r >1. 
Xn~r - 2xn + X- 

Only the special case of (17) with r = 1 is required to verify that Aitken acceleration 
on (x") yields x"* = x2". However, the full generality of (17) is needed to show what 
happens when we use repeated Aitken acceleration. 

The numerator on the left of (17) becomes 
2 2 

(18) x + x _ x2 = Vn+r+lVn-r+lVn Vn rVn-rVn +i (18) X~~~~n+r n-r Xn 2 
Vn + rn - r~n 

The numerator on the right of (18) may be replaced by 

in 1n - Vn+rVn-r) - Vn n(vi1 - V+r+1n-r+lr) 

and, on using (11) followed by (9), this last expression simplifies to give 

be - rVr2V2n + 

Thus the numerator on the left of (17) is 

(19) x-x = 2 rV2 
Vn + rVn - rVn 

We now consider the denominator in the left of (17). First we obtain 

Vn+lVn-r - Vn-r~l n , _ bn-rVr 
X _ Y n n-r VnVn - r VnVn - r 

on using (10). Hence we have 

(20) Xnr -2x + x_ 
- 
brVr(Vn+r -bv vr) n~~r n n-r 

Vn +rVnVn -r 

If we subtract (10) from (9), with m = r, and use (3), we obtain 

V n~r -br~n rv = Vr(Vn+l - bvn1) 
and so (20) becomes 

(21) Xn~ - 2x, + n-X ~V2(ni- 
(21) n+r n n-r Vn+rVnVn-r 

Now from (9), with m = n, 

(22) vn(vn+l - lbV1) = V2n 

From this, (19) and (21) we obtain the required result (17). 
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As we remarked above, (17) with r = 1 shows that x"* = x2,. If we now write x** 
to denote the result of applying Aitken acceleration to x"-1, x"* and x"*+ 1, we have 

- 
*nX* -(X*)2 X2n+ 2X2n-2 , X2- 

-x* 2x* + x1 X2n+2 - 2x2n + X2n-2 

from the result just proved. If we now use (17) with r = 2 and n replaced by 2n we 
see that 

Xn* =X4n. 

We can obviously repeat Aitken acceleration as many times as we please and at each 
stage we obtain a subsequence of the original sequence. Each time we accelerate, the 
suffix is doubled. 

5. Newton and Secant Methods. Consider the application of Newton's method to 
solve the equation x2 - ax + b = 0. Given an initial approximant tog we compute a 
sequence (tn) from 

- at~ + b 
tf+l[tln 2t -a n>O. 

If ti, = Vk+l/vk for some value of k, we find that tn+1 = V2k+l/V2k. If we choose 
to = V21V1 = a as the initial approximant, an induction argument shows that 

(23) tn = V2 1+/V2`. 

In the secant method we approximate to a root of the equation f(x) = 0 as 
follows: we choose two initial approximants t1 and t2 and compute the sequence (tn) 

from 

tn+ = t- f(tnt) -f( tn-1) n > 2. 

For f(x) -ax + b this gives 
- b 

tn+1= t + t a n?>2. 

If we choose t1 = vp+1/vp and t2 = Vq+?1/Vq for some p # q, we find that t3 = 

Vp+q+l/vp+q. (This result, and the corresponding one described above for Newton's 
method, was obtained by Gill and Miller [2] for the case where the quadratic 
equation x2 - ax - b = 0 has roots of unequal magnitude. This restriction is not 
necessary.) We see by induction that if we choose, as initial values, t, = a, t2 = a - 
b/a, the secant method gives 

(24) tn = V U1+ I+ 1/V U,+ 19 

where u n is the nth Flbonacci number, the special case of vn for a = -b = 1. 
From the pedagogical point of view, the above results provide a very simple 

comparison of the Newton and secant methods. Such a comparison is usually 
achieved by asymptotic arguments involving fle- Fibonacci- sequence. See, for 
example, Isaacson and Keller [4, pp. 99-101]. However, in this case the two methods 
yield subsequences of the same sequence (xn) which has first-order convergence 
(when it does converge). Thus we need only compare the suffices of the two 
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sequences given by (23) and (24). To provide a fair comparison, we should replace n 
by n + 2 in (24) so that we use n iterations of each process. We therefore compare 
the Fibonacci number un+3 with 2". From (6) with a = -b = 1 we deduce that 

Un13 _ -( __) = _1 + -) _(___) 

We now extend this comparison to include the repeated use of Aitken accelera- 
tion. If, in principle, we compute the first N + 1 members of the original sequence 
(x") and then carry out as many Aitken accelerations as we can, how will the 'final 
number' compare with that obtained from N iterations of the Newton or secant 
method? It is convenient to take N = 2n, and it is helpful to think of the Aitken 
accelerants set out in a table whose first column consists of the numbers x1, ... ., x +. 

The second column contains the results of the first Aitken acceleration, namely 
x4*,..., x9*. Successive columns contain the numbers obtained from each accelera- 
tion. Each column has two fewer members than the previous one. Thus we obtain a 
triangular array of numbers whose final number, obtained after n accelerations, is 
X(+? 1). 2n. As we have seen, 2n iterations of Newton's method gives X22n. 
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