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an Algebraic Number Field 

By Theresa P. Vaughan 

Abstract. Letf(x) be a monic irreducible polynomial in Z[x], and r a root of f(x) in C. Let K 

be the field Q(r) and X the ring of integers in K. Then for some k E Z, disc r = k2 disc M. In 
this paper we give constructive methods for (a) deciding if a prime p divides k, and (b) if p I k, 
finding a polynomial g(x) E Z[x] so that g(x) i 0 (mod p) but g(r)/p E M. 

1. Introduction. Let f(x) be a monic irreducible polynomial with integral coeffi- 
cients, and r a root of f(x) in C. Let K be the field Q(r) and 9 the ring of algebraic 
integers in K. It is well-known that 

N(f '(r)) = disc r = k 2disc e 

for some integer k. While N(f '(r)) can be found by straightforward (if tedious) 
computation, the value of k is quite another story. According to [2, p. 77] for 
example, to determine k, one would have to test a finite number (which may be very 
large) of elements of K to see if they are integral. 

In this paper, we reduce some of the difficulties involved in finding k to more 
manageable size; our methods do not require a search process. Consider the 
following problems: 

(I) Given a prime p with p2 I disc r, how can one tell whether or not p I k? 
(II) Suppose p I k. Then, it is known there exists an element P3 E K, P3 = g(r) for 

g(x) E Z[x] and g(x) E 0 (mod p) such that /3/p E M. Construct such an element 

P3. 
A reasonable solution to these problems is furnished by Theorems 5.4, 5.7 and 5.9; it 
may be summarized as follows: 

Suppose that f(x) has degree n, and that p2 I disc r. Factorf(x) mod p: 
r 

f ( x ) = Hfit (x) ei (fi(x) irreducible). 
i=1 

If all the ei = 1, then p + k. If any ej > 1, then let C be the companion matrix of 
f(x) and compute/i(C) (mod p2). This matrix represents a homogeneous system of 
linear equations mod p2; if this system has a nontrivial solution mod p2, then p I k 
and Theorem 5.9 enables the construction of a /3 as in (II) above. If for each ej > 1, 
the system of equations has no nontrivial solution, then p + k. The actual labor 
involved, amounts to the computation and row-reduction (mod p2) of no more than 
r n X n matrices. 
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In Section 2, we give the notation we need from number theory. In Section 3, we 
give our matrix-theoretic notation, and define one of our basic tools: an Abelian 
group, associated with an n X n integral matrix A: 

R(A) = { Qn O Vi < 1,AV E Z'} 

whose operation is addition modulo 1 on the coordinates of vectors. 
In Section 4, we consider the companion matrix C of f(x) as a linear transforma- 

tion of Zn (p prime); we then find that the p-component of a group R(g(C)) for 
g(x) E Z[x], has a particularly nice sort of basis, which then determines (among 
other things) the arrangement of powers of p on the diagonal of the Smith form for 

g(C). 
In Section 5, we use the machinery developed in Section 4 to. answer (I) and (II) 

above; in Section 6 we give some results which are helpful in computations, and two 
examples. 

Finally, in Section 7, we list some unanswered questions and conjectures. 

2. Notation (number-theoretic). Let f(x) E Z[x] be monic and irreducible of 
degree n: 

f = an -i an-2X ***- alx - a (a EZ) 

and let r be a root of f(x) in C. Let K be the field Q(r) and 9 the ring of algebraic 
integers in K. Let o1, 29... (n be the embeddings of K in C. If a E K, then the 
norm and trace of a are defined by X(a) = H= vi(a); Tr(a) =n 

If {a, a2,...,an} c9 and if 9P= {X7=1n-aIn1E Z} then {ala2,...,aa } is 
said to be an integral basis for M. Then the discriminant of 9 is given by the square 

of the determinant of (ai(aj)); 

disc 9 = ai (aj)j ) 
2 E Z. 

Since r is a root off(x), the set {1, r, r2,. . . ,rn-1} is a basis for K over Q. but not 
necessarily an integral basis for 9, that is, it is possible that Z[r] 9P (of course 
Z[r] c R always). 

Define the discriminant of r as 

disc r = |ai (ri- 1)|; 

one has disc r = k2 disc 9 for some k E Z; also disc r = X( f '(r)). 
It is well-known that if p + k, then the factorization of the ideal (p) in A, into 

prime ideals, may be determined as follows: Write 
r 

S (1) f(x) Hf- i(x) ei (mod p) 
i=1 

and let Pi be the ideal (/i(r), p). Then (p) = FH r> piei is the prime factorization of 

(P). 
On the other hand, if p I k, then there exists P e 9P of the form 

n-1 

/3= Eniri (ni E Z), 
i=O 
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where not all the ni 0 (mod p) and (l/p)/3 E A; the factorization (1) does not 
yield the prime factorization of (p). 

As we shall see, however, the factorization (1) may still yield partial information. 
Our methods rely heavily on matrix representations, described in the next section. 

3. Notation (matrix-theoretic). Let C be the companion matrix for f(x): 

1 0 ... 0 al 
C= 0 1 ... 0 a!1 

The minimum and characteristic polynomials of C are both equal to f(x), and C 
represents the Q-linear map on K " multiplication by r" in the basis { 1, r, r 2,... , r n- 1} 

for K over Q. That is, if a, /3 E K and 
n-1 n-1 

a= E ciri; 3=ra= E bir' (ci, bi E Q), 
i=O i=O 

then C * col(c0,. .. ,cn-1) = col(b0,. . *.*,) 
One has Q(r) - Q[C] and Z[r] _ Z[C] via the usual correspondence g(r) - g(C). 

The eigenvalues of g(C) are {1i(g(r))}, Ig(C)I = V(g(r)) and Tr(g(C)) = Tr(g(r)). 
Since f(x) is irreducible over Q. any matrix X = g(C) (g(x) E Q[x]) is singular if 
and only if it is 0; also if XC = CX then X = g(C) and conversely. 

We shall need the Smith form S(X) of an integral matrix X E ZnXn with IXI = 0. 
For each such X, there exist matrices P, Q in ZnXn with IP1 = ? 1 and IQI = ? 1 and 
positive integers di with di I di,1 for i = 1, 2,... , n - 1 such that 

[d, 0 

d2 
PXQ S(X). 

0 dn 

The di are called the invariant factors of X. If pri II d, (that is, pri I di and pri 1 di) 
for a prime, then we put 

Sp(X) = diag(prl, pr2, .. *prn ). 

and call this the p-Smith form of X. 
Finally, we shall require the following group associated with X E ZnXn 9 XI = 0 

(see [1] for a detailed discussion). 
R(X) = {v- = col(v1, v2,...Vn) E QV : 0 n Vi < 1 andXv EXi 

The operation is addition modulo 1 on the coordinates of vectors. It is proved in [1] 
that R(X) is an Abelian group with invariant factors dj,... ,dn; that is, R(X) 
C(dj) @ ... @ C(dJ). The order of R(X) is IXI. The p-component of R(X) 
(elements whose order is a power of p) for a prime p, is the set of all v- E R (X) such 
that 

v-U=-a where t > 0 and a- Ez. 
pt 

If d i 0 (mod p), thenpt is the order of v in R(X), and we say that U is apt-point for 
X. 
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4. Preliminary Results. This section is mostly concerned with the properties of the 
p-component Rp(X) of the group R(X), for X = g(C) E Z[C] (where p is a prime 
dividing I XI). From now on, unless otherwise indicated, all polynomials are in Z[x], 
all matrices are in Z[C], p is a prime, and we shall freely employ the following abuse 
of notation: If a c Zn, we say also a- E zP, meaning the reduced form of a- modulo 
p; if a c Qf we say a E R(X), meaning the reduced form of a- modulo 1. 

Any integral matrix X E ZnXn may be regarded as a linear transformation of the 
vector space Z n, and we use the notation kerp X, Imp X, p-rank, p-nullity, etc., in this 
setting. 

Letp be a fixed prime, and g(x) E Z[x], X = g(C). For convenience, we state the 
following well-known facts and observations as a theorem. (For details see, e.g., [3].) 

4.1. THEOREM. (a) IXI 0 (mod p) if and only if X is singular on jP; (b) IXI- 0 
(mod p) if and only if gcd(f(x), g(x)) 0 1 (mod p); (c) dim(kerp X) = p-nullity of 
X = number of invariant factors of X divisible by p; (d) dim(Im X) = p-rank 
X = n - (p-nullity); (e) Every C-invariant subspace W of Zn has a cyclic vector v for 
C, that is, W has a basis of the form { v, Cv-, C2V- ..., ck - 1U} where k = dim W; (f) If 
W is a C-invariant subspace of Zn, then W = kerp k(C), where k(x) E Z[x] and 
k(x)h(x) = f(x) (mod p) for some h(x); dim W = degree k(x); the minimum 
polynomial for the restriction C I W is k(x); and W = Imp h(C); (g) Let f(x) = 

HFlf(X)ei (mod p), where fi(x) is irreducible over Zp of degree ki; and put 
Wi/ = kerpfi(C)'. If ej > 1, then 

W1 C W2 C ... C Wiei= iei=*. 

If X = g(C), where 
r 

gcd(f(x), g(x)) = iA (x) t 
i=i 

then kerp X is the direct sum of subspaces: 

kerp X = W4 'ED W2t2 ED ...* E Wtr. 

Proof. Parts (a)-(d) are obvious; parts (e)-(g) follow from the fact that the 
minimum and characteristic polynomials of C are equal. O 

4.2. Definition. Let X = g(C) and let V # {0} be a subset of kerp X. The 
V-component of Rp(X) is the set 

Rv(X)= {v- C Rp(X): v = ( a/p), a z a- (mod p) and a- E V}. 

Before the main theorem, we need a few lemmas. 

4.3. LEMMA. Let X = g(C), g(x) E Z[x]. If there is a vector a- O. a- cE kerp X, 
then for some t > 0, (1/pt)d E Rp(X). Conversely, if (1/pt)d E Rp(X), where d E 0 
andt > O,thena- Ekerp X. 

Proof. Xd 0 O (mod p) if and only if Xa- = ptb for some t > 0, b E Zn; hence if 
and only if X(1/pt)a` = b c Zn, that is, (l/pt)a` E Rp(X). O 

4.4. LEMMA. The following are equivalent: 

(a) kerp Xn Wi* {0}; (b) W ckerp X; 
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Proof. Since fi(x) is irreducible mod p, Wi = kerpif(C) has no proper nontrivial 
C-invariant subspaces by Theorem 4.1(f); hence (a) ++ (b). The implications (b) ++ (d) 
also follow from Theorem 4.1(f), and (b) - (c) from Lemma 4.3. a 

4.5. LEMMA. Let A, B, X, Y, Z E Z[C] and suppose that V is a subset of kerp Z. If 

Rv(Z) c Rp(X) and Rv(Z) c Rp(Y), then Rv(Z) c Rp(AX + BY). 

Proof. Let v Ec Rv(Z). By assumption, both Xv- and Yv- are in Zn and hence so is 
(AX + BY)U; then v Ee Rp(AX + BY). E 

For the next theorem, we use the notation of Theorem 4.1(g). 

4.6. THEOREM. Let X E Z[C] be such that kerp X = W/i' for some i, 1 < i < r. Put 

W=Wi,t=ti,k=ki. 
(a) There exist positive integers s, < s2 < ***< s, such that the p-Smith form of X 

has the form: 

Sp(X)= diag 1l 1,... J, psi SI.ps pSt... pot) 

k k 

(b)Foreachi= 1,2,...,t, 

sI-i+i = max{s: (1/ps)d E Rp(X),d E W- Wi-i), 

and if V = W' - W 1, then R v(X) contains k independent pSt-i+1-points. 

(c) Rp(X) does not contain any elements of order higher than pSt. 
(d) R w( X) contains k independent pst-points. 

Proof. (a) There exist unimodular integral matrices P, Q (not necessarily in Z[C]) 

so that PXQ = S(X), the Smith form of X. Then X and S(X) have the same 
p-nullity tk = m, so the p-Smith form is 

Sp( X) = diag(l, 1,...,1 , prl, pr2,. pr) 

where the ri are positive integers, 0 < r, < r2 < * < rm. 

As is shown in [1], a basis for R( X) consists of the columns of the matrix 
Q * S(X)- 1 (reduced modulo 1, of course); hence, a basis for Rp(X) is given by the 
last m columns of Q * Sp(X)f1 namely 

(1/prl)Qn-m+D... . *1.Prp Qn 

(where Qj is the ith column of Q). By Lemma 4.3, {Qj; i = n - m + ,... ,n } c 

kerp X and since Q is unimodular, these vectors are independent in Z n. Thus, this set 
is a basis for kerp X. 

'Suppose now that Qn E Wj - W'1 (1 < j < t; W0 = {0}). Then Qn is a cyclic 
vector for Wi, that is, the set 

{Ci(Qn'):i = 0,...,jk - 1) 

is a basis for Wi, and, in particular, for 0 < i < jk, Ci(Qn) t 0 (mod p). Since 

X E Z[C], and (l/pr')Qn E Rp(X), we have 

X((1/prm)Ci(Qn)) - CiX((1/pr l)Qn) E 

so that all these vectors are prm-points for X. 
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Since the set {(1/pri)Qn-m+i; i = 1,2,... ,m} is a basis for Rp(X), we have the 
equality (in Qn): 

m 

(1/prm)Ci(Qn) = E nu(l/Pru)Qn-mnu + m (nu E Z and mi E Zn). 
u=1 

From this 
m 

Ci(Qn) = fu( Pr-r) )Q + krnirn. 
u=1 

We have jk vectors Ci(QJ), independent mod p, written as linear combinations 
(mod p) of those Qn-m+u such that rm - ru = 0; hence, the number of these must be 
at leastjk. Since the ri are in increasing order, we have the lastjk > k of the ri = rm. 

The same argument now shows that if any of Qn-jk+l... Qn were in some 
W - Wu - 1, then we would have the last uk of the ri = rm. Thus, suppose that all of 

Qn-jk+ 1 ... m Q n are in Wi. We have jk independent vectors in a space of dimension 
jk, so they are a basis for Wi. It follows from the independence of the set { Qj } that 
none of Qn-m,+... Qn-k are in Wi (we are assuming now that < t; of course, if 
j = t, we are done). 

Suppose that Qn-k E wa-wa, a >. Put r = rmjk. The set {Cu(Qnfjk): 
u = 0,1,... ,(a -j)k - 1) is an independent set in Wa - Wi, and as before, we 
have a set of p points: 

(l/pr)Cu(Qn-jk) E Rp(X); u = 0,... ,(a -j)k - 1. 

Then we can wnite 
m -jk 

(l/pr)Cu(Qn-jk) = I nfs(1/P)Qn-m+s 
s=1 

nl 

+ Ad ns(l/Prm)Qn-m+s + m 
s = m-jk +1 

(ns E Z and mi Ee Zn), and from this 
m-jk m 

(*) Cu(Qnljk) 
= E nfS( pr )Qn-m+s + E ns(l(/prmr)Qnmns + prRi 

s-1 s-m-jk+l 

The middle term on the right must be integral, since all the other terms are. But the 
Qj are columns of a unimodular matrix, so this implies that all coefficients of the 
middle term are integral: prmr divides no, s = m - jk + 1. ... ,m. 

Next we have (in ZP) fi(C)j(Wj) = (0) while fi(C)i(Wa) is a space of dimension 
(a - j)k, namely Wai-. Applyingfi(C)i to (*), we have 

m-jk 

fi(C)1(Cu(Qn-jk)) - SP Qn-m+s (mod p), 
s=1 

since Qs E WI for s > n - jk. Now, as before, we must have at least (a - j)k of the 
values r - rs = 0, since the set 

{fl(C)J(CU(QnIk)) u = 0,1,. ..,(a -j)k - 1} 

is independent mod p. By the ordering of the ri, the last (a - j)k of the integers 
ri, ... , rfijk are equal to r = rmjk. Continuing this process, we eventually arrive at 
(a), as required. 
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(b) Let jl, .. ,j be the indices i so that si 0 Si+, (1 < s < t); js = t. Then the 
p-Smith form is divided into s segments of like powers of p, where the ith segment 
has length k( ji - ji ). Group the last m columns of Q correspondingly, into s sets 

A1 . . . As; e.g., As consists of the last k(js -js_1) columns of Q. It is seen in the 
proof of (a) that si < Si + is only possible in case Ai+, U ... U As is a basis for W' 
where j = j- j. Thus, As is a basis for Wis, A_1 is an independent set of 
cardinality k(js-1) in Wa - Wb, where a = js + js and b = js; and so on. 

If v E wa - Wa 1 for some a, then there exists some i so that v is in the span of 
Ai U ... U Asp but not of Ai+, U *** U As. The span of Ai U * U As contains 
Web -Wbl, whereb = ji + + js. Then 

fi(C)b) (W - Wb1) = Wa - Wai. 

As in the proof of (a), since RWb(X) has a basis of elements all of whose orders are 
> pSi, then so does R W(X). Put V = Wa - Wa1; then Rv(X) must contain k 

independent psi-points. 
We must now show that R v(X) contains no elements of higher order. Let pi 

denote the power of p corresponding to column Qi of Q. Suppose that s > si, that 
(1/ps)U E Rp(X) and v is in the span of Ai U * U As but not of Ai+, U * U As. 
We can write 

(1/ps)U= ni(l/pri)Qi + E mi(l/pri)Qi + 
m 

ri <Si r > Si 

(mi, ni E Z and mi E Zn). Then 

v=E ni(ps-ri)Qi + Emi(llpri-s)Qi + psff. 
ri <Si r > Si 

As before, we must have pri-s dividing each mi. But s > si implies pS-ri > p for all 
ri < si; thus mod p, we have v in the span of those Qj with corresponding ri > s, that 
is, in the span of Ai+1 U * U AS, a contradiction. 

Statements (c) and (d) follow from the fact that W is always in the span of As. 
This completes the proof. 
The next two results indicate how a knowledge of the group R(X) may be helpful 

in factorization questions. 

4.7. THEOREM. Let A, B E Zf ndXf be nonsingular. Then Rp(A) C Rp(B) if and only 

if there is some integer k such that (k, p) = 1 and an integral matrix Y so that 

kB = YA. 

Proof. R(A) is generated by the columns of A -1 reduced modulo 1. We can write 
A-1 = (1/dn)D where dn is the largest invariant factor of A and D is integral. 
Suppose pr 11 dn. Then Rp(A) is generated by the columns of (j/pr)D, reduced 
modulo 1. Put dn = kpr. Clearly, Rp(A) C Rp(B) if and only if B((1/pr)D) = Y is 
integral, and the result follows. 0 

4.8. THEOREM. Let fi(x) be an irreducible factor of f (x) mod p, of degree ki = 

with fi(X)ei I f(x). Put A = fi(C) and W = kerp(A). Suppose that Rp(A) = Rw(A) 

does not contain any p2-points. Then, 

(a) Rp(A) = (1/p)Wand IAI = pka with (a, p) = 1. 

(b) R.(A') = (1/p)W' for t = 1, 2,... . ej. 
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(c) If B = h(C) E 0 (mod p) and if W C kerp B, then there exist integers a with 
(a, p) = 1 and t > 0, and an integral polynomial k(x) such that 

W nkerpk(C)= {O} and aB=A'k(C). 

(d) In (c), if B has a p2-point for W, then t > ej + 1. 

Proof. (a) By Lemma 4.4, (1/p)W C Rp(A); by assumption, A has no p2-points 
for W, hence (1/p)W = R w(A) = Rp(A). Then, by Theorem 4.6, the p-Smith form 
of A has dim W = k entries on its diagonal equal to p, and the rest equal 1. Then 
Al = pka for some integer a with (a, p) = 1. 

(b) By Theorem 4.1(f) the dimension of kerp A' for 1 < t < ej is tk (the degree of 
fi(x)'); so tk is the p-nullity of A'. But IA'l = pkta' and so the p-Smith form of A' 
must have tk entries equal p and the rest equal 1. Then, At has no p2-points, and (b) 
follows as in (a). 

(c) This follows from a finite number of applications of Theorem 4.7, since 
whenever W C kerp B, then by (a), Rp(A) c Rp(B). 

(d) Let B be as in (c) above, and suppose 1 < t < eP. Put B1 = k(C), and suppose 
that there is a p2-point for B in W, say (1/p2)13, v E 0 (mod p). Since W n kerp B1 
= {O}, then BliY E 0 (mod p) and since B1 = k(C) and W is a C-invariant sub- 
space, then BpY E W. Then, we have 

aB (1/p2) V- = A'(1/p2 ) B1i E Zn , 

contradicting the fact that for 1 < t < ej, A' has no p2-points in W. Thus, t > ej + 1 
as required. O 

We conclude this section with 

4.9. THEOREM. Let A = g(C) e Z[C] with invariant factors d1, d2,... , dna Suppose 
A * 0, so that A is nonsingular. Then adj A = djd2 d. d- 1B, where B = h(C) e 
Z[C] and B 5 0 (mod p) for every prime p dividing dn. 

Proof. Let the characteristic polynomial for A be a0 + ax + * + x". Then 

A-' = (1/IAI) adjA = (-1/aO)(A'-1 + an-,An- 2 + * + aj1). 

We have a0 = (-1_)nIAI, ? Al = djd2 ... dn, and dn is the smallest positive integer 
such that dn A is integral. Then 

adjA = +(A -1+ + aI)O (mod djd2 ... 
dn-1) 

Now A = g(C), so we can write adj A = k(C) for some k(x) e Z[x]. Since C is a 
companion matrix, then for i = 0, 1,... , n - 1, the first column of C' is 
col(O,... , 0, 1, 0,... ,) with the 1 in the (i + 1)st place. Then, the first column of 
k(C) consists of the coefficients of k(x), and so all these coefficients are divisible by 
di ... dn-1. So k(x) = d1 ... dnlh(x) for h(x) E Z[x], and we have B = h(C). 
Since dn is the smallest positive integer so that dnA1 = B is integral, then B 5 0 
(modpB for any pinmep- -dn- 

Example. Let n = 3 and p be a fixed prime, X = g(C), g(x) E Z[x]. If Sp(X) = 

diag(l, 1, p') (i.e., if X has p-rank 2), then g(x) is divisible by a linear factor of f(x) 
(mod p). If Sp(X) = diag(l, p', p'), then g(x) is either divisible by two linear 
factors of f (x) or by an irreducible quadratic factor of f(x) (mod p). If Sp( X) = 
diag(1, p', pv) and 0 < u < v, then g(x) is divisible by two linear factors of f(x) 
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(mod p), and not by an irreducible quadratic factor. Of course, if Sp(X) = 

diag(pu, pV, PI), then X 0 mod p anyway, and g(x) is divisible byf(x) mod p. 
In the next section it is shown that much stronger statements can be made from a 

knowledge of Sp(X) and Rp(X). 

5. Powers. Throughout this section, p is a fixed prime, and 
r 

(5.1) f (x) f (x) "e (mod p); deg fi(x) = k 
i=1 

is the factorization of f (x) into prime factors in Zp[x]. We let Wi/ = kerp fi(C)'; 
Jil= W'; all polynomials will be assumed to have coefficients in Z (or Zp, 
according to context). 

5.2. Definition. If X = g(C) and Wi C kerp(X), and if 

t = max{ j: (1/pj) dE- R w(X) 9 ,d Omod p}, 

then we say that X has power t for Wi. Now put 

ii = mint t: tis the power for WiforsomeX= g(C)where Rp(X) = R w(X)}. 

Then we say that ji is the least power for Wi, or forfi(x). 
Finally, we say that f1(x) is an honest factor (of f(x), mod p) provided the integer 

fi(r) recalll r is a root of f(x) in C) satisfies 

(p) = (fe(r),p)eV 

for some ideal V which is relatively prime to (fi(r), p); that is, the p-ideal for f1(r) 
actually divides (p) to the exact exponent ej. 

We shall see that the least power for Wi determines the honesty of fi(x); that it is 
possible for some fi to be honest and not others; that if all fi are honest, then (5.1) 
yields the complete prime factorization for the ideal (p) in A, and finally, that a 
dishonest factor may be used to construct an integer /3 E R so that /3/p E R also. - 

The hypotheses required for the results in this section may appear rather technical 
and difficult of application. We remedy this situation in the next section, where it is 
seen that the necessary conditions may be decided in a constructive way (which is 
simpler than one might expect). 

We shall need 

5.3. LEMMA. (a) Let ui = f1(r) E Mf. Then, the ideals (ui, p) and (uj, p) where i 0 j, 
are relatively prime. 

(b) We may always suppose without loss of generality, that f(C) has the least power 
for fj(x), hence Sp(f1(C)) = diag(l, .. . ,p' , . . ,pi) with determinant pkj. 

Proof. (a) This follows from the fact that, for i 0 j, the polynomials fi(x) and 
fj(x) are relatively prime in Zp[x]. 

(b) Put W = Wi, k = ki. Suppose g(C) has kerp g(C) = W and power j for W. 
Then, we must have g(x) = q(x)f1(x) + pr(x), where gcd(q(x), f (x)) = 1 (mod p); 
hence, we can write 

a(x)q(x) + b(x)f(x) 1 (mod p), 

a(x)g(x) -fi(x) (mod pk f (x)), 

a (C) g(C) =fi (C) + pk (C) , 
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for some k(x) E Z[x]. Since gcd(a(x), f (x)) = 1, then 

R,(a(C)g(C)) = R,(g(C)) = R(fi(C) +pk(C)). 

Then, in the factorization (5.1), we can replace the factor fJ(x) by the factor 
fi(x) + pk(x). By Theorem 4.6 we get the p-Smith form. O 

5.4. THEOREM. If fi(x) has least power 1, then it is honest. 

Proof. Put A = g(C) with Rp(A) = Rw,(A) = (1/p)Wj. Then gcd(f(x), g(x)) = 

fi(x) mod p. By Theorem 4.8, tAI = pkia where (a, p) = 1. By Theorem 4.9, we have 
adj A = pki-lB, where B = h(C) for some h(x) E Z[x], B - 0 (mod p) and AR = 

paIn. Since AB 0 (mod p) then f(x)/lfi(x) divides h(x) (mod p) and since B 0 0 
(mod p), f(x) + h(x). Then, by Theorem 4.8, we have some integer b with (b, p) = 1, 
and k(x) E Z[x], so that 

bB - Aei-lk(C) and Wi n kerp k(C) {0}. 

Put a = g(r) and /8 = k(r); by Lemma 5.3, (a, p) and (/3, p) are relatively prime. 
We have bAB = Aeik(C) = pabI", and so in M, 

aei3 = pab. 

Since (ab, p) = 1, then (a, p)ei 11 (p) as required. 0 
The next result implies that any nonrepeated factor is honest. 

5.5. THEOREM. If the least power ji for Wi is > 2, then ej > 2. 

Proof. Assume that A = fi(C) has the least power j and put W = Wi. Write 
f(x) = fi(x)h(x) + r(x), where either r(x) = 0 or 0 < deg r(x) < deg ]i (x). 

If r(x) = 0, thenfi(x) = f(x) is irreducible mod p; XI 0 (mod p) if and only if 
X -0 mod p for any X = g(C), and the least power = 1 trivially. 

If r(x) + 0, then since fi(x) I f(x) mod p, we can write r(x) = ptk(x) where 
t > 1 and k(x) 0 0 (p). Since deg k(x) < deg fi(x), we have W A kerp k(C) ={0} 
by Lemma 4.4. Since C is the companion matrix of f(x), 

f (C) = 0 = fi(C)h(C) + pfk(C), fi(C)h(C) = -ptk(C). 

There is apj-point in Rw(A), say (1l/p)d, and k(C)a E 0 mod p. But then 

-k(C)(1/pj-t)- = h(C)fj(C)(1/pj)i Ee Zn 

implies < t. 
Now put g(x) = fi(x) + p, and f(x) = g(x)hl(x) + pmkl(x). As above, and 

using the minimality of], we have m > j. Then, 

fi(x)h(x) +ptk(x) -(fi(x) +p)hl(x) -pmkl(x) = 0, 

f,(x)[h(x) -hl(x)] -phl(x) +ptk(x) -pmkl(x) = 0. 

Since- RW(A) c RP(pJI), it follows from Lemma 4.5 that Rw(A) c Rw(ph1(C)). 
The least power j for W is greater than 1, and all terms other than phl(C) have a 
common pj-point, so ph1(C) must have at least a p2-point for W (Lemma 4.5). Then 
h1(C) must have a p-point for W, and then W c kerp h1(C) (Lemma 4.4). From this, 
f.(x) I h1(x) mod p (Lemma 4.4); of course h(x) - h1(x) mod p, and sofi(x) I h(x) 
mod p. Then fi(x) is a repeated factor of f(x) mod p, and this completes the proof. 
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Since any nonrepeated factor is honest, it is not difficult to find examples for f(x) 
with some factors honest and some not (see Section 6). 

The remainder of this section is devoted to establishing the following: 
There exists an integer /3 = g(r) E Z[r] with g(x) t 0 (mod p) 

(*) and /3/p E E if and only if at least one of the least powers for 
the irreducible factors ]i (x) of f(x) mod p, is greater than 1. 

In fact, we shall show that each fi(x) with least power > 1, gives rise to such a /3. We 
begin with a necessary condition for /3/p e M. 

5.6. LEMMA. Let X = g(C) and put y = g(r) E M. Ify/p e R, then necessarily 

f1(x)f2(x) ... fr(x) I g(x) (mod p). 

Proof. Suppose y/p is an integer. This is to say that the characteristic polynomial 
of (l/p) X has coefficients in Z. Then the characteristic polynomial of X itself must 
have the form: 

n-1 

IX - XI = ? Vn-ipian-i (an 1, ai E Z). 
i=o 

Then over Zp, X is nilpotent. But X = g(C) is nilpotent over Z if and only if 

f1(x) ... fr(x) I g(x) mod p. U 
We now prove half of the statement (*). 

5.7. THEOREM. If every fi(x) (i = 1, 2, ... .,r) has least power ji = 1, and if/3 = g(r) 
E Z[r], where /3/p E- t, then g(x)- Omod p. 

Proof. Assume to the contrary, that X = g(C), g(x) 5 0 mod p, and /3 = g(r) 
satisfies /3/p E R. We may assume that Ai = fi(C) has power 1 for Wi. Put 

ai = ji(r) and Pi = (ai, p). Then, 
eA eA2 . . . Aer P, ((y Y p ) = 1, y E- Z), 

el ... per =(p). 

By Lemma 5.6 we have (ignoring factors relatively prime top) 
X=Asl . .. As, S > 0.i 1,. .. ,r). 

If all si > ei, then g(x) 0 mod p, and if all si < ei, then IXI <pfl; thus our 
assumptions imply some si > ei and some si < ei. For simplicity, suppose Sr < er 
and all other si > ei. We have 

(1/p) X = (1/p) A elA sl - el ... Asr 

(p) X = (A e22 ... A er ) -Asll - elAsj2 . .. ASrr = Als, - el . .. Asr -er. (y/p)X A2 Ar)1A eA2 
Ar=A1 r 

Now put u = y/3/p E A; then we have 

UaCerSr 

= 

afel-sl 

... 
asr-, erl 

contradicting the fact that the ideals (a1, p) are pairwise relatively prime (Lemma 
5.3). 0 

5.8. COROLLARY. The conditions of Theorem 5.7 imply 
(a) p + (disc r)/(disc R). 
(b) The factorization (5.1) yields the prime factorization of the ideal (p); that is, with 

Pi = (fi (r), p), then Pi is a prime ideal (i = 1,. ..,r)and 
r 

p Pei. E 
1=1 
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We now complete the proof of (*) with 

5.9. THEOREM. Suppose fi(x) has least power j > 2 and that A = f1(C) has power j 
for Wi. Define the integral matrix B by: 

adjA =p(ki-')B 

Then B = h(C) e Z[C], where h(x) E 0 (mod p) and h(r)lp E- . 

Proof. We have AB = pi y * In with (y, p) = 1; without loss of generality 
assume y = 1. By Theorem 4.9, B = h (C) E Z[C] and h (x) s 0 (mod p). Since 
j > 2, then e = ej > 2 necessarily; since AB 0 (mod p), then f(x)f f(x) I h(x) and 
since B i 0 (mod ),f(x)e + h(x); f(X)e-l I h(x) (mod p), and we have 

h(x) =f (x)e-lu (x) + p) (x), (fx, u(x)) = 1. 

Then we can write B = A e-X + pY, where X, Y E Z[C]. Let the integers in X 

corresponding to A, B, X, Y be denoted by a, /P, x, y. Then by Lemma 5.3, (a, p) 
and (x, p) are relatively prime. Suppose that in M the prime factorization of (p) is 

(P) = pt, ... Pt.Qui ... QU, 

where the P, are the primes dividing (a, p) and the Q, are the primes dividing (x, p). 
From 3 = aelx + py and a/3 = p' it is clear that Qka' divides (x, p), k = 1,. . . ,s. 

Now suppose (a) c P ... P,' (a, maximal) and consider aex + pya = p'. We 

have 

(a ex) C peal ... pea,,. (pya) C Pt' +a' ... pj t, + a,, 

If e- ai < t1 + 'a, then ea, =jt, and (j - I)t < a1. Since j> 1, then t, < a,, and 

we get Pitt 1(a). If eaj > ti + a,, then ai = (j - 1)tj > ti, and again Piti (a). If 

ea, = t, + ai, then (e - 1)a1 = t1 and Piti I (ate- 1). In all cases we have 

Pi i (a 1) and Qi i| (x) 

and hence, ae x-0modp.Then3=ae 1x+py=pzforsomezinM;P/pCE X 

as required. D 

5.10. COROLLARY. The conditions of Theorem 5.9 imply that p I (disc r)/(disc a'). 

6. Computational Methods and Examples. Given the factorization 
r 

(x) = Hf, (x)ei(modp), 
i= 1 

we wish to know whether a factor f(x) is honest or not. It is if ej = 1, but if ej > 1, 
the general results of Section 5 do not look very helpful. Using these results, 
however, we can prove some things which, while not perhaps of great theoretical 
interest, are yet very convenient for computational purposes. We begin with 

6.1. THEOREM. Let j be the least power for the irreducible factor f, (x) of f (x) mod p. 
Suppose also that ej > 1. Thenj ? 2 if and only if RP(f1(C)) contains a p2-point. 

Proof. We have e, > 1, and from Theorem 4.8, if kerp A = W precisely, for some 
A, and if the least power for W were equal to 1, then A could not have any p2-points 
for W. Hence, if A does have such points, the least power for W must be at least 2. 
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On the other hand, if the least power for W is >? 2, then every matrix A E Z[C] with 

kerp A = W must have p2-points for W; in particular this applies to A = f1(C). D 

Procedure. (The procedure described below is not too difficult if n and p are not 
"too large".) (a) Compute fi(C), working mod p2; (b) Still working mod p2, 

row-reduce fi(C), usually to at least a row-echelon form; (c) If the corresponding 
system of linear equations has a nontrivial solution vector mod p2, then this gives a 

p-point forfi(C), and if there is no solution mod p2, then (C) has nop2-points. 
One could also deduce this information from the p-Smith form of fi(C), or from 

its determinant, but these things require more work than row-reduction as above. We 
give some examples below. The next theorems are occasionally helpful. 

6.2. THEOREM. Let f (x) be an irreducible factor of f(x), and j = j, the least power 
for fi(x). Then j > 2 if and only if whenever 

f(x) = g(x)h(x) + r(x) (in Z[x]), 

g(x) f 1(x) (mod p), 

r(x) =O or O < degr(x) < degg(x), 

we have r(x) 0 (mod p2). 

Proof. See the first part of the proof of Theorem 5.5. D 
Example. Take p = 3, f(x) = x3 - 19. We can writef(x) = (x - 1)(x2 + x + 1) 

- 18; 18 0 (mod 9) is suspicious and one must investigate further. If p = 3, 
f(x) = X3 -4, we write f(x) = (x - 1)(x2 + x + 1)- 3; since 3 s 0 (mod9) this 
factorization is honest. 

This theorem has a simple corollary which is also useful. 

6.3. COROLLARY. Suppose that for some prime p, we have p2 1 ao, p I a, (where 
f (x) = x " - a, - lx - - aix - al); put f1(x) = x. Then (mod p) the least 

power for f1(x) is > 2, and p I (disc r/disc .). L 

6.4. THEOREM. With notation as above, j > 2 if and only if there exist matrices X 
and Y in Z[C] such that kerp X = kerp Y = Wi = W but 

Rw(X) ? Rw(Y) and Rw(Y) V RX,(X). 

Infactj > 2 if and only if Rw(X) contains even one point not in Rw(Y) or vice versa. 

Proof. Suppose the contrary. Let A = fi(C) have the least powerj for W, and put 
B =A + pIn. Then kerp B = kerp A = W and B has power m > j for W. Suppose 

RP(A) c RP(B). By Theorem 4.7, there exist an integer k so that (k, p) = 1 and an 
integral matrix Y so that kBA - 1 Y = k (I, + pA - 1). But since A has power j for 
W, we may write A-1 = (1/pa)D where (a, p) = 1 and D is an integral matrix, 
D $ 0 (mod P). Thus k(In + pA -) cannot be integral sincej > 2; a contradiction. 
Next suppose RP(B) c RP(A). The order of RP(B) is pk"l (k is the degree of fi(x)) 
and the order of RP(A) is pkj; since m > j, we must have in this case m = j. Then 
the argument above applies, and this completes the proof. El 

The following example, which is fairly simple and could doubtlessly be done in 
many ways, serves to illustrate the methods of this paper. 
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6.5. Example. Let f(x) = x4 + X3 + 9, with root r. Then f(x) is irreducible since 
x4 + X 3 + 1 is irreducible over Z2. We have 

0 -3 9 -9 f'(c) - 0 ~0 -3 0 =93X1x2. 

- 01 0 0 0 
_ 0 1 0 0 , 

0 0 1 -1I 

0 - 36 9 - 9 1 

'(C~l'= ? - 36 -?0| 93 x 11x23 

4 -1 1 -1 

We have disc r = k2 disc ?; evidently k must be either a power of 3, or 1. Since 
CI = 32, we know 3 k by Theorem 6.1; and by Theorem 5.9 (1/3)adj C represents 
an algebraic integer. Here, adj C = - C3 - C2, so (r3 + r2)/3 E S9. It is well-known 
that ? has an integral basis of the form (1, gl(r)/d1, g2(r)/d2, g3(r)/d3 }, where the 
gi(x) are monic polynomials of degree i, in Z[x], and d, I di+1. We shall find such a 
basis for ?. We have f(x) = x3(X + 1) (mod 3); by Lemma 5.6, a necessary 
condition for (1/3)g(r) E ?9 is that x(x + 1) divide g(x) (mod 3). Hence, if g(x) = 
x + a, then (1/3)g(r) X ?9, and so gj(x) = x, d1 = 1. Next, if g(x) = x2 + sx + t 

= (x2 + x) + (s - I)x + t, and if s - 1, t E 0 (mod3), then (1/3)g(r) O ?; thus 
for g2(r) we need only consider (r2 + r). The characteristic polynomial of the matrix 

0 0 -9 0 

C2+ C- 1 1 0 0 
-0 I 0 0 

is X4 + C3X3 + C2X2 + c1x + co, where C4-i is the sum of the principal i X i minors 
(except for sign). We find cl = -9, not divisible by 27, so (1/3)(r2 + r) O ?; then 

g2(r) = r2 and d2 = 1. We know that d3 is at least 3; we inquire whether it may be 9 
or more. Consider 

g(x) = x3 + Ux2 + SX + t = (x2 + x)(x + - 1) +(s - U + )x + t. 

We require s -u + 1 0 (mod 3) and t 0 (mod 3). Since (r3 + r2)/3 E ?, then 
g(r)/3 E ?9 implies (u - 1)(r2 + r)/3 e ? and from the preceding case we must 
have u - I 0 (mod 3). Supposing g(r)/3 E ?9, we may write 

g(r) = (r2 + r)(r + 3a) + 3(br + c) (a, b, c E Z), 

r x g(r) = (r4 + r3) + 3a(r3 + r2) + 3(br2 + cr), 

9 + r X g(r) = 3a(r3 + r2) + 3(br2 + cr). 

If (1/9)g(r) - ?9, then so is 

(*) a(r3 + r2)/3 +(br2 + cr)/3 E ?9. 

Since (r3 + r2)/3 c ?, then from (*) (br2 + cr)/3 e ?. But then b c 0 
(mod 3). Reducing coefficients mod 9, we get 

g(r) = (r2 + r)(r + 3a), 

where a is one of 0, 1, 2. Then for the norm of g(r), we find IC2 + CI = 81 and 
IC + 3aII = 9(9a 4- 3a3 + 1), SO 94 + Ig(C)Q. Then (1/9)g(r) O ?9, and we have 
d3 = 3, g3(r) = (r3 + r2). Finally, we have disc ? = 92 x 11 X 23. 
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6.6. Example. Take n = 7, p = 5, 

f(x) = X7 + 48X6 + 27x5 + 48x4 - 3x3 - 3x + 48 

= (3 + x + 1)2(X - 2) + 25(2x6 + x5 + 2x4 + 2). 

Then f(x) is irreducible by Eisenstein's criterion, and the factorization mod 5 is 
suspect. We know that in any case, the factor x - 2 (mod 5) is honest, for it is not 
repeated. Put g(x) = X3 + X + 1. 

In order to use Theorem 6.1, it suffices to work with matrices reduced mod 25 in 
order to find 25-points for the originals. Below on the left is A = C3 + C + I7 (C iS 
the companion matrix of f(x)), and on the right is the reduced row echelon form of 
A; both reduced mod 25. 

1 0 0 0 2 4 6 
1 1 0 0 3 8 13 2 4 6 
0 1 1 0 0 3 8 I4 1 
1 0 1 1 3 6 12 
0 1 0 1 3 7 12 2 3 5 
0 0 1 0 -1 -1 1 -------- 
0 0 0 1 2 3 

} Any vector in the solution set of the right-hand matrix yields a 25-point for A, for 
instance, we find v = (1/25) col(- 2, -1, 1,2, 1,0,0) and g(x) is dishonest. For 
purposes of comparison, consider A + 517; this row-reduces to 

-8 -16 1 
I4 6 4 2 

-1 4 1 
2 3 10 

-------------- 
I-5 -5 -5 

0 0 0 0 
0 0 0 

and this solution set gives a 25-point for A + 517, namely 

w = (1/25) col(8, 2, - 5, - 1, - 1, 1,0 ). 

It suffices to use the (mod 25) versions to find that Awi Ee (1/5)Z7 and not in Z7. 

From the original factorization of f(x) we know A = g(C) has power 2, which 
must then be the least power; dimker5A = 3, and S5(A) = diag(l, 1, 1, 1, 52, 529 52). 

Then adj A = 54B where B is integral and B i 0 (mod 5); (1/5)B represents an 
algebraic integer, and 5 divides disc(r)/disc(g). 

7. Open Problems. 
7.1. By Lemma 5.6, a necessary condition for (1/p)h(C) to represent an algebraic 

integer is that h(C) should be nilpotent (mod p). Given n > 3, and supposing the 
factorization of f(x) is dishonest, is there aj = j(n) so that for any h(C) with index 
of nilpotency j (mod p), (1/p)h(C) represents an algebraic integer? Does j = 2 
always work? 

7.2. If in the factorization 5.1 some fi(x) is honest (but not all), is (fi(r), p) a 
prime ideal? If not, find a counterexample. 
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7.3. Suppose some of the fi(x) are honest and some not. The honest factors 
correspond to relatively prime ideal factors of (p) and each dishonest factor gives 
rise to a B with (1/p)B representing an algebraic integer. Is this a new ideal factor 
of (p) (at least, relatively prime to the honest ones)? 

7.4. What is the relation (if any) between the least powers for the fi(x) and the 
power of p dividing disc(r)/disc(M)? 

7.5. If two dishonest factors have different least powers, do they give rise to 
different ideal factors of (p)? (Via Theorem 5.9, that is.) 
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