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On Real Cyclic Sextic Fields 

By V. Ennola, S. MAki and R. Turunen 

Abstract. A table of units and class numbers of real cyclic sextic fields with conductor 

16 < 2021 has been given by the second author [13]. We first fill in the gaps in [13] and then 
construct an extended table for 2021 < 16 < 4000. The article contains results about Galois 
module structure of the unit group, relative norms of the units, and ideal classes of the 
subfields becoming principal in the sextic field. The connection with Leopoldt's theory [11] is 
described. A parametric family of fields containing exceptional units [14] is constructed. We 
give statistics referring to class numbers of fields with prime conductor, the appearance of 
units of different types if the relative class number is > 1, Leopoldt's unit index, and the 
signature rank of the unit group. 

1. Introduction. A table of units and class numbers of the 1337 real cyclic sextic 
fields K6 with conductor6 < 2021 has been given by the second author [13]. In this 
table there are 12 gaps (included in the cardinality 1337), the reason for the failure 
being in 6 cases similar gaps in M.-N. Gras's table of cyclic cubic fields [5], and in 
the 6 other cases, the appearance of too large numbers which the program could not 
handle. Since it seems to be of importance for many purposes to have a complete 
result reaching as far as possible, we have taken up the work and have constructed 
an extended table of the 1743 fields K6 with 2021 < f6 < 4000. M.-N. Gras's table of 
real cyclic quartic fields, [6] and [7], and the main table in [5] also have the same 
range, i.e., conductor < 4000, but in [3] the first and third author have obtained the 
result in the cubic case up to conductor < 16000. 

The efficient multiprecision routines developed in [2] and [3] enabled us first to fill 
in the gaps in [5] and then complete the computations in the 12 open sextic cases as 
well as in other difficult large cases. Hence, the table in [13] and the new one 
together provide a complete answer for all real cyclic sextic fields with conductor 
< 4000. 

The gaps in [5] have independently been filled in by Godwin [4] whose method is 
entirely different from ours, the latter being based on the same adaptation of the 
Voronoi algorithm we used in [2]. 

The present paper should be regarded as a supplement to [13]. We use the same 
terminology and notation with one exception: the ambiguous term "f6 is decomposa- 
ble" is replaced by the more accurate "X6 is decomposable". See Section 2 for an 
explanation and for a list of additional notation. 

In Section 3 we make a comparison between the terminology in [131 and the one 
of Leopoldt [11] applicable to any real abelian field. Although the latter is unneces- 
sarily complicated in the cyclic case it has also been used there (e.g., in [6] and [7]) 
for the sake of uniformity. In addition, we give some supplementary remarks to [13]. 
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Section 4 contains a description of the unit group as Galois module. This module 
structure is easily derived from known results about integral representations of the 
Galois group. 

In the computations an important part is played by the relative norms of the unit 
(A defined in [13]. In Section 5, we obtain rather precise information about these 
norms by a simple argument. 

The next three sections are concerned with capitulation of ideal classes, i.e., 
nonprincipal ideal classes of subfields becoming principal in the sextic field. In the 
real cyclic quartic case the analogous question has been investigated by M.-N. Gras 
[6], [7]. For the quadratic and cubic subfield separately we prove practical criteria by 
means of which we have been able to verify that such a capitulation takes place for 
f6 < 4000, provided that certain natural necessary conditions are satisfied. In the 
course of the investigation we need elements of K6 satisfying Hilbert 90 for either 
subfield and for various units of K6. In particular, for the quadratic subfield and for 
a generating relative unit (R we define in a natural way such an element denoted by 
w. An examination of the possibility w = 0 incidentally leads to a parametric family 
of fields K6 containing exceptional units (in the sense of Nagell [14]) which do not 
belong to any of the proper subfields. The family can also be chosen so that four 
independent units have parametric representations but we have not been able to find 
such a representation for a missing (quadratic) unit. 

In the new table the fields are listed in practically the same format as in [13]. The 
slight format changes are indicated at the outset of Section 9. The bulk of Section 9 
consists of statistics. We first give a list of all fields K6 such that the conductor6 is a 
prime < 4000 and the class number h6 > 1. Next we divide all fields K6 with 
relative class number hR > 1 into 16 different types depending on the existence of 
units of different kinds, and we give the frequencies of fields belonging to each type. 
The fields belonging to scarce types are identified explicitly. The ensuing table 
contains statistics referring to the signature ranks for X6 decomposable or nonde- 
composable separately. In the next table we have gathered all cases in which the 
norm-positive cubic units are totally positive. A knowledge of these cases is of 
importance, e.g., in questions concerning the signature rank. Further, we consider 
the distribution of the values of Leopoldt's unit index QK. We conclude the paper by 
indicating a frequently occurring connection between the relative class numbers of 
distinct fields K6 having the same conductor and the same quadratic or cubic 
subfield. 

The bulk of the program is constructed for the UNIVAC 1108 system using 
FORTRAN V programming language. Some auxiliary computations have also been 
done on the DEC-20 computer. We express our appreciation for the cooperation we 
have received from the members of the staff of the Computer Centre at the 
University of Turku. We are particularly obliged to Mr. Jussi Salmela, M. Sc., for his 
generous help, and to Mrs. Maro Henriksson for writing the data on a magnetic 
tape. The work has been supported financially by the Academy of Finland. 

2. Notation. The present paper is a continuation of [13] and we use exactly the 
same terminology and notation throughout with one exception. The term "conductor 
f6 is decomposable", adapted directly from [9, p. 60], is replaced by "the character 
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Xt is decomposable" used, e.g., in [111. The reason for this is the following annoying 
fact. Let p be either 9 or a prime 7 mod 12. Then, in the old terminology the 
sextic conductor 16 = 8p is decomposable if f, 8, but nondecomposable if f2 = 

8p/( pe 3). In both cases ft = pa and there are exactly 25 such values of p < 500. On 
the other hand, it is easily seen that these values of 16 are the only ones for which 
such a dubious situation occurs. 

First, we recall from [13] some of the most common notations. For n c Fl, 2, 3, 
6) Kn is a real cyclic extension of degree n over Q having conductorsf class number 
1h,, ring of integers 0, and unit group ULe We write f = m or 4m, where m is a 
square-free integer, and f = (a2 + 3b 2)4, where a and b satisfy the normalization 
conditions [13, p. 6, (3)] introduced by Hasse [9]. Snl/q and VAq/ are the trace and 
norm from K,, to Kn GC = (a) is the Galois group of K6, and the conjugates of a 
number y E KS are y, y' 7 ,y7 1y" = -y'2 etc. The fundamental unit of K2 is denoted 
by Mi, and T is a norm-positive cubic unit such that (-1, , T') U3. Finally, 
UR = {E U6 i N6/3( ) + 1, N6/2(e) = + I is the group of relative units, and R 
is a generating relative unit, i.e., (1 ?R ?R> URt 

If a is an integral ideal of any of the rings Cl then divisibility by a and congruence 
modulo a are defined in a natural way in the ring consisting of the numbers of the 
field I,, representable as a quotient of numbers of 6% with denominator prime to a. 
In particular, if i is a prime ideal and y is t-integral, then v k y and (y) = k both 
mean that -Omod pka y i Omod tD+ . 

The cyclotomic field Q(k4) = Q (exp(2ri/k)) is denoted by C(k). In Section 41 R 
denotes the integral group ring Z[G ]. For any subgroup U of [4 we write IUI = 

{1?l I I e U }. The unit index from Leopoldt [11{ is defined as QK = [U6 U2U3U] 
and it is easy to see that 

(12 if A2(U6) U2 and <-1>N61(U6) U3, 

- 3 if V6/2(U) U2and N673(U6) U Go 
Q 

/ 6) Lan \ 

- }4 f N6/2( ) U6 and (-1IN613(b4 = o 
1 if N6/2 ([) [1, and (- 1 >N613() U 3 

In Sections 6, 7, 8 we shall assume that N6/2( R) = 1 which can be achieved by 
changing the sign of $a if need be. This condition is not necessarily satisfied in the 
tables. We write (R = a + 8i, where a, 3 E K3. We take w T-1 + 4gT"' + 

Gr *1For n=2 or 3 UDR= {E U6 1 N61(e) 1), Cl4(c) is the ideal class of KN 
containing a given nonzero fractional ideal c, and 6/n = {Cln(c) I C6 = Y6 for 

some y c K6 \ (0} } is the group of ideal classes of Kn becoming principal in K6. 
For any other undefined notations appearing in the text one should consult [13, 

pp. 196-198]. 

3. Connection with Leopohdts Theory. For a unified theory of units and class 
numbers of real abelian fields the concepts introduced by Leopoldt [11] are 
indispensable. In the cyclic case the situation is much less complicated, and it is 

enough to apply Satz 9 in Hasse [10, p. 40] as was also done in [13]. Anyway, it is 

useful to have an explicit list giving the translation of the basic concepts in [11] into 
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our notation as follows: 

Einheitengruppe von K = K6 EK U6 

x,,-Relativeinheiten in K E K Et UR if n =6 

Un if n =2or3 

Einheitenkern von K EK EK+ U2U3UR 

Einheitenindex QK = QK defined in Section 2 

Grenzindex Q12 
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3 

Erzeugende H if n = 6 
xs,-Relativkreiseinheit On if n = 2 or 3 

Formaler Kreiseinheitenkern HK Y6* 

Klassenzahlkomponenten h h* if n = 6 

hn if n = 2or3 

In this table, n,, denotes the Frobenius division of the character group of K6 
containing X,,; a generating character of the field Kn (n = 2, 3, 6), Y6* and h* are 
new notations introduced here; and en is the cyclotomic unit of Kn (7 = %6) as 
defined in [10, p. 25]. 

From [10, p. 40] and [13, p. 58], we have the central result 

(3.1) h6= h2h3hR = [U6: Y6] 

where Y6 = <1, 2 , t , A') is the group of cyclotomic units in the sense of 
Hasse. By definition [11, p. 39], 

Y6* = (-1, 712 73 t 73(1?o)(1o3), (o+o2)(1-o3)> 

In accordance with [11, p. 41, Satz 20], we have 

(3.2) [ U6: U2U3Y6 ] = h R I [ U2U3Y6: U2U3Y6* =12, [U2U3Y6* Y6* =h 2h 3, 

where the second equality can be deduced by direct computation, and the other 
equalities follow from (3.1) and the theorem of Hasse cited above. From [11, p. 40, 
Eq. (7)], we now have 

(3.3) h= [U2U3UR: U2U3Y6 ] = 12 hR/QK 

In [13, p. 17; cf. also p. 59] the second author introduced the group U6* = U2U3URY6. 

The index [U6 : U6*] = 1, 3, 4 or 12 depending on the existence of certain units GBI 

(c. In order to compute the value of hR from (3.2) one needs the index of U2U3Y6 in 

U6*. It is not hard to infer from the considerations in [13] that, in fact, 

(3.4) [U6*: U2U3 Y6 22n ( K 2 + KL + L2), 

where n, K, L are determined by j = ?R, { = 

4. The Unit Group as G-Module. Let R = Z[G]. The indecomposable R-modules 
have been computed by A. Matuljauskas [12], and, more generally, the question of 
integral representations of a cyclic group of square-free order has been investigated 
by J. H. Oppenheim in his thesis [15]. 

Let us first consider the R-module M = R/(1 + a + *. + a5)R. Write MO = 

{x E M 1(1 + a)(1 + a + a2)x = 0) and M1 = M/Mo. It is easy to see that 

M = (1 -a + a2)M R/(1 + a)R i R/(1 + a + a2)R, 

Ml R/(1 - a + a2)R. 
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Note that compared with Oppenheim [15], we have interchanged his s0 and sl which 
causes a change in the definition of Mo and M1, but the main results remain 
unaffected. The module M is an extension of M1 by Mo. Let A: R X Ml1 -. Mo be a 
cocycle corresponding to this extension as defined in [15, p. 11]. If A E 

Homz(Ml, M) satisfies the condition p o A = 1, where p: M -. A1 is the natural 
projection, one can take 
(4.1) A(r, x) = rA(x)-A(rx) for r E R, x E M1. 

If A is defined by (4.1), but with A E Homz(Ml, MO), it is termed a coboundary. 
Then Ext' (M1, MO) is the factor group cocycles modulo coboundaries. From [15, 
Corollary 3.17 and Theorem 4.1] it follows that 

Extl(Al1, Mo) _ HomR(Al/(1 + a)Ml, (1 + a + a2)M0/(1 + a2 + a4)M0) 

EDHomR(Al/(1 + a + a2)AMl, (1 + a)AM0/(l + a3)AM0). 

Let (fA, A) be the image of the class represented by the cocycle A under this 
isomorphism. We have 

M1/(l + a)Ml = (1 + a + a2)M0/(l + a2 + a4)MA0 GF(3), 

M1/(l + a + a2)Ml = (1 + a)AM0/(l + a3)Mo0 GF(4), 

the action of G on the finite fields being defined in an obvious way. It follows from 
the results of Oppenheim that, for any x E Ml1, 

/ fA(X +(1 + a)Ml) = (1 -)(1 + a2 + o4)A(x) +(1 + a2 + a4)MO, 

( gA(X +(1 + a + u2)Ml) = (1 -_a)(1 + a3)A(x) +(1 + a3)MO. 
We can define A by 

X(u + va +(1-a + a2)R) = u + va +(1 + a + .** + a5)Z for u, v E Z. 

From (4.2) we see that fA and gA are both nonzero. By [15, pp. 24-25], M is 
indecomposable and, on the other hand, any indecomposable extension of M1 by Mo 
is isomorphic to M. 

Consider now the R-module 1U61 = { IH E e U6). It is not hard to see that 

IU2U31 = (t, [TI, T'I) = (X E 1U611 x(1+?)(l+??+?) - 1) _ A, 

I U61/1 U2U31 =I URI = M1 

Therefore, IU61 is also an extension of M1 by Mo. 

THEOREM 1. The structure of the R-module JU61, in particular its decomposition into 

indecomposable direct summands, can be described as follows: 

R/(1 + a + * + a5)R if QK= 12, 

) R/(1 + a + a2)R E R/(1 + a3)R if QK = 3, 
16 ' R/(1 + a)R E R/(1 + a2+ a4)R if QK= 4 

R/(1 + a)R e R/(1 + a + a2)R e R/(1a + a2)R if QK= 1. 

Proof. As stated above, we consider 1U61 as an extension of 1U61/1U2U31 by 1U2U31. 
Let A be a cocycle corresponding to this extension and choose 

A E Homz(1U61/1U2U31, 1U61) 



596 V. ENNOLA, S. MAKI AND R. TURUNEN 

to satisfy p o X = 1 and (4.1), mutatis mutandis. From the equations (4.2) we get 

fA-On = ( x)1 Xa +?IE U 2U3I for each x E|J 1/|U2U I 

< 
N6/2 (U6) U2, 

go = 0 '> X (X)1+ I U2U3 for each x E I U6 1/U2U3I 

K -l)N6/3(U6) * U3. 

In the case QK = 12, we thus find immediately that JU61 _ M. Consider now, e.g., the 
case QK = 4, i.e., 

fA = 0 gA * O. 

Then IU61 is isomorphic to a direct sum of RI(1 + a)R and an indecomposable 
extension of R/(1 -a + a2)R by R/(1 ? a + u2)R. The latter is necessarily 
isomorphic to R/(1 + a2 + a4)R. In the other two cases one can argue similarly. 
MI 

A unit - of the ring (6 is called a Minkowski unit iff IU61 is a cyclic R-module and 
is an R-generator of IU61. We thus see that a Minkowski unit exists if and only if 

QK = 12. 

5. Unit Norms. Put 

( 0 if X6 is decomposable, 
1 I if x6 is nondecomposable. 

This notation enables one to state the results below in a compact form covering both 
the decomposable case and the nondecomposable ones. 

The relative norms of the unit (A to the fields K2 and K3 are important 
characteristics, and the numbers u, v, w defined by 

(5.1) N61MA) = +TUT't, N6/2(OA) 
= 

are listed in the tables. We shall now derive rather precise results about these 
numbers. In the subsequent discussion n = 2, 3 or 6. 

Let (,, be "die Basiszahl der Kreiseinheit" in Leopoldt's terminology. From [11, p. 
37, (3)], we have 

(5.2) =n +NC(,)/K7,(1 - Do)- 

If ij,, denotes the cyclotomic unit of Kn, then 

(5 3) 1~~~~~~2 = 62(1-<X) 

The formula has been written with an extra factor 2 in the exponent in order to 
ensure that the number upon which 1 - a operates belongs to K,7. We also denote 
briefly 6 = = _q6. Note that (A = $ if X6 is decomposable, and (A = i other- 
wise. 

From [9, p. 67, (6*)], we have 

(5.4) 712 - 
, 

and from [10, p. 40, Satz 9], 

(5.5) h = [U3: Y3] - [-i, T, T') : -1,3 
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The value of w is completely determined by the following result. 

THEOREM 2. Denote f6 = 3p ... pJf2 where X E {0, 1, 2 }, v > 0, and the pi's are 
distinct primes 1 mod 6. 

(i) If there exists an index i E (1,2,...,i) such that (f2lpi) = 1 or if X = 2 and 

f2=1 mod 3, then w = 0. 
(ii) Otherwise, 

w = -2v+r-+maxf ,A}-2h 

Proof. For any prime p not dividing f", let u(n, p) denote the restriction to the 
field K,7 of the automorphism of C(f,) induced by If -- ~. From [11, p. 38, (5)], we 
have 

(5.6) N6 ( 2) =+ 2w,, 

where 

(5.7) WIY H (1-a(n, p)) 
P Lf6 P Afg 

Here we take n = 2 in (5.6) and (5.7). Since a(2, p) (12lp) the assertion (i) 
follows immediately. Suppose therefore that (f2lpi) = -1 for each i and consider 
first the case X # 2. Then p = 3 does not appear in (5.7). If X6 is decomposable, we 
obtain from (5.1), (5.6), (5.3), (5.4), 

4w = N/(44) = ~42W = S2(1-a)2" = n2`1 
- 
_2v 

4 

h2 

Hence w = -2- 1h2 as asserted. If X6 is nondecomposable, we obtain similarly 

2w = 2( ) (2(1 a)) =2(1-o)W2 = 2W, = 2' 1 _2 + / 't 6/2'JJ N61 2V ] '2 q 2 2 12 

whence w = -2'h2. 
If X = 2 and f2 2 mod 3 we have the same situation as above with the prime 3 

added to the set { P, .. ,pv } M 
A corresponding result for the pair (u, v) is 

THEOREM 3. Denote 16 = PA'P2 ... pJ3, where the pi's are distinct primes, and 
A = 1 if',> Oandf6isodd,whilep1 = 2andX e {2,3} iffis even. 

(i) If there exists an index i E ( 1, 2,.. .,v } such that X 3 ( P) = 1, then ( u, v) = (0, 0). 

(ii) Otherwise u2 - uV + v2 = 3V+?-lh3. 

Proof. If -y #' + 1 is a unit in U3, let j(y) denote the index [U3( -I, y, y')]. Using 
this notation (5.5) takes the form h3 = j(m3). A simple computation gives 

(5.8) j(? +yx+-v) = (X2 - xy + y2 )j(y) for (x, y) E Z2 {(, )} 

Take n = 3 in (5.6) and (5.7) and put P = PP2 *p* P- f1f13. Define 6(x) for any 
integer x prime to 13 by 

6(x) = a2k if X3(x) = Pk (p = exp(2Ti/3), k E (0, 1, 2}). 
According to the agreement in [13, p. 9 and p. 12], the choice of a and X3 WAS made 
so that for (x, f3) = 1 the automorphism of C(f3) induced by Df_ and a have 
the same restriction to the field K3 if and only if X3(X) = p. Therefore, the element 

W3 in (5.7) is 

w3 = (I - 8(p)). 
piP 
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If v > 0 and X3(P,) = 1 for some i then W3= 0 and the assertion (i) follows. 
Suppose the contrary. If x6 is decomposable, it follows from (5.1) and (5.6) that 

2ut+2va = +42 W3, and thus (5.8), (5.3), (5.5) imply 

4(u2 - UV + V2) = 3v-lj((2(1-a)) = 3,-Yj(q2) = 4 - 3V-1h 

as asserted. Suppose, therefore, that X6 is nondecomposable. In this case r2 u+2to = 

421-a)W3 and we have the same computation with 3` 1 replaced by 3". R 
If K' and K"' have the same conductor 16 and the same cubic subfield K3, and if 

the corresponding characters X6 X'6 are both decomposable, it is obvious by (5.2), 
(5.3) (for n = 6) and by (5.1), that the pair (u, v) is the same for both fields K', K"'. 
The same is trivially true if X6, X' are both nondecomposable, because in that case, 
K' = K' as is easily seen. 

6. Ideal classes of subfields becoming principal in K6. Although the class number 
h6 is divisible by the product h2h3, it is not always true that the ideal classes of the 
subfields are mapped injectively under the natural mapping induced by the inclu- 
sion. This phenomenon of capitulation has been studied by M.-N. Gras [6], [7] in the 
case of a real cyclic field of degree four. Here we shall carry out a similar 
investigation in the sextic case. We remind the reader of the notations introduced in 
Section 2. In particular, we shall assume that N6/2(GR) = 1. We note that N673(0) = 1 

for each e E UR [13, p. 14, (22)]. In the following discussion n = 2 or 3, indicating 
that the subfield under consideration is Kn. 

Suppose that Cl(c) E and that c06 = y06 for some y E K6\ {0}. It is 
obvious that the assignment gn(Cln(c)) = -a 6 -a gives a well-defined homo- 
morphism gn: -6/n UR0/U- . Further, it is easy to see that gn is infective. 
Suppose, namely, that yln =E1-_,' where e E U6. We have y e = (y/c)0 so that 
y/, E Kn. Since cO6 = (y/v)06 it follows that c = (y/c)0,, belongs to the principal 
class. 

Suppose now that U6 -0a is an arbitrary element of UR/IU6'-- n. By Theorem 90 
of Hilbert there is a -y E 06 \ {0} such that E = .yl0'. Since the automorphism an 

leaves the ideal y06 fixed, we have 

Y 06 = c06 X P IIX ... X Oh, 

where c is an ideal of COn and the I T's are distinct prime ideals of 06 which are 
ramified in K6/K,. We may assume that, for each i, pi + c so that vi = P (y). 

LEMMA 1. We have -U61$ E Im(gn) if and only if nvi' 0 mod 6 for i = 1, 
2,. .. ,h. 

Proof. Both conditions are clearly equivalent to the fact that YO6 = c 006 for some 
ideal c0 of 0". O 

The number w was defined as w = -1 + (R"' + ' We have R' R =Bil so 
that c satisfies Hilbert 90 in the extension K6/K2 for GR provided that X ' 0. Here 
we shall investigate the possibility w = 0 which incidentally leads to a parametric 
family of relative units in certain fields K6. More generally, we shall prove the 
following result. 
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THEOREM 4. Let 8 * 1 be a norm-positive unit in a cyclic cubic field K3. Put 
M = S3/1(8-4 - 282). Then, M > 0 with equality only when Irr(8, Q) = x3 + 3X2 - 
1. Suppose that M is not a square in Z and write M = c2m, where c E Z and m is a 
square-free positive integer. 

The number 

(6.1) 4 = (_8-2 + 8/-2 -8t-2 + cVm)/(28') 

is a unit in the field K3(VMi), such that 

(6.2) N6/2(4,) = N6,13(4) = 1, 8-1 + ,38 1 + 4/v1 = 0. 

Conversely, let K6 be any real cyclic sextic field containing K3 and let 4 be a unit in 
K6 satisfying (6.2). Then, K6 = K3(V ) and 4 is of the form (6.1) where both signs for 
c are permitted. 

Proof. We shall first prove the assertion concerning M. Let Irr(8, Q) = x3- sx2 
+ qx - 1. Then, M = q4 - 4sq2 + 8q. Since the discriminant of Irr(8, Q) is a 
square > 49 in Z, we have 

(6.3) s2q - 4q3 - 4s3-27 + 18sq=t2 

for some integer t > 7. Consider first the possibility q = 0. Then, -4s3 - 27 = t2. 

Using a trick due to Fueter we can write this as a Fermat equation 

(2s)3 +(3 + t/3)3 +(3 - t/3)3 = 0. 

The only solution is thus t = 9, s = -3, which is the exceptional case mentioned in 
the theorem. Suppose now that q + 0. We contend that M > 0. Write N = M/(4q2) 
so that 

s = q2/4 + 2/q -N. 

Substituting this in (6.3), we obtain 

(6&A- 4-N -N(2'q7-+ 247'q'}N+ (qe/4 - 17Yq+ 4./q- t i - 32q3 = 

For q > 4 or q = 1 or q 6 -3 the expressions in parentheses in (6.4) are positive and 
therefore t > 7 implies N > 0. For the remaining values q = -2, -1, 2, 3 it is easy to 
verify by direct computation that t > 7 is possible only if N > 0. This proves the 
first assertion. 

In what follows, we exclude the exceptional case and we assume further that M is 
not a square in Z. We write M = c2m as indicated and define 4 by (6.1). We have 

48 i2lp,4,* = S3/1(8-4) - 282 + 28,2 - 28,,2 - M 

= 2S3/1(82) - 282 + 28 2 - 28it2 = 48 2 

whence N6/3(4) = 4,"' = 1. As 4, + 4,"' e (39, 4 is an algebraic integer and, 
therefore, a unit in K6 = K3(VM). Put 

h(x) = Irr(8-2,Q) = X3 -(q2 - 2s)x2 +(S2 - 2q)x - 1. 

We have 

-N6/2(4) = -N6/2(8'0) = N6/2((q2 -2s - crm)/2 - 8-2) 

= h((q2 - 2s - cVm)/2) = -1 



600 V. ENNOLA, S. MAKI AND R. TURUNEN 

and, finally, 

8-1 + +p8"' + 4,'8'' = a- + 18(_8-2 + at2 - 8u,2 + Cm) 

+ ?8(_8-2 + 8 t-2 - 8-2 - c ) = 0. 

Hence (6.2) is satisfied. 
Now, suppose, conversely, that 4 is a unit satisfying (6.2) in some real cyclic sextic 

field K6 containing K3. Combining the last condition (6.2) and the one obtained 
from it by applying the automorphisma 3, we find 

(6.5) 8'( - 4) = (4_ - 

Denote c* = 8'(4 - 4')/ m. It follows from (6.5) that a leaves c*, fixed so that 
c * E Q. Further, 

P = (y + c* )/(28'), 
where -y E K3, and the last condition (6.2) also gives 

(6.6) 8-1 + y8"'-1 + y,8, - = 0. 
Applying the automorphism a twice to (6.6), we get a system of three equations from 
which we can solve y, -y', 'y". In that way we obtain y = (_8-2 + 8a-2 - ,,- 2)/(28') 
and the condition N6/3(4,) = 1 gives c*m = M = c2m, i.e., c * ?c. a 

Consider, in particular, the case q = -s - 3, i.e., Irr(8, Q) = 3- SX2 - (s + 3)x 
- 1. This polynomial is clearly irreducible in Q[x] for any integer s. The discrimi- 
nant of the polynomial is (S2 + 3s + 9)2 SO that Q(8)/Q is cyclic. In this case, we 
have 

M= q- - 4sq2 ? 8q = S4 + 8s3 + 30s2 + 64s + 57. 

E.g., for s 1 mod 8 it is easily seen that M 32 mod 64 so that, for these values of 
s, M is not a square in Z. Further, it is not hard to see that s2 + 3s + 9 is 
square-free for infinitely many s 1 mod 8, and, therefore, there are infinitely many 
different fields K3. In the corresponding family of sextic fields we have an explicit 
system { 8, 8', 4,, 4'} of four independent units. Unfortunately, we have not been 
able to find an expression for a missing fifth unit in terms of the parameter s. 

It is of interest to observe that if a unit 4 satisfying (6.2) exists in K3(rM) then 
488"' is an exceptional unit in the terminology of Nagell [14]. 

7. Classes of K2 in K6. In this section we shall assume that X= T1 + (RT"-r + 

(T` 0. Namely, by Theorem 4 it is obvious that if the original X vanishes, we 
obtain a nonzero w on replacing R by 'R We denote R = a + 3m, where a, 
/3 e K3. It follows easily from N6/2(GR) = N6/3((R) = 1, that 

(7.1) = Co 1-02 

(7.2) @1+a3 = S371(r-2 + 2aT') E Z. 

In the verification it is useful to note that, in particular, RR =(R 

From [8, Ia, p. 92, Satz 12] we have 

(7.3) [UR2: U6 ] 32 -q 

where 

(7.4) 3Y = [N623(u6) u2] = { 3 f N62(U6) U2 
6 #(6 U2. 
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LEMMA 2. A system of coset representatives of UR2 with respect to the subgroup 
Ul--a2 

- 

6l is 

{ T'Ii =0, 1, 2} if N6X2(U6)= U2 

{T i,j = 0, 1, 2} if N672(U6) / U2. 

Proof. If r Ez 02 there exists an ? E U6 such that T = E Taking norms, we 
have - 

2 = ?(1 + a3 )(1 -2 so that (5.8) implies 

4 = j( 2) = 3j(e +a'), 

which is impossible. In the case N6,2(U6) = U2 the assertion therefore follows from 
(7.3) and (7.4). 

Suppose now that N6,2(U6) =A U2 and that TiGR = l-,2 for some i E {0, 1, 2} and 
some E E U6. On multiplying ? by ? [tk for a suitable k, we may assume that 

N6X2(c) = 1. Taking norms, we have T2' = E(I+a )(l a) which, for i =A 0, leads to the 
same contradiction as above. Thus, i = 0, (R = '- and -(I+ )(l-a 2) = 1. It follows 
that El+a3 E K3 rn K2 = Q, i.e. 3l~a = +1. Therefore, c e UR. However, from 

R= it is easy to infer that 

[(-1,, ): K-1, RGI R)] = 3, 

which is impossible. The assertion follows again from (7.3) and (7.4) O 

THEOREM 5. If i t 0 mod 3 we have TitjU6J a 2 Im(4g2) for each. In particular, 

'6/2 = 1 if N67Z2(U6) = U2. 

Proof. From Hilbert 90 we have Ti'- = y102 for some Y e 06\ {0}. If ri(4Uc1O2 
E Im(g2) there exists an ideal c of (2 such that cC96 = y06. Applying the automor- 
phism a 3 we have y1+ad6 = cl+G?(6 = cC96, say, for some c - Z. Therefore, y'1+a = 

cE, where - E U3. We would have 

, 2i = (Tri ) =+ = 1-a 

which leads to the same contradiction as in the proof of Lemma 2. The rest of the 
assertion is clear because g2 is injective. O 

From now on, in this section we shall assume that N672(U6) + U2. From Lemma 2 
and Theorem 5 we see that Im(g2) is either 1 or (KRU6 a ), i.e., #@62 = 1 or 3. 
Our numerical results indicate that the latter alternative may always hold if 
N672(U6) # U2 and h2 - mod3. 

From Lemma 1 and (7.1) we have, immediately, 

LEMMA 3. If N6/2(U6) * U2 and h2 0 mod 3, then #?W6 2 = 3 if and only if 
V (W) =0 mod 3 for every prime ideal ) of (96 which is ramified in the extension 
K6/K2. 

The following theorem gives a practical criterion by means of which we have been 
able to establish the truth of the above conjectural fact for every field K6 up to 

f6 < 4000. 
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THEOREM 6. Let (R = a + /3m_, where a, /E3 K3. Suppose that N6/2((R)= 1 and 
that w = T-1 + (RT"'-1 + r'T1 _' 0. Let p be a prime ideal of which is ramified in 
the extension K6/K2. Write p n Z = pZ, where p is a prime, and W = + 4, 
where qp, e K3. 

(i) If p is ramified or inert in K2/Q, then vo (co) 0 mod 3. 
(ii) If p splits in K2/Q and p # 3, then the following conditions are equivalent: 

co 
| a-- 

I 
mod p 

< P 
C (co) 0 0 mod 3. 

(iii) Suppose that p = 3 splits in K2/Q. Let 3k 1l S3/1(T-1) (# 0; cf. [13, p. 64]) and 
l= v,(/3). 

If 3k + 21, then 

Pt, ( 0 ) t mod 3 < I = 1. 

If 3k = 21, then 

( co) 0 mod 3 c* v(q)) = v,4,) with common value : 0 mod 3. 

Proof. (i) We havepO6 = p3 or p6. Since w _3 E Z by (7.2), v (w?3) --0 mod 3. 
Since a3 leaves p fixed, the result follows. 

(ii) Put A = c1 + a. We have 

(7.5) 99 = T-1 + aTr-l + aT',- 4, = PT' - T 

and from (7.5) and (7.2), 

(7.6) 2 _ m42 = A = S371(qT'). 

Since p + 2f2, the number /3 is p-integral so that (7.5) implies 

(7.7) T-(1+2a)T-'modp, 4 0 mod . 

It is clear by (7.7) that P I w iff a - - mod p and that these conditions follow from 
v;, (w) : 0 mod 3. We therefore assume that P I w and contend that P. (w) t 0 mod 3. 

We note that the following result holds: 

(7.8) If y E K3 is p-integral, then P I Y iffp P S311( Y 

This follows immediately from S371(y) -3-y mod p and p + 3. 
We shall show first that v,(4+) 5 0 mod 3. Suppose, namely, that vP.(4) = 3n. 

Then T'4,p` is P-integral and not divisible by p. On the other hand, by (7.5), 

S3/1(rTIp-n) = p-n (S311(T'/3) - S371(T"/8')) = 0, 

which contradicts (7.8). 
We shall show next that P,,(p) t 0 mod 3. Suppose, on the contrary, that P>(,) = 

3n. From (7.6), we have P)(A) = vp(w2) = 6n and S3/1(T -1) 0 mod p2fl On the 
other hand, TpTr p-n is p-integral and prime top so that (7.8) implies p-nS37J(T-'l) 
t 0 mod p, a contradiction. 

From (7.6) we now have vP,(p) = v (4,) = n, say, where 3 + n. Since W = p + 4 

and w + w"' = 2q, it follows that pn lI(, w"'). Since v>(w) + vP(w"') = v>(A) 0 
mod 3, it is clear that vP(w) : 0 mod 3. 

(iii) The conditions (7.7) are plainly also true in the case p = 3. From A - 

S3X10FT-1) 0 mod3 we have P 1 q whence by (7.7), a 1 mod p. From the 
equation (a + 1)(a - 1) = m/32 we find that P I /3, i.e., 1 > 0 and then z',(a - 1) = 

21. 
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Case 1. 3k < 21. Since k > 0 we have I > 1 and we thus contend that v,(w) 0 
mod 3. Writing 

(7.9) = S31 (T -1) + ( -1)rt" -1 + (a' -x1) T-l 

we find that v,(9p) = 3k. It is clear by (7.6) that if v4(4) 0 0 mod 3, then necessarily 
v (4,) > 3k. Using the same argument as at the end of (ii), we obtain first 
v4((w, w"')) 0 mod 3 and then v4(w) 0 mod 3 as asserted. 

Case 2. 3k > 21. We shall use the following easily proved fact: 

(7.10) If y E K3 is p-integral, then n I y implies pn+2 S3/1(y). 

From (7.9) we have 

(7.11) lp-l= X = lS3/1(T-1) + S3/1(T'(ai - 1)) - x(a"-1) 

so that v4,(.p) = 21 by (7.10). 
Suppose first that I = 1. From (7.11) and (7.10), 

A = S3/,(TT-1) = S3/l(Tfl) + 2S3/i(T'(a - 1)) Omod9. 

In this case, we have vp() = v(4() = V4((w, w"')) = 2, whence v4(w) 0 0 mod 3 as 
asserted. 

Suppose next that 1 > 2. From N6/2(a + /3V) = 1 we have, by computing the 
coefficient of Vm, 

S3(1(3) + S3/1((A' - 1)3") + N3/1(/3)m = O. 

In this equation, v,(N3/l(/3)m) = 31 and (aa' - 1)/3" 0 mod p3 so that 

VV (S3/1(IA)) = 31 by (7.10). 
Denote P8 = CO + c10 + c20', where the c 's are 3-integral rational numbers. Since 

S311(,6) = 3co, we have 31-1 11 co. As 3 is ramified in K3/Q, Irr(o, Q) = X3- 

(f3/3)x - f3a/27 [13, p.9]. Clearly, 0 -1 mod p and, further, v,(O - 0') = 2 
because 

N311( - 0)2 = 4(f3/3)3 -27(f3a/27)2 = f2(b/3)2 

where 31 b. Writing 
1 = Co +(C1 + C2)0 -C2(O- 0) = Co +(C1 + C2)0 + C1(0- ) 

and taking into account that vv(co) = 31 - 3 > I = v,(,/), we find that there are two 
possibilities: either 
(7.12) l 0 mod3, v(cl + c2)=, v(ci)>l (= 1, 2), 

or 

(7.13) /l-2mod3, v(c)= v(c2)=l- 2, cl + c2 0 mod PW . 

In the case (7.12) we have v,(A) v,(Tp) 0 mod 3 in the equationA = A -mt2 

whence, either v,(4) > v4,(p) or v,(4) 0 mod 3, and the same argument as above 
gives vj(w) 0 mod 3. 

Suppose now that (7.13) holds. In the equation 

+T- = T'f' - T"- ' = (T' -T")/ + T"(C1 + C2)(0 - ') + 3C2T"0' 

we have v, (3c2T"0') = / + 1 while the other terms on the right-hand side are 
divisible by a higher power of . Hence v, (4') = / + 1 and the assertion v4, ( W) 0 
mod 3 follows by the standard argument. 
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Case 3. 3k = 21. If v>(g) ' v1(4), then v>(A) = mintvp(T2), vp (42)} and v,(w) 
0 mod 3 as before. Suppose that i'J(p)= v>(+)= n, say. In this case we have 

v,(w)-0 mod 3 iff n- mod 3. 0 
For N672( U6) '+ U2 and h2 = 0 mod 3 it follows immediately from Lemma 3 and 

Theorem 6(i), that #W6.2 = 3 if f3 I 312. Otherwise, one has to check that the prime 
factors of f3 not dividing f2 are inert in K2/Q or that the conditions in (ii) and (iii) 
are not satisfied. This verification is most arduous in the very last case p = 3, 
3k = 21, but this case seems to be scarce; we have encountered it only once. 

8. Classes of K3 in K6. From [8, Ia, p. 92, Satz 12], we have 

(8.1) [UR3 U6l-a] = 24-q 

where 

8 if N6/3 (U6) = -I, 
, T') 

= 
U3, 

4 if N6/3 (U6) = 
, Km'), 

(8.2) 2q [N6/3(U6): U32] = if N (U) = K T2 T2) 2 if N6/3(U6)= (T2, <2) = U32. 

LEMMA 4. A system of coset representatives of UR3 with respect to the subgroup 

U6-3 is 

{(-i)tIi=0,i} ifq=3, 

{ (-I) 'i I i',j = 0, I} if q = 2, 

{ 1) (Rk |i,j, k = O, 1) if q = 1, 

{ (-i)'i]~' I i j, k, / = 0, 1 if q = 0. 

Proof. Suppose that there exists an 62 G U2 ( U6l . Write 62 = 6'-E , where 
G E U6. We have 

4( ??2 )1 
- 

2( +) = 1, 

so that 64?22 E U3. From [13, p. 15, Theorem 2] we get 2, = 63, say, where 
63 E U3. From [13, p. 21, Theorem 9] we know that (96 has a system of fundamental 
units containing {L, , '}. Since 6263 is a square in U6, ?62 is a square in U2 and 
?63 iS a square in U3. If, n particular, 62=-i, then 6 C U3 which leads to the 

contradiction -1 =62= 61-a =1. Since' i UR3 if q = 2, the assertion is plainly 
true for q = 3 or 2 by (8.1) and (8.2). 

Suppose, therefore, that q = 1 or 0 so that N673(U6) = K-i)U32 or U32. Let 62 C U2 
and ?R C UR and suppose that ?2?R C U2UR U6 2. Denote 626R = ? where 
6 CE U6. As above, we have first 

(46 262)1 3- 

and then 22k -CER' = 63, where 63 C U3. Hence 62 = N673(c)2 so that 

63= ?N6/3(c) e (-i)N6/3(U6) = (-1)U3 

Therefore, + ?3 is a square in U3. Further, N6/2(?)2- = ? 1 so that + 2 is a square 
in U2. Finally, of course, 6R is also a square in UR. It is now easy to deduce the 
assertion from (8.1), (8.2) and the results in the first part of the proof. O 
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THEOREM 7. If 62 E U2 n UR3\ U61 ? and 6R Ee UR n UR2 then 62ERU6- ? 

Im(g3). In particular, '6/3 = 1 if (-1)N613(U6) = U3. 

Proof. The proof is similar in structure to that of Theorem 5. From Hilbert 90 we 
have 626R = yl-7 for some y E c6 \ (0). If 626)RU61 E Im(g3), there exists an 
ideal c of 0P3 such that yC!6 = c!6. Taking norms, we have N6/2(y)c6 = N3/1(c)c6 = 

c06, say, for some c E Z. Therefore, N6/2(y) = Ce, where e E U2. Hence, E2 = 

N6/2(E2ER) = E It follows from e2 E UR3 that Ee E U' and thus, also, 62 E 

U61 - ?, contrary to the hypothesis. The rest of the assertion is clearly true. 0 
From now on, in this section, we shall assume that (-1)N6/3(U6) # U3, i.e., q = 1 

or 0. It is clear from Lemma 4 and Theorem 7, that Im(g3) is either 1 or 
{R RU6ic7 1k, I= 0, 1}, i.e., #C613 = 1 or 4. The latter alternative holds true for 
every such field K6 with h3 0 mod 4 up tof6 < 4000. 

A number satisfying Hilbert 90 for ( is 1 + . i.e., 

(8.3) = (1 + ) 
Further, 

(8.4) (1+ 2(a + 1). 
From Lemma 1 and (8.3), we have 

LEMMA 5. If (-1)N6/3(U6) # U3 and h3 - mod 4, then #'6/3 = 4 if and only if 
v4 (1 + R) 0 mod 2 for every prime ideal P of c6 which is ramified in the extension 
K6/K3. 

Our aim is to construct a criterion analogous to Theorem 6 which, however, will 
be of somewhat different type. For that purpose we need some auxiliary results. 

LEMMA 6. Suppose that N612(G) = 1 and that 4 I f2. 
(i) If a 0 1 mod 2, then a b 0 mod 2 and 8 + f2. 
(ii) If a b 1 mod 2, then 2 11 + G)?and ((I + )?)/2, 2) = 1. 

Proof. We shall use the following well-known fact: 
(8.5) The prime 2 is inert in K3/Q if and only if a b 1 mod 2. 

We prove (i) first. If 2 m/3 it follows from (a - 1)(a + 1) = m/32 that a 1 mod 
2. We shall therefore assume that m 3 mod 4, a b 1 mod 2 (i.e., 2 is inert in 
K3/Q), 2 + /3, and show that these assumptions lead to a contradiction. 

Since (1, 9, 9') is an integral basis for c3 and b is odd, it follows from the 
expression of 0' [13, pp. 8-9], that (1, 9, 92) is a local integral basis at the prime 2. 
Replacing 9 by one of its conjugates if need be, we may assume that /- h + kO 
mod2,whereh,k E {0,1}. Let q + r + s2mod2,whereq,r,s E (0,1). 

Suppose first that s = 1. We have 9" e + 9 + 92 mod 2, where e = 1 if 3 f3 

and e = 0 if 3 1 f3. From a2 - m2 = 1 we get 
h + q + e + 9 + (k + r + 1)92 = 1 mod 2, 

a contradiction. Hence s = 0 and we have similarly 
(8.6) q2 - mh2 + 2(qr + hk)9 +(r2 -mk2)2 =1 mod 4. 
In particular, r2 - mk2 0 mod 4 whence r= k= 0 because of the assumption 
m 3 mod 4. Since 2 t /3, we have h = 1 so that q = 0 by (8.6). Then 2 1 a , so that 

N612(R) =1 implies mN3/11(f)V 1 mod 2, a contradiction because m 3 
mod 4. This completes the proof of (i). 
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To prove (ii) we still assume that a b 1 mod 2. From (i) we know that a 1 
mod 2. From (8.4) we have 

Irr(1 + (R. K3) = X2- 2(a + 1)x + 2(a + 1) 
so that 2 1 1 + (R. Let p be a prime ideal of ?6 dividing 2. Then by (8.5), 2cP6 = p 2. If 
((1 + GR)/2, 2) # 1, then 4 1 a + 1. From m/32 = (x - 1)(a + 1), we obtain 8 | m/32 
so that either m - 0 mod 2 or -- 0 mod 4. In both cases, 

1 = N6/2 aa'a" -1 mod 3 
which is impossible. O 

LEMMA 7. Suppose that N6/2(GR) = 1. Let P be a prime ideal of ?6 which is ramified 
in K6/K3. Write p n Z = p Z. If p is ramified or inert in K3/Q, then 

( + G J) ( ifp - 2, 
v~(1+~R)-2 ifp =2. 

Proof. If p = 2 then p is inert in K3/Q and the result follows immediately from 
Lemma 6(ii). Suppose that p # 2. Then firm is a P-integer divisible by P because 
V4 (/3) is even and V4 (Vm) is odd. Suppose that, contrary to the assertion, a -1 
mod p. It would follow that 1 = N6/2(eR) aa '" -1 mod p, a contradiction. C 

We are now ready to state the main criterion. 

THEOREM 8. Let OR = a + 13Vm, where a, 1 Ee K3. Suppose that N6/2(QR) = 1. 
Denote 

P = 2XIp 
where the product is to be taken over all odd primes p dividing f2 which split in K3, and 

(2 ifa b Omod2 andm -2mod4, 
A=!1 ifa-b=Omod2andm_3mod4, 

I O otherwise. 
Then the following conditions are equivalent: 

(i) We have v,(1 + GR) 0 mod 2 for every prime ideal P of 6 which is ramified in 

K6/K3- 

(ii) The number a is congruent to a rational integer mod P. 

Proof. Let P be a prime ideal of (6 which is ramified in K6/K3. Write i n Z = pZ. 
If p is ramified or inert in K/Q, then v3p(1 + GR) =0 mod 2 by Lemma 7, and, on 
the other hand, no condition upon a mod p is imposed in (ii). It is therefore enough 
to assume that p splits in K3. 

We consider first the case p ? 2. As in the proof of Lemma 7 we have fVm- 
fi'v'- fi"v4 0 mod P. If a = c modp, where c E Z, it follows from a2 - m/2 
-- 1 that c2 1 mod p, and from 1 = N6/2(GR) -a'a" mod P that c3 1 mod p. 
Thus c 1 mod p and 2(a + 1) 4 mod p. Hence, none of the conjugates of i 

divides 1 + GR by (8.4). Suppose, on the contrary, that a is not congruent to a 
rational integer mod p. It follows from (a - 1)(a + 1) = m/32 0 O mod p that for 
some prime ideal p of 06 dividing p we must have p I a + 1, because otherwise a 1 
mod p contrary to the hypothesis. Furthermore, by (8.4), 

2vP,(1 + GR) = v(a + 1) = ,(m) + 2,(Pi), 

implying that P,(1 + OR) is odd. We have thus proved the equivalence (i) and (ii) 
locally at the prime p. 
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Consider next the case p = 2. We have a b 0 mod 2 by (8.5) and m 2 or 3 
mod 4 because 2 is ramified in K2/Q. First let m = 2 mod 4. From Lemma 6(i) we 
have a 1 mod 2. We write 

(8.7) ((a - 1)/2)((a + 1)/2) = m(P1/2)2 

because, obviously, 2 j /P. If a c mod 4 for some c E Z, one can conclude in the 
same way as in the first part of the proof that c 1 mod 4. Then, ((a + 1)/2, 2) = 1 
so that from (8.4), 

2v4,(1 + R) = v,(4) = 4. 

On the other hand, if a is not congruent to a rational integer mod 4, it follows from 
(8.7) that for some prime ideal factor P of 2 in P6 we must have (a + 1)/2 0 mod 
Up, (a - 1)/2 a 0 mod p. For this p we have, by (8.4) and (8.7), 

2v,(1 + R) = ,(4) + v,((a + 1)/2) = 4 + v,(m) + 2v,(I/2), 

whence 

VP,(1 + R) = 3 + v.(Pi/2) 1 mod 2. 

This proves the equivalence of (i) and (ii) at the prime 2 in the case m 2 mod 4. 
Suppose, finally, that m 3 mod 4. If a c mod 2 for some c E Z, the same 

argument as at the end of the proof of Lemma 6(i) shows that c cannot be even. 
Hence, a 1 mod 2 and the numbers appearing in (8.7) are algebraic integers. For 
any P, dividing 2 we have v,((a + 1)/2) = 0 or 2vt,(/3/2), both of which are 0 mod 
4. From (8.4), v. (1 + R) 0 mod 2. 

If a is not congruent to a rational integer mod 2, then for some p dividing 2, we 
have p + a + 1. For this A, V(1 + R) = 1 by (8.4). This concludes the proof of 
Theorem 8. 0 

If <-1)N6/3(U6) # U3 and h3 0 mod 4, it follows from Lemma 5 and Theorem 8 
that #W613 = 4 in the case f2 j f3. Otherwise, Theorem 8 provides a very convenient 
tool for establishing the truth of that conjectural fact. 

9. Tables and Statistics. The table containing the 12 cases missing from [13] and 
the 1743 fields with 2021 < f6 < 4000 has been deposited in the Mathematics of 
Computation's UMT-depository. The data in the table are listed in the same format 
as in [13] with the following slight changes. Firstly, no distinction is made between 
the cases rl and r2 when hR - 7. Secondly, let * be any of the units whose 
coordinates multiplied by k [13, p. 68] are listed in the table. Here * stands for any 
of the letters A, R, B, C. Denote k = c0 + c10 + c20' + (do + d10 + d ) 
where ci, di E Z. These numbers are arranged in the form of the matrix 

Co C1 C2 

( do .d d2) 

as in [13] if there is enough space for that. If not, they are written one underneath 
the other in the natural order c0, cl, c2, dog d1, d2. 

In each of the 12 cases missing from [13] the relative class number hR = 1. The 
corresponding values of f6 are 997, 1021, 1093, 1561, 1597, 1657, 1753, 1777, 1801, 
1933, 1981, 2017. Of these, 1561 = 7 X 223, 1981 = 7 X 283, and the other 10 
numbers are primes. 
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TABLE 1 

f6 hR h2 h3 f6 hR h2 h3 f6 hR h2 h3 

229 1 3 1 277 1 1 4 313 1 1 7 
349 4 1 4 397 1 1 4 577 1 7 1 
709 4 1 4 733 1 3 1 853 1 1 4 
877 7 1 7 937 4 1 4 1009 1 7 4 

1069 7 1 1 1093 1 5 1 1129 1 9 7 
1297 1 11 1 1381 7 1 1 1429 1 5 1 
1489 1 3 19 1777 1 1 16 1789 1 1 4 
2029 1 7 1 2089 3 3 1 2437 1 1 7 
2557 7 3 7 2677 1 3 1 2689 1 1 4 
2713 1 3 1 2797 1 1 4 2857 1 3 1 
2917 7 3 1 3037 1 1 4 3121 1 5 1 
3181 1 5 1 3217 1 1 7 3229 3 3 1 
3253 1 5 1 3313 7 1 19 3469 13 1 1 
3517 1 1 4 3529 1 1 19 3877 1 3 1 
3889 1 3 1 

TABLE 2 

Type hR No 

1 (2 = 4 42 
2 R 9 1 
3 6 40 25 1 
4 (3 4040 3 40 
5 R = 0 r 0 7 72 
6 413 = 43o or 40('g 13 17 
7 (1 = 40t 19 2 
8 (6 = t04 61 1 
9 (R= O, BIX exiStS 3 94 

10 GR = 40 (C exists 4 130 
11 (R = 0B exists 12 1 
12 3R-=O0 B eXiStS 9 6 
13 (7= 40 ( exists 21 1 
14 42= +?OTCexists 16 6 
15 (3= 409C exists 12 2 
16 R = 09 Band (C exist 12 3 

There are 131 prime sextic conductors f6 less that 4000. They are of particular 
interest for a number of reasons, especially because of the following well-known 
fact: If f6 is prime and L is any subfield of C(f6) containing K6, then the class 
number of L is divisible by h6. For an interesting historical remark concerning a 
closely related result see [1, p. 219, Footnote 3]. There are exactly 43 prime sextic 
conductors f6 less than 4000 such that the class number h6 = h Rh 2h3 > 1. These 
conductors and the class numbers h R, h 2, h3 are listed in Table 1. 

We note that all statistics we give in this paper concern the total range 1 < f6 < 

4000 and thus include the statistics in [13]. There are altogether 419 fields K6 with 

f6 < 4000 such that hR > 1. These fields can be divided into 16 different types 
depending on the expression of (R in terms of 40 and (' and on the existence of GB or 
(c. A similar division was exercised in [13] but only 8 types emerged there. In Table 
2 we give for each type the relative class number hR and the number of fields 
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TABLE 3 

16 12 f3 a h Type 16 f2 f3 a b Type 

995 5 199 11 15 16 1143 381 1143 -3 39 14 
1548 172 387 -39 3 2 2077 2077 2077 -91 3 14 
2135 305 427 -40 6 16 2289 21 763 53 9 15 
2428 2428 607 -49 3 14 2439 813 2439 -3 57 3 
2669 17 157 14 12 13 2812 76 703 -25 27 14 
2844 316 711 -12 30 16 2869 2869 2869 107 3 7 
2921 2921 127 20 6 8 2945 5 589 41 15 15 
3003 429 91 11 9 11 3052 3052 763 -55 3 14 
3155 5 631 -43 15 14 3339 53 63 15 3 12 
3339 1113 63 -12 6 7 3432 264 13 5 3 12 
3572 188 19 -7 3 12 3708 412 9 -3 3 12 
3981 3981 1327 -4 42 12 3983 569 7 -1 3 12 

TABLE 4 

X6 decomposable X6 nondecomposable 
3 4' 5 6 E 3 4 5 6 

1 < 16 < 1000 60 45 155 146 406 20 3 106 33 162 
1000 < 6 < 2000 131 57 252 168 608 26 3 89 31 149 
2000 < f < 3000 155 61 303 208 727 28 2 77 27 134 
300G < 16 < 4000 156 79 301 215 751 21 2 90 30 143 

502 242 1011 737 2492 95 110 362 121 588 

belonging to that type. In Table 3 we list the parameters f6, 1f2, 3, a, b of the fields 
belonging to the less frequent and perhaps more interesting types 2, 3, 7, 8, 11-16. 

Statistics referring to the signature rank Sr of the unit group U6 are given in Table 
4 in the decomposable and nondecomposable cases separately. The numbers at the 
top of the columns are the values of Sr. 

There are 14 fields K6 with 16 < 4000 such that the norm-positive cubic units in U3 
are totally positive. As noted in [13, p. 70] it is of importance to be able to recognize 
these cases. These fields and the class numbers h R' h2, h3 are listed below. 

16 12 13 a b hR h2 h3 
703 37 703 -25 27 1 1 12 
711 237 711 -12 30 1 1 12 

1009 1009 1009 -43 27 1 7 4 
2109 57 703 -25 27 1 1 12 
2109 2109 703 -25 27 1 2 12 
2812 76 703 -25 27 16 1 12 
2812 2812 703 -25 27 1 2 12 
2844 12 711 -12 30 4 1 12 
2844 316 711 -12 30 12 3 12 
3193 3193 3193 -55 57 4 1 12 
3515 5 703 -25 27 1 1 12 
3515 185 703 -25 27 1 2 12 
3555 5 711 -12 30 1 1 12 
3555 1185 711 -12 30 1 2 12 
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The unit index QK is not listed in the tables but it is easily determined by means 
of the following two rules: 

N6/2(U6) $ U2 3 3 w and ( does not exist, 

(-1>N613( UO) U3 21 2u, 21 v and c does not exist. 

The distribution of the values of QK is as follows: 

12 3 4 1 : 

I c 1 < 1000 347 100 93 28 568 
1000 < f < 2000 394 152 146 65 757 
2000 <6 <f 3000 443 179 175 64 861 
3000 < 6 4000 462 185 175 72 894 

1 1646 616 589 229 3080 

in conclusion, we would like to draw attention to a rather frequently occurring 
connection between the relative class numbers hR of distinct fields K6 having the 
same conductor f6and the same subfield K2 or K3 Consider values of f such that for 
n = 2 or 3 there is a quadratic (resp. cubic) field Kn contained in more than one 
sextic field K6 having conductor f6= f at least one of these fields K6 having relative 
class number hR divisible by 6/n. Let P(f, n) denote the following property: 

For any given quadratic (resp. cubic) field Kn the relative class numbers hR of the 
sextic fields K6 having conductor / = f and containing K,, are either all prime to 
6/n or all divisible by 6/n. 

The values of f satisfying the preliminary requirement above are the following 
ones:, 

n=2, P(f,2)istrue 

793, 981,1027,15481,1629,1736,2135,2163,2184,2289,2331, 
2405,2412,2639,2701,2844,2945,2983,3003,3007,3033,3339, 
3416,3492,3573,3601,3708,3892,3999 

n=2, P(f,2)isfalse 
469,1603,1708,1957,2977,3303 

n=3, P(f,3)istrue 
651, 732, 741,1073,1221,1281,1449,1464,1533,1628,1729, 

1833,1935,2013,2044,2135,2289,2444,2604,2660,2821,2844, 
2849,2945,2964,3003,3059,3069, 3081,3108,3233,3255,3256, 
3445,3464,3465,3477,3601,3627,3660,3705,3717,3784 

n = 3, P(f,3)isfalse 

248, 744, 936,1064,1240,1368,1736,2072,2456,2709,2728, 
2812,3052,3192,3224,3512,3720,3752,3913,3992,3999 
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