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On the Numerical Solution of 
Singular Boundary Value Problems 

of Second Order by a Difference Method 

By Ewa Weinmfiller 

Abstract. The standard three-point discretization applied to the numerical solution of nonlin- 
ear boundary value problems for second-order systems with a singularity of the first kind is 
investigated. The results are extended to the boundary value problems arising in practical 
problems from mechanics and chemistry. A number of numerical examples illustrating the 
theoretical results is presented. 

1. Introduction. The main purpose of this paper is to investigate the application of 
a finite difference scheme (with three-point discretization) to the following nonlinear 
boundary value problems: 

(l la) y,,(t)_ Al y,(t) _A ?y(t) =f(t, y(t), y'(t)) 0 < t '< 1, t t2 

(1.1b) B ( y(O); y(l), y'(1)) = 0, 

and 

yy( ) t '(t) - -y( t) = t( y(t) y W ) < t y<) 1 
t2 

(1.2b) B ( y(1), y'(1)) = 0 y(O) = . 

Here y and f are vector-valued functions of dimension n, AO and Al are constant 
n X n matrices and B in (1.1) is an m-dimensional vector-valued function, with 
m < 2n, while B in (1.2) is n-dimensional. We also assume y to be real-valued and 
continuously differentiable on [0,1] and its second derivative to be continuous on 
(0, 1]. The problems (1.1) and (1.2) occur often in applications from mechanics and 
chemistry, see for example Keller and Wolfe [5], Parter, Stein and Stein [10] and 
Rentrop [12], typically when transforming partial differential equations to ordinary 
differential equations. 

The numerical solution of scalar equations of this type has been investigated by 
Jamet [3], Natterer [9], Russell and Shampine [13]. Brabston and Keller [1] and 
de Hoog and Weiss [2] have considered first-order systems with a singularity of the 
first kind. 
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The basic analytical properties of nonlinear, second-order systems have been 
studied by the author in [14]. Questions of existence, smoothness and uniqueness of 
the analytical solutions have been discussed. In [15] the finite difference method has 
been applied to linear systems with variable coefficient matrices AO(t) and Al(t), 
the stability of the scheme has been shown, and the convergence order has been 
derived. The analysis in [14] and [15] is based on the transformation of the system of 
second order to a system of first order, cf. (3.2a), where the 2n X 2n matrix M(t) 
occurs. It has been shown in [15] that if the analytical problem is well-posed, then 
for every equidistant gridspacing h on [0, 1] there exists a to(h) > 0 such that the 
difference system associated with the linear boundary value problem has a unique 
solution on [to(h), 1]. Furthermore, the order of convergence depends on the 
eigenvalues of M M(O) and the smoothness properties of y. It has been shown for 
f E C2 that the order of convergence is h qln hIP, p > 0, where q = 2 if all 
eigenvalues of M have nonpositive real parts, and q = min(a , 2), where a, is the 
smallest positive real part, otherwise. In a fairly large number of computer examples 
(also nonlinear) it has been observed that the choice to(h) = 0 worked well, and this 
suggests that the restriction to(h) > 0 is rather technical (contraction arguments 
were used in [14]) and can be omitted. This will be shown here. 

The outline of the paper follows. In Section 2 we collect the notations and 
preliminary results used in the subsequent analysis. In Section 3 we present the basic 
analytical properties of the solution of the linear problem, which we require for the 
discussion of the numerical method. Furthermore, we formulate assumptions for the 
treatment of nonlinear problems. Because in many practical nonlinear problems the 
solution is not unique, cf. [5], we only assume that a solution exists and is isolated. 
In Section 4, we formulate the numerical schemes to be considered and show 
existence and uniqueness of the solution of the difference systems for the linear case 
on the whole interval [0,1]. To avoid repetitions in the analysis, we state the 
convergence results without proofs, which can be found in [15]. The results are 
extended to the nonlinear case in Section 5. If the problems (1.1) and (1.2) have an 
isolated solution, we show that the associated discrete problems have also a unique 
solution in a neighborhood of the continuous solution, when the gridspacing h is 
sufficiently small. In the analysis of the nonlinear problems we use the results of 
Keller [6]. The order of convergence depends on the smoothness of the solution y as 
well as on the spectral properties of AO and Al. Typically, one has convergence 
order h2Iln hIP, p > 0. Finally, Section 6 contains numerical examples illustrating 
the theory, and Section 7 (appendix) technical details. 

2. Notations and Preliminary Results. We denote by Xn the space of complex-val- 
ued vectors of dimension n and use I l to denote the maximum norm on Xn, 

IX|:= (X1,X2,. . .,Xn) |= max Ix,|. 

Let A be an equidistant partition of the interval [0, 1] 
A = {t1, i = o(1)Nlt, = ih, tN =1, 

where i = 0, 1,.. ., N is denoted by i = 0(1)N. With each partition A we associate 
the linear space X. with elements 

XA = (Xo X1, ... I XN), 
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where xm = (xml, Xm2, ... X Xmn)T E Xn, m = O(1)N, and the norm on XA is 

|| II:= max I Xm 
0< m< N 

CP[O, 1] is the space of vector-valued functions as well as the space of complex-val- 
ued matrices, whose elements are p times continuously differentiable on [0, 1], and 
CP(O, 1] is defined analogously. We use C = C[O, 1]= C0[O, 1] and C(O,1] = 

C0(O, 1]. For each vector y E C we define the norm 

IIyII:= max Iy(t)|, 
0< t<1I 

and for each matrix A E C, 1hAII is the induced norm. For any continuous function 
y the modulus of continuity is defined by 

W(Y; 8):= max Iy(t + 8)-y(t)I. 
0< t< I - 8 

Finally, R.: C -* X. is the bounded linear map such that 

RAy = (y(t0), y(tA), ... y(tN)), RAy' = (y'(to), y(t), Y (tN)) 

We now formulate the results which are basic in our analysis. 

LEMMA 2.1. Given a complex number X = a + iK, a > 0 and Q(X) = {,I I1A-j 
a a/2}; for ,u E Q (X) define 

L1 k = j, 

(2.1) Zkj(M):= (H(1 _L) 1 < k <j j = 2(1)N ? 1 

Then there exists an q > 0 such that 

lZkj(I) I < const(tk/t) , k < j, j = 1(1)N, 

for all ,i E Gi(X). 

Proof. Let t E Q(X) and 1> lo = 3a. Then 11 - ,L < 1 - v, where v = a/2 - 

i(jKi + a/2). Let k > lo. Then IzkJ(A)I I Vkju, where 
j-i 

Vkj = H (I - v)/l 
l=k 

Using 
n-1 

F(z + n) 11 (z + k))F(z) 
k =O 

and the asymptotic expansion 

F(s + a)/F(s + b) = Sa-b(l + 0(1/s)), Re(s) > 0, 

cf. [7], we can rewrite Vkj and obtain 
j-1 

Vkj = H (1 - v)/l = F(j - v)F(k)/F(k - v)F(j) = (k/j) (1 + 0(1/k)), 
I=k 

which yields the desired result for k > lo. The result for k < lo now follows, since 

Zkj(0) = Zk,1o0C)zj,0,(J) and Zkj. consists of at most lo terms. E1 
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LEMMA 2.2. Given a complex number X = a + iK, a > 0, QJ(X)= {, IX- < 

a/4} and S2(X) = {,LI IX - ,MI < a/2}; for any L E &2,(X) and complex number 8 
define 

L1 k = j, 

H 
I 

1 
( 

- 
(1 

+ 
) 1 <- k < j, j = 2(1)N + 1. 

Then there exists an q > 0 such that 

lZkj(I, 8) I < const(tk/tj) , k < j, j = 1(1)N, 

for all , E 01(X). 

Proof. Let L, = L + 8/1. Then we can rewrite (2.2) and obtain 
j-1 

Zkj (, 8) = H( I - 

If E- Q1(X) and 1> 11 = 418I/a, then ME Q2(X). Let 1 > max{10,11}. Then 
1 - y 1 - v1, and hence the assertion follows as in Lemma 2.1. El 

LEMMA 2.3. Let X, QJ(X) and 02(X) be as in Lemma 2.2. Let 3(1, p) be a bounded 
sequence of complex numbers such that 18(1, )I 8 for each / > p > 1 and all 

C QJX). For p E- QJ(X) and 8(1, p) define 

L1 k = j, 

H 
I~k 

- 
( 

P 
)) 

I <, k < j, j = 2(1)N + 1. 

Then there exists an 1 > 0 such that 

1zkJ(,8(.)) < const(tk/tj)9, k < j, j = l(1)N, 

for all 0u e i1(X). 

Proof. On setting PI, = + 8(1, p)/l, we have 
i-i 

Zkj (P I 8( )) =n (- I ) 

Let , E2 QJ(X). Then P,,, E Q2(X) for each / > 11 = max(p, 48/a), and the same 
arguments as in the proof of Lemma 2.2 apply. O 

LEMMA 2.4. For every k > j 1 and y E R, 

kYl J c constt - I | y t 0, 

I=j 
I 

constln(tk/t1), y = 0. 

Proof. See [15, Lemma 2.2]. O 
Finally, for the matrix A and an analytic function ((X), we write the matrix 

function ~(A) as 

(2.4) ((A) = 21 f. (X)(XI - A) dX, 

where r is a closed curve containing all eigenvalues of A. 
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3. Analytical Problems. In this section we recall the formulation of the linear 
problem given in [14], some analytical properties of the solutions of this problem 
and the assumptions made for the nonlinear case. For technical details, proofs, etc., 
see [14] and [15]. 

Consider the linear boundary value problem 

(3.1a) y"(t) - 1( )y,(t) -t ) A(t)(t), < t 

(3 .1b) BOY(O) + BlY(1) = Y(t) = (y (t), y'(t)) T, 

where y, f are n-vectors, AO, Al are n x n matrices, BO, B1 are m X 2n constant 
matrices and /3 is an m-vector, with m < 2n. By the linear transformation z(t)= 

(zl(t), z2(t))T = (y(t), ty'(t))T, the system (3.1a) can be reduced to a first-order 
system of the form 

(3.2a) z (t) = t [A0t I t) ]Z(t) + t 0zt M( t)z(t) + tf(t), 

(3.2b) BoY(O) + BlY(1) =. 

Let f E C and assume that AO(t) and Al(t) are 

(3.3) Ao(t) = AO + tpCo(t), Al(t) = Al + tCj(t), v > 1, 

where A0, Al are constant matrices and C0, C1 E C. Then we can rewrite (3.2) and 
obtain 

(3.4a) 
z '(t) t A I + Al] Z(t) + t [ Co(t) C,(t) ]z(t) ?t J(t) 

- tMz(t) + t C(t)z(t) + tf(t), 0 < t < 1, 

(3.4b) BoY(O) + BlY(1) = P. 
In order to formulate the existence result for the solution of (3.4a), we have to 
introduce the following notations. We denote by R the spectral projection onto the 
eigenspace of M M(O) corresponding to the eigenvalue X = 0, and by S the 
spectral projection onto the invariant subspace of M corresponding to the eigenval- 
ues with positive real parts. We also set 

P=R+S, Q=I-P, 

and have the following result. 

THEOREM 3.1. Let Qz(O) = 0; then for every f E C and constant 2n-vector y there 
exists a unique, continuous solution z(t) of (3.4a) satisfying Pz(1) = Py. Since 
y(t) = zl(t), we obtain a solution y(t) of (3.1a), andy E C n C2(0, 1]. 

The question as to whether this solution satisfies the boundary value problem (3.1) 
can be answered if we substitute the solution y and its derivative y' into (3.1b). On 
noting that Pz(1) = PY(1) = Py we see that we need m = rank[P] conditions to 
make the solution y unique and these conditions have to be given by (3.1b). It has 
been shown in [14, Theorem 4.2] that the m constants can be uniquely determined 
from (3.1b) if and only if the inverse of a certain m x m matrix obtained by the 
above substitution exists. 

For the nonlinear problem (1.1) we make the following assumptions. 
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N.1.1. Problem (1.1) has a solution y E C'. We define the sphere S, associated 
with the solution y of (1.1) by 

Sp(y(t)) = { V E Xnj IV -y(t) I p, p > 0) 

and the sphere S, associated with its derivative y' by 

S6(y'(t)) = {w E Xn| w - y'(t) | 8, 8 > 01. 

Additionally, we set 

Tp> = {(tVW)|O < t < 1, v E S(y(t)), w E S 

N.1.2. B: DB -X m is a nonlinear map and f: DS -- Xn is a nonlinear map, 
which is continuous on [0,1] x Xn X Xsn, DB and DS are open sets and m = rank[P]. 

N.1.3. f is continuously differentiable with respect to v and w and f(t, v, w), 
fw(t, v, w) are continuous on Tp,>; B is continuously differentiable with respect to all 
variables on 

S"(y(O)) X SO(y(l)) X S'Jy'(l)). 

N.J .4. If M has eigenvalues X with positive real parts a, then a > 1. 
N.1.5. The solution y of (1.1) is isolated. This is equivalent to the condition that 

the following (linear) problem 

(3.5a) L(y)v(t) -v"(t)-- C,(t)v'(t) - CO(t)v(t) 

= 0, 

(3.5b) Boov(O) + Blov(1) + Bllv'(1) = 0, 

where f-f (*, v(.), w(.)), BB(ul; u2, U3) and 

B aB 
0= aa ( y(0); y(1), y'(l)), 

(3.6a) 
au, 

Blo = au2 (y(0); y(1), y'(l)), B,, = au3 (y(0); y(l), y'(A)), 

(3.6b) CO(t) = a t y(t), y'(t)), Cl(t) = a?L(t, y(t), y'(t)), 

has only the trivial solution v(t) 0. 
Let P be the 2n X m matrix consisting of the linearly independent columns of P 

and P the unique m X 2n matrix such that PP = P. Let I, be the n X 2n matrix 
consisting of the first rows of the identity matrix I and I2 the n X 2n matrix 
consisting of the last rows of I. Then any continuous solution of (1.1) satisfies 

(3.7a) y(t) = I,{(Hf(, y, y'))(t) + 0(t)Pa), 

(3.7b) y'(t) = I2{(Hf(., y, y'))(t) + 0(t)Pa)1t, 
(3.7c) a = a - B(y(O); y(l), y'(1)), 

where a = PY(1), a E Xm and 

(HJ( y, y'))(t) 

(3.8a) = t2f' Qsmsf!(ts, y(ts), y'(ts)) ds + tm t 
Psmsf(s, y(s), y'(s)) ds, 

(3.8b) 0(t) = tMP. 



NUMERICAL SOLUTION OF SINGULAR BOUNDARY VALUE PROBLEMS 99 

We can write (3.7) as 

(3.9) x = N(x), 
where x = (y, y', a) and N: UpxAh X - C"' is a compact nonlinear operator, 
UP, = { u E CG' u(t) E Sp(y(t)), u'(t) E S3(y'(t)), 0 <s t < 1) and C"' = C1 >X 
X"'. A simple modification of contraction arguments given in [14, Section 5] yields 
the stability of the solution of (1.1), i.e., the continuous dependence of the solution y 
on small perturbations in the right-hand side of the differential equations and 
boundary conditions. 

The extension of this result to the problem (1.2) is rather straightforward, if we 
change assumptions N.1.1-N.1.5 properly. 

N.2.1. Problem (1.2) is well-posed and has a solution y E C1, y(t)/t Ee C. We 
define the following sphere for the solution y 

Se(y(t)/t)= 
v - E | V y(t) 

and note that if v E Sp(y(t)/t) then v E Sp(y(t)). We also set 

Tp ? = {(t, v,w) I < t < 1, v E Sp(y(t)), w E S(y(t)/t)}. 

N.2.2. B: DB -_ X' is a nonlinear map and DB is an open set. 
N.2.3. B is continuously differentiable on Sp(y(l)) X S6(y'(1)). 
N.2.4. If the smallest real part of the eigenvalues of M is 1, then X = 1 and the 

Jordan box associated with X = 1 is diagonal. 
N.2.5. The solution y of (1.2) is isolated, i.e., the problem 

(3.1Oa) v"( t) Al v'(t) - -yv(t) - C0(t)v(t) = 0, 

(3.10b) B10v(1) + B11v'(1) = 0, 

where 

Co(t) = tUL(to y(t), Y(t) ) + af t y(t), Y(t) )t, 
has only the trivial solution. 

All other assumptions remain valid with respect to the above changes and new 
definitions. 

4. Numerical schemes. We consider the partition A\ of Section 2 and the nonlinear 
problem (1.1). Then the three-point discretization yields 

Yi+1 - 2yi + yn-1 Al (Yi+1-Yii-1 AO 

(4.1a) i 

-t (tj~ y1Y+1 YI-1) i = (1) N, 

(4.1b) B(yo; YN' Y hN ) = 0. 

Without loss of generality we assume that the boundary conditions, which are to be 
posed at t = 0 for the continuity of the solution, i.e., Qz(O) = 0, are given by 

(4.lc) QYO - (y, - yl)/h - hA-f (0, yo 0)] = 0, 
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where Q is a constant q X 2n matrix and q = rank[Q]. To see that the lower 
expression in (4.1c) is an approximation for y'(O) we assume y E C2 and apply 
Taylor's theorem to (1.la). Then we have 

Ay"(0) (I - Al - A0/2)y"(0) = 1(0, Y(O), y'(O)) 

if and only if (A1 + AO)y'(0) = 0 and AOy(O) = 0. By N.1.4 and N.1.2 we have 
immediately y'(O) = 0 (cf. [14, Lemmas 3.1, 3.2 and 3.3]), and provided that A-1 
exists, the result follows from 

y"(O):= (y-i 2yo +yy)/hl , y'(0):= (Y-y1)/2h. 

The difference scheme associated with (1.2) is 

Yi+i 2yi + yi-i Al Yil Y- \AO 

h2 ti 2h t2 l 
(4.2a) i 

=f(t~y, ? ), i =1(1)N, 

(4.2b) B(YN9 Y Y ) =0? 

(4.2c) Yo= 0. 

In the following subsection we consider the linear case and show how the stability 
results from [15] can be extended to the whole interval 0 < t < 1. The convergence 
results are repeated, because their proofs do not change. 

Numerical Results for Linear Problems. We first formulate the difference scheme 
for the case when the coefficient matrices AO(t) and Al(t) are constant, i.e., 

CO(t) = Cl(t) 0, and then transform the second-order system to the first-order 
one. For (3.1) we have 

(4.3a) I I- 
A 

) Yi+l - 2I + AO Y + I+ / ) yi- = hJf (1 t, )(l)N. 

(4.3b) 
Bo[(y -yo)/h - hA-1f(O)/2] +B 

(YN+l YN-1)/2h] 
= 

We define 

(4.4) Ul'i = Y1, u2,i = (i + 1)(Y1 -+ y1) i = 0(1) N, 

and obtain immediately 

(4.5) Ul i = Uli + -U2,i-1 i = 1(1)N. 

The application of (4.4) to (4.3a) yields 

U2,= 
AO + IO1ji) uli-1 + I+ i(I + A1) + 2 ) 

+E 3(i)tt1?hf (ti), i = 1(1)N, 
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where 

(31(i) = (I2 A)1( +-A0 

02(i) = (I- A)l[( + i)AO +(I + ) AI 

83(i)= (I- 

Clearly, we have to assume that for 1 < i < A11/2, (I - A1/2i)-l exist. From (4.5) 
and (4.6) we have for ui = (Uli, u2,i) 

(4.7) ui = uj__ + 7-Mu. 1 + 704(i)uj.1 + tj+jh05(i)f(ti), i = 1(1)N, 

where 04 and 05 are appropriate 2n X 2n matrices. Since J = E-1ME, vi = E-lu 
solves 

(4.8) v= vi-1 + i _1 + 1 0(i)vi-l + tj+jh4(i)gi, 

where 

0(i) = E-104(i)E, A(i) = E-105(i)E, gi = E-1f(ti), i = 1(1)N. 

For (4.8) we write 

(4.9) v - - 1JV 1(i)v = tj+1h4(i)gi, i = 1(1)N, 

and this is formally 

(4.10) GV=R. 

where G: XA -* XA. In [15] we proceeded similarly, but there the expression on the 
left-hand side of (4.9) was vi - vj- (l/i)Jvi-1. In order to show that G has an 
inverse bounded independently of h, we assume that J consists of one Jordan box 

= 1 '.X.=1j + iK, 

and consider the following three cases a < 0, A= 0 and a > 0 separately. Let us 
write (4.8) as 

1 1 
(4.11) Vi= vl + --Jv1 + i2(i)vi_1 + r, i = 1(1)N, 

and consider 
Case 1. a < 0. Let Vo = y E R2n. Then 

vi-. ri I + _j + 12 0(i) ) + E H 
n I + _j + 12 (l) ()rk + ri, 

(4.12) i- 

_ Zi ly + E Zi,k+lrk + ri, i = 1(1)N. 
k=1 
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Let 

Zj k+l = r(I + -iJ + A /(1, J)) 

2rif Zk+l]?l(-X -3(.))( J)1dX, 

where F = {yI IX - = -a/4}, A(1, J) is a diagonal matrix, L\(l, J) = 
diag(8(1, X)) and 8(1, X) is a complex number such that 

Re(8(1, X)) = sign(Re(1 + X E))Ie(l) , Im(8(l, X)) = sign(Im(X)) I(I) ( 

for each 1 < 1 < N. We notice that if 1A11 a, and IAol ao, then for each 
1 > p > a1/2 

lE)(1) 1< I (p) I < const[(1 + a,/2)(ao + a) + 2ao]/(1 - al/2p) e 
and IE(1)I < const otherwise. Using results shown in the appendix and Lemma 2.3, 
we now have 

12j'k+1 I < I Zj,k+l |I< const(tk + 11ti+l 1Y k <i, 

and 

lviI < const{IYI + tk+1}ti+ 1 i = l(l)N. 

Using Lemma 2.4, we obtain for the solution of (4.8) 

(4.13) lvii <const{ly +ItillfAll}, i= l(l)N. 

Case 2. X = 0. Before studying (4.8),we investigate the growth of solutions of the 
following system 

(4.14) Wi = (I + J+ 2o(i) w, + ri, i = l(l)N, 

where e(i) is a diagonal matrix and each diagonal element is equal to Ie(i) I n(i). 
Let WOr = 80r, r = 2(1)2n and WN1 = 8N1, and let us consider the system (4.14) 
componentwise. For the k th component we have 

W~k = i- ,k + .Wik?1 k+l + 
n 

I(i)w-l,k + rik, k = 1(1)2n - 1, 

W =,2n Wi-1,2n + n(i)Wi-1,2n + ri,2n 

From the last equation we obtain 

and 2 m= jI + -n(M)) 0,2n + (11 i + 
I 

n(l)))rj2n + ri,2n 

and it follows immediately from Lemma 2.4 that 

(4.15) 1wi2nj < const{ t02nI + t18 IifA II) i= l(l)N. 



NUMERICAL SOLUTION OF SINGULAR BOUNDARY VALUE PROBLEMS 103 

Fork = 2n - 1 we have 

Wi,2n-1 HJ~l (i + mW 2 ()) 0,2ni1 

+- ( I-y 1 ( I2 n()) (W}j-1,2n + rj,2n-1) + iWi-1,2n + ri,2n-1 

and the following estimate can be obtained using (4.15) and Lemma 2.4, 

lWi,2n-11 < constt 180,2n-1 I + |80,2n inh| + tI f I I11}. 

Clearly, 

2n 

(4.16) | Wr I < const( Y I aOk lIn hI + th I faII}) i = 1(1)N, r = 2(1)2n. 
k =r 

Finally, the first component is 

N 
I -1 

Wil= mt 1 + +n(m)) N1 

N | jI -1 / 

E E t1 + 2nl) wj2 + rj 1 i =1(l)N, 

and the estimate for wil follows in a very similar way, 

2n 

(4.17) wil I < const( 181 1 + E l8Ok I| IIn hk| + i+If} i 1(1)N. 
k=2 

Let va be a solution of (4.8) and VN. = 81 VOr = Sr, r = 2(1)2n. Since 

|I+ -J + 10 (i)|<I+ 1J+ 
- 

i= l(l)N, 

it follows from (4.16) and (4.17) that 

(4.18) lvi I < const 1811 + max I|AI |lnh2 
1 

+IIf1fl } 
2,<r,<2n 

Remark 4.1. Consider the case when the Jordan box associated with X= 0 is 
diagonal; this is equivalent to J 0. In addition, let vo = So be the initial condition; 
then it follows immediately from (4.15) that in this case 

(4.19) vi I < constt So I + t72If I||, i = 1(1)N. 

Remark 4.2. It follows also from [14, Lemma 3.2] that the case when the initial 
condition is of the form vo = 8S is of interest. Analytically, this condition is 
equivalent to Qz(0) = 0 and Rz(O) = Ry. From (4.16) it is easy to see that the 
estimate for vi is now 

(2n-1 + t2ll. (4.20) v Iv<cns SlI + max I 8orIll~nhl t7IfIl 
2 < r <2 nJ 
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Case 3. a > 0. Let VN = y E R2n. Then, 

Vi = H 1 + k2E (k) )Y 

k=i?1 

Before considering Case 3 in detail, let us briefly discuss the question of the 
existence of the matrix 

< + 

(4.22) F,+ H = I + - 241)' k>i + 1, i1 = rkN1 

l24( |I EM | 
< const, 

and hence Mi+ k exists for each i > i0. It is not so simple to solve this problem for 
1 < i < i0 in the most general case, without any additional assumptions on the 
matrices A0 and A l. Therefore, we assume that M1 k exists for each i = 0(1)N-1 
and show that this assumption holds in some special cases that are important for 
applications, cf. [5], [10], [12]. 

Scalar case. The eigenvalues e, a2 Of the matrix M are solutions of the following 
equation, 

X2-X(1+ al)-a =0?; a0, al ER, 

and hence if Re(Xi) > 0, i = 1, 2, then it follows immediately that 

(4.23) a1 > -1. 

Assume that an index i > 1 exists such that the matrix 

(4.24) I)+ .M? + M 64(i) 

is singular, or equivalently, 

mariesA ad 11 1hrfrw ssm htM 1, 1 xssfrechi=01 

1 + .:-(1 + al) + -1e2(i) = 7~a0 + el) 

Then we have from the last equation 

2i2 +(2 + a1)i + al = 0 

and al = -2i, which contradicts (4.23). 

Apl Ac are real diagonal matrices. As in the scalar case, if 12, i = 1(1)n, are the 
eigenvalues of the matrix M and Re(sl)i> 0, then 

alk >-1, k = 1(1)n, 
where alk denotes the k th element of the matrix A1. If the matrix (4.24) is singular, 
then 

det[-(* Ao + *1(i)) + I + 1. (I + A4 ) + Ie(i)] = 0, 
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or equivalently, 

det[2i2I + (2I + Aj)i + Al] = 0, 

and the contradiction is obvious. 
A1 has real eigenvalues, AO = aoi, ao E R. The result can be shown as in the 

previous case, via the eigenvalues of Al. 
Both A1 and A0 have real eigenvalues, A0 and A1 are semisimple and A0A1 = A1A0. 

The result follows on noting that in this case A0, Al have a complete set of 
eigenvectors in common. 

We now can estimate vi from (4.21). A simple modification of Lemma 2.3 and the 
existence of a matrix function 

Z?+lk = r (I +I + (l2 A (J )) 

2i|Zj+ l k+ (A,(M))I - J)-lA 

where IF = {I It -x1 = Ia/4} and 1Z1--lkl < constlZj+lkl for each k > j, yield the 
existence of a constant 0 < -q < 1 such that 

1Z1+l?k| < const(t1+l/tk+l)q 

and finally, 
N 

(4.25) 1viI < constjjlIyI + E"(til/tklY irkIJ I = 1(1)N. 

Using (4.25) and Lemma 2.4, we have for the solution of (4.8) 

(4.26) 1 vi I < const t(I y I + fA 11)), i = 1(1) N. 

Technical details may be found in the appendix. 
For ui = Evu, 1 < i < N. we can now extend the results of Cases 1, 2 and 3 to the 

general situation when the matrix M has different eigenvalues. Let do be the 
dimension of the largest Jordan box associated with X = 0 and d+ the dimension of 
the largest Jordan box associated with X+= aI++ i/c+, where a + is the smallest 
positive real part. Then we have the following 

LEMMA 4.1. The system (4.7) has a unique solution for any Quo = 80, PUN AN 
andfa. Furthermore 

(i) l|u,|| < const{l8o|ln hIdo-1 + I|NI + Ilfll). 
(ii) LetyA be a solution of (4.3a) andf e C2. Then 

(const h?+I n hld+ , 
1 

O < 0+< 2, I~y - Rf -1- +do 
1, + 

I& -RcyI consth2(llnhId++Ilnhdal),2 

(const h21In hldol?, +> 2 or S = 0. 

The constants appearing in (i) and (ii) are independent of h. 

Proof. (i) The proof follows from the results of Cases 1-3. 
(ii) [15, Lemma 4.4]; we note that if zero is not an eigenvalue of M or its Jordan 

box is diagonal, then we have to replace lln h do- 1 by 1 in (ii). The convergence 
results for the case when f e C can be found in [15, Lemma 4.4]. 0 
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We now consider the numerical scheme defined in (4.3a), applied to the problem 
(3.1a). Let AO(t) and Al(t) be as in (3.3); then we have 

(4.27a) f (i, h) (I- A1 + t PC,(ti) )1(I + Al(t1) )Ao(t) 

(4.27b) e2(i, h) = - A1 +it1) ) [(i + AO(t) 

?(I+ A(t) )A (t)] 

(4.27c) e3(i, h) = - A1+ t1c1(tO) 

and assuming that for 1 < i s< max0<t<iIAi(t)I/2, 8)1(i,h), / = 1,2,3 exist, we 
obtain the following system for ui, 

(4.28a) 1i= ui~l + +Mui~l + I. C(ti)ui~1 + - Al4(ih)uAi 

+~~~ +i15i t)PC= ()N, O<N 

when e4 and e5 are defined as before with respect to the new definitions of 01, 62 

and E3. To show the existence and uniqueness of the solution of (4.28a), subject to 
the boundary conditions 

(4.28b) Quo= I, PuIN0 

we use a contraction argument For that purpose we consider the following iteration 
scheme 

u4k28) - u(k j1 I- . 'Mu (') - 2 4(i, h ) 1 

- C(t.)ui i + t=1?e5(ih)fN , i = 1(1)N0, 

Qu(k~l) - ^ PuNO1 = ao 

which can be formally (cf. (4.10)) written as 

(4.29) GU(k~l) - CU(k) + F, 

where G, C: Xae X a re l i near maps. Since the existence of a bounded inverse of G 
follows from Lemma 4.1, it remains to show that (I - G-C)-1 exists. This holds if 

11G-1C11 < 1. It has been shown in [15, Section 4] that the latter condition is satisfied 
if Xr = hN0 is sufficiently small. The standard contraction argument now yields the 
existence and uniqueness of the solution of (4.28) on [0, r]. This solution can be 
uniquely continued to t = 1. We formulate this result as 

LEMMA 4.2. Let Quo = 28 and PUN= AN. Then for each fi there exists a unique 
solution uA of (4.28a), i.e., the existence of the solution ye of the associated second-order 
difference equation, and the following estimate holds, 

lus | const(1 | In h 1 + I AN I +|I fAI I|} 
Finally, for the linear boundary value problem consisting of (4.28a) and the 

boundary conditions (4.3b) we have the following result corresponding to Lemma 
4.2, cf. [15, Remark (i) and Lemma 4.5]. 
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LEMMA 4.3. Let us assume that the homogeneous boundary value problem (3.1) has 

only the trivial solution. Then the difference system (4.28a), subject to the boundary 

conditions (4.3b) and 

[(y1 - yO)/h - hA-lf(0)/2] 8' 
has a unique solution for each fA and /3 if h is sufficiently small and the following 

estimate holds, 

(i) IIYAII < conSt{181i1nhhdol + If8I + IlfAI}. 
Clearly, if 8 = 0, then we have 

(ii) IIYAII < const{l,1l + llfAll). 
(iii) Let yA be a solution of the difference system (4.28a) and f, C1 E C2, CO E C3. 

Then 

constha+IlnhI0d+- ? < G+< 2, 

IyA-RAy 11 < const h 2( Iln hId+ + Iln hIo-1), 0=2, 

const h21 ln hldo-1 0+> 2 orS = 0. 

5. The Nonlinear Problems. We now consider the nonlinear problem (1.1) and 
write it first as the following nonlinear operator equation 

(5.1a) Ny(t) -y"(t) - A1(t) A A y(t)-f(t,y(t),y'(t)) = 0, 

(5.lb) B(y(O); y(l), y'(1)) = 0, 

(5.1c) QY(O) = 0. 

The discrete problem related to (5.1) is of the form (cf. (4.1)) 

vi+1 -2vi + vi-1 Al vi+?-1i-v 1 _ AO 

(5.2a) Nh2 t 2h i 

-t~ti, - __h i = 0, i = 1(1)N, 
-f~t~v1, 2h ) 

(5.2b) B (vO; VN v vNK) ,= ? 

(5.2c) QVo = O. 
Before proceeding, the following additional notations are required: 

Boo = ( Y(O); y(1), ( y(1 + h ) - y(1 - h ))/2h), 

00 aul BA0 = 
B 

( Y(O) ; y(1), ( y(1 + h )- y(1-h ))=2h ) N 

BA aB (Y(O); y(1), ( y(1 + h )- y(1 - h ))/2h ), 

CO" ( t i) af (ti, y(ti), (y(ti+,) -y(t,_ 1))/2h), 
i = 1(1)N, 



108 EWA WEINMULLER 

The linearization of the nonlinear difference operator defined by (5.2) (at the 
solution y(t)) and applied to vA is 

LA(Y)Vi 
+l -2v, + v,_1 

L^(Y^)i-- -h2 

(5.3a) - + -f (to, y(t1), (y(ti+?) - y(tl1D)/2h))( Vl1l l-1) 

- + af (tiy(ti), (y(ti+ )-y(t,1))v2h))1,, i= I(I)N, 

(5.3b) BA(yA)VA Boto + BvN+ Bi(N?T 2hN), 

(5.3c) Q QvA (vl - vO)/h - hA1 ay (O, y(O), 0) vO/2 

Let us apply the difference scheme to the linear problem (3.5) augmented by the 
condition QV(O) = 0. This yields 

Vi+l - 2v i + -( (l +Vc(ti))( V h Vi-l) 

h2 t 1 
~/k 2h 

(5.4a) 

- 
O 

+ COA(ti))VI = 0, i = 1(1)N, 
\ iI 

(5.4b) Bvo + BvN + B .(N?1ThN1) = 0. 

To derive a discretization of QV(O) = 0 we assume v E C2, apply Taylor's theorem 
to (3.5a) and obtain 

Av"(0) (I - Al - AO/2) v"(0) = af (?,O), O) v(O) 

if (A1 + A0)v'(0) = 0 and AOv(0) = 0. It follows that 

(5.4c) Q[(Vl - vO)/h - hA-1 af (? y(o), o) vO/2 
0 

and we can see from (3.6) that (5.4) is equivalent to 

(5.5) LA(yA)vi = 0, 1 < i < N; BA(yA)v, = 0; QAvA = 0. 

The main result of this section is formulated in Theorem 5.1. The proof of this 
theorem follows from the theory developed by Keller [6]. Thus the proof of Theorem 
5.1 reduces to verifying the hypotheses of Theorem 4.7 in [6]. For notational 
convenience we define DxA = (DxO, Dx1,..., DXN), where DxO = (xl - xO)/h - 

hA-lf(0,xO,0)/2 and Dx, = (xi+, - xi1)/2h, i = 1(1)N. 

THEOREM 5.1. Let the conditions N.1.1-N.1.5 be satisfied. Then for some e > 0, 
h 0 > 0 sufficiently small and all h < h , 

(i) the difference system (5.2) has a unique solution vA and v RA y- < E; 
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(ii) the difference solution can be computed by Newton's method, which converges 
quadratically for any initial iterate yA0 with IIY - RAyII < e and IIDy? - RNy'II _ e 
provided that e (e < p, 8) is sufficiently small; 

(iii) 

| s h IIn hld+-1 + W(f(, y(-),y'(-)),h)}, if 1 < a+< 2, 

IIYA - RAyI < const(hllnhl ++@(f(.,y(.),y'(.)),h)}, if a+= 2, 

cost h+ (f ,Y(),y'( )),h)}, if a+>2orS=O. 

Proof. (i), (ii). The necessary conditions for (i) and (ii) to hold are 
(1) stability of (5.5), provided that (3.5) has a unique solution and 
(2) uniform Lipschitz continuity of the operators LA(zA) and BA(zA) for all 

z E Up,,, i.e., the existence of constants KL and KB such that 

11 LA(zA) - LsA() _< K KLII ZA - 1I, 

11 BA(zA) - B(A)I < KBIIzA - ~A1I, 
for all z, E Up, ,. We point out that the operators LA(zA) and BA(zA) can be 
represented by the coefficient matrices from (5.3a, b). Since (1) and (2) hold 
according to Lemma 4.3, and by the Lipschitz continuity of the derivatives fv and 
f,,,, see N.1.3, respectively, the assertions (i) and (ii) follow from [6, Theorem 4.7]. 

(iii) We consider the system (4.1). We substitute Ry into the scheme and obtain 

Y(ti+,) - 2y(ti) +y(ti-1) - Al(Y(ti+l) y(tiJ l)) A - y(t) 

(5.6a) 

f (t, y(ti), Y(ti+l) 2hY(ti-) ) S, i =1(1)N 

(5.6b) B(y(0); y(1), y(1 + ) -h) SB 

(5 .6c) [ ( y( h) - y(O))/h - hA - 1f(0, y (O), 0) /2] ? 
From the mean-value theorem and y e C2(0, 1] we have 

Si = Y"(0i) -y"(ti) - A'l (1 ni)- AO) 

(S.7a) -t (f (ti, Y(tJ9 Y'(i)) - f (ti, yAti), AO())) 

= Y ()Y (ti) - t + F, (ti))( (y71q) -Y y(ti)) , i =1(l)N, 

where ti-1 < (i, 71i < ti+1 

Fl(ti) =| aft (tiY(ti), Y'('qi) + T(Y'(ti)- y'(,qi))) dT, 

(5.7b) SB = B(y(O); y(1), Y'(qN+1)) - B(y(O); y(1), y'(1)) 

= f aB (Y(O); y(l), Y'(1N+1) 

+T(Y'(1) - Y'(N+1))) dT(y'(7N+1) - Al)) 
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where I - h < ?)N+l < 1 + h, and 

(5.7c) so Q Y'(71o) -y'(0) j 

where 0 < To < h. 
On the other hand, subtracting (4.1) from (5.6) and defining ei= y(ti) -yi, 

i = 0(1)N + 1, we obtain the following system for eA, 

ei+l - 2ei+e1 _ + G 
(t.))( ei+l - ei-1) 

(5.8a) 

-( + Go(ti)) ei=8j i= 1(1)N, 

where 

Gl(t1) = 10 a t, y, I( ti+Y) 2h ei+1 - ei-1 )dT 

G0(t1) = 1 tit, Y(yti) - Tei, Y( i+l)hY(tll) ) dTr 

and 

j aB (Y(O) - Teo; y(l), y( + h) -y( dTeo 

(58b + a (O~aulTN )2hY( )d 
+ a B Y (1) - l y( + h) -y(-h) d 

eN+l - eN-l eN+l - eN-l 

2h 2h =B 

(5.8c) 

- ~~~~~~~~() ) Y 

Q (y(h) -)y(O))/h - hA-1f (O, y(O), 0)/2 - (yi - yo)/h + hA-lf (O yO, 0)/2 

Q ( ( - elO)/h - hA-j1 - (, y (O) - Teo, O) dTeo/2 ] ' 

The result follows by virtue of Lemma 4.3 and by smoothness properties of f and y, 
following immediately from (3.8), see also [15, Lemma 4.4]. LI 

Let f E CP[Tp 7] denote that f (t, v, w) is p times continuously differentiable on 

Tp ̂ . We see from Theorem 5.1(iii) that if a+> 2 and f E C1[TP, ], then the method 
converges at least as 0(h). This result can be improved, if we assume that 
f E C2[Tp7>]. 

THEOREM 5.2. Letf e C2[Tp7>]. Then 

(const h'+ I ln h Id+-l 1 < a ? < 2, 

- RAy < const h2(lnhKId+ + Ilnhhdo1) G+= 2, 

consth21lnh do-l a+> 2 orS = 0. 
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Proof. Since y E C4(0, 1], we apply Taylor's theorem to (5.6) and obtain 

(5.9a) Si = h 2cy,4)(() - ( + Fl(ti)) h2dy (71i), i = 1(1)N, 

where ti-i < (, qii < tj+j and 

F1(ti) = ' (ti, y(ti), y'(ti) + Tdh2y "' (n,)) dT, 
ay' 

(5 .9b) aB 
=| a(y() l) '(l ) + Tdh 2y '' 

fff 
)dT d ''(X+l) (59)8B = By (0); y(1),y~1 +' dhy"'(qN~l))drh2dy'('qN+1), 

where 1 - h < 71N+l < 1 + h, and 

(5.9c) so= Q h 2dy fff(q1 )] 

where 0 < go < h. The result follows now in a very similar way, cf. [15, Lemma 
4.4]. 0 

The extension of the results of Theorems 5.1 and 5.2 to the problem (1.2) is 
straightforward. In particular (i) and (ii) of Theorem 5.1 hold by [6, Theorem 4.7], so 
we shall restrict our attention to deriving the associated convergence results, which 
we formulate in 

THEOREM 5.3. Let the assumptions N.2.1-N.2.5 hold. Then 
(i) 

const hllnhld? + W(f(,y(.),(O.)), h)}, 

A~>or S<a+<2 
IIS-RjyI < d 

Iconst hi inh| I + (f (-, y( ), O.)), h)}, CF+ 2, 

(constf h + w (f (-, y(-), h()), h)0+> 2 or S = O 

wherey(t)/t-((t). 
(ii) iff e C2[Pthen 

const h+ Iln hI , AX= 1 or 1 < a+< 2, 
Y,-Ry 11 <I const h21ln h , a + =2, 

consth2, a > 2 orS =O. 

Proof. (i) In this case we have 

(5.10a) Si = (y"(t) - y"(ti)) - 
A 

(Y'(,qi) - (tz)), i 1(1)N, 

(5.1Gb) 8= f (y(l); Y'(JN+l) a2 

+ T(y (1) - Y'(N+1))) d(y'(N+1) -Y(1)) 

(5.lOc) so = 0. 

Furthermore, Si can be estimated as in [15, Lemma 4.4] and 8B = 0(h). This 
completes the proof of (i). 
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(ii) From Taylor's theorem we have 

(o(t+ -4h21InhIdl+), X = 1,1 < a < 2, 

- hcy4 (t)- t h i) = |( t hIln ) 0+= 2, 
ti 

0O(t-2 h2), Cr> 2, 

0(h 2), S = 0, 

and 3B = O(h2). The proof follows now by [15, Lemma 4.4], see also [15, formulas 
(4.16), (4.21), (4.23)]. 0 

6. Numerical Examples. 
Example 1. To illustrate the results of Lemma 4.1(ii) we consider a homogeneous 

2 x 2 system, where 

If a, = 2 and ao = 1, then X, = X2 = 0, X3 = A4 = 2, and the boundary conditions 

Y1(O) = 3, Y2(0) = 0, y2(1) = 4, yf(1) = -2 
yield the solution 

(6.1) [3 - 2t2(1 - lnt)] 
L 4t2 J 

For a, = 2.5 and ao = 1 we have X1 = X2 = 0 and A3 = A4 = 2.5. We choose 

Yi(O) = 3, Y2(0) = 0, y2(1) = 5, yf(l) = -3, 
and get the following solution 

(6.2) y(t) = [- 2t (1 - lnt)] 

Furthermore, 

a, 1 0 0 

J= 0 al 0 0O 

O O 0 1 

and the error behavior following from Lemma 4.1(ii) is illustrated in Tables (6.1) and 
(6.2). We note that in this case So = O. 

TABLE 6.1 

h A (h) A (h)lh 2lin hl A(h/2)/A (h) 

1/10 2.133 E - 2 0.9264* 
1/20 6.199 E - 3 0.8277 0.2906 
1/40 1.766 E - 3 0.7660 0.2846 
1/80 4.956 E - 4 0.7240 0.2807 
1/160 1.375 E - 4 0.6936 0.2774 
1/320 3.775 E - 5 0.6701 0.2745 
1/640 1.028 E - 5 0.6517 0.2723 

lim = = 0.25. 

Here, A(h) = maxOvi<N1Y1(ti) -yil|. The second component has been computed 
without errors. 
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TABLE 6.2 
1st component 2nd component 

h A(h) A(h)/h2 A(h/2)/A(h) A(h) A(h)/h2 A(h/2)/A(h) 

1/10 7.546 E - 3 0.7546 * 1.210 E - 2 1.2100 * 

1/20 2.477 E - 3 0.9908 0.3283 3.203 E - 3 1.2810 0.2647 
1/40 7.453 E - 4 1.1925 0.3009 8.334 E - 4 1.3333 0.2602 
1/80 2.124 E - 4 1.3594 0.2850 2.142 E - 4 1.3708 0.2571 
1/160 5.841 E - 5 1.4953 0.2750 5.461 E - 5 1.3980 0.2549 
1/320 1.566 E - 5 1.6036 0.2681 1.384 E - 5 1.4172 0.2534 
1/640 4.124 E - 6 1.6892 0.2633 3.492 E - 6 1.4303 0.2525 

lim (/)=( )= 0.25. 

Example 2. We now investigate the 2 X 2 system, where 

2C2 - 
1rg -1 A 1 1] 6( 

- 
[_04r2 Al' A_ _ ti 

A - 2VC-1 0 [1 i-i4' 
and 

2+0 0 0 0 

J= 0 2 0 0. 

The boundary conditions are 
y(0) - y(0 

=l 

Q 
= 7, y2'(1) = vr2i - 4, 

y1 (0) + Y2 (?) 0 

and the solution is 

) [ t?22 + t2 + 5] 
y)Lt?2- + - 3t2 - 5] 

In this case y e C3[0, 1] and therefore 
(i) y(h) - y(O) _ y'(0) = 0(h), 

h 

(ii) (Yth) h Y( ) hA f (0)/2) -y'(0) = 0(h2) 

since (A1 + AO)y'(0) = 0 and AOy(0) = 0. We can now see that even the order h 
approximation of the first derivative at t = 0 does not influence the error behavior 
(cf. [14, Lemma 4.21). 

TABLE 6.3 

y'(?) - YO= 0(h 2 ) Y(O)-YQ = O 0(h) 

h A IIyA - RAyII Al/h2I1nhI A = IIy. - RAYll Al/h2j1nhI 

1/10 3.035 E - 2 1.318 4.300 E - 2 1.867 
1/20 8.588 E - 3 1.147 1.238 E - 2 1.653 
1/40 2.402 E - 3 1.042 3.511 E - 3 1.523 
1/80 6.652 E - 4 0.972 9.831 E - 4 1.436 
1/160 1.826 E - 4 0.921 2.724 E - 4 1.374 
1/320 4.975 E - 5 0.883 7.478 E - 5 1.328 
1/640 1.347 E - 5 0.854 2.037 E - 5 1.291 
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Example 3. Finally, we consider the nonlinear scalar equation 

y"(t) + 2yy'(t) = -y5(t), y'(0) = 0, y(l) = 3/4. 

The solution of this problem is y(t) = 1/ 1 + t2/3 E C2. The eigenvalues of M 
are A = 0, X2 = -1, and it follows from Theorem 5.2 that the order of convergence 
is 2. 

TABLE 6.4 

h ~A(h) = |yA - RAyI^ A(h)/h2 (h/2)/A (h 

1/4 5.079 E - 3 0.08126 * 

1/8 1.219 E - 3 0.07802 0.2400 
1/16 3.018 E - 4 0.07726 0.2476 
1/32 7.526 E - 5 0.07707 0.2494 
1/64 1.880 E - 5 0.07700 0.2498 
1/128 4.700 E - 6 0.07700 0.2500 

urm A(h/2) =0.25. 
h/O A(h) 

All examples were computed on a CDC Cyber 170/172 in single precision. 

7. Appendix. 
7.1. Case 1. a < 0. In order to study the growth of the solution vl of the difference 

system (4.12) we consider the scalar case first and the case when n - 2 afterwards. 
In both cases we define a matrix function 

(7.1) Zikl I + ( i + - / J) 

in such a way that 

(7.2) L2ik+? <1Zik+?1, k < i. 

Furthermore, we define the matrix A(1, J) as a diagonal matrix to make the system 
(4.12) decoupled. 

Let n = 1, a0, El ER and let us assume that the eigenvalues of M are XA = X 
and X2 = X. It follows immediately from the form of M that 

xi X2] E 2 - X, [-X1 1 ] 

We rewrite e, and e2 as 
2 i 2 i 

61(i)= 2i -a a, 62(i)= 2i a b 

and obtain 

e~j) = E-'e4(i)E = 
2i 1 [-(a + X1b) -(a + X2b)] 

2i - a X2X [ x a + Xb a +X2b] 
Finally, with c - 2i/(2i - a1)(X2 - X1) we have 

I + +1+ iA-i2X(a + Xb) -P (a + X2b) 

L 2 (a + Xjb) I + X.2 + i2(a + X2b) 
N 1ij 
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and it can easily be seen that 

|N(i)|=|l+ .AX C(a+ lb) +| c(a + 2b)| 

C 1 
2(a + Xjb) + + . 2 + +2b) i2 I -X(a Xib 

Furthermore, since for any a E C and positive real number /3, Il + 3 < 1, where 

Re(7q) = Re(a) + sign(Re(a))1, Im(7q) = Im(a) + sign(Im(a))/, 

we have for each i 

JN(i) I < |1 +-IX + 2 |c(a + Ab) I = |1 +- | + 2 I@(0) I 
1 

i2 
1 1 

<|1 + 
< 1 + -+ 

where 

Re(8(i, X)) = sign(Re(1 + i E))Ie() , Im(8(i, A)) = sign(Im(X)) (3(i) i. 
Clearly, we define 

(7.3) 5( ) [(1, ) ? 

We notice that although the matrix N(i) is a full matrix, a certain structure is 
present; the norm obtained from the first row belonging to A and the norm obtained 
from the second row belonging to X are equal. We shall now show that this structure 
remains unchanged if n = 2. 

Let n = 2. Let us assume that ai, bi e R, i = 1(1)4 and 

0 0 1 0 I 0 0 
0 0 0 1 0 A O O 

M= a, a2 b 21, 
J O O 

a3 a4 b3 b4 o O O A 
then we have the following transformation matrix E, 

a b a 
1 0 1 0 

E= aA a+ bA aX a + bA 

where 

a a(X) = X-Xb4 - a4)/(a3 + b3X), a a(A), 
b b(A) = (2X -b4- ab3)/(a3 + b3X), b = b(X). 

Furthermore, with d det(E) = JbI(j - X)2 - (a - a)2 E R, 

[ b-b b(a + bX)-b(a + bX) 
(a-a-) + b(X - X) (a + bX)(a-a-) + bb(a -aX) 

d el e2 -(b-i) -(b(a + bA)-hb(a + bA)) 

I I -(a-a-)-b(X-X) -((a + bA)(a-ad) + b( aX -aA)) 
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Finally, we calculate 8(i) (mkj)/d, k, j = 1(1)4, and by comparing the first 

row with the third, and the second row with the fourth, we see that 

(7.4a) M11 = M33, M12 = m34, M13 = M31, m14 = M32, 

(7.4b) M21 = M43, M22 = M44, M23 = M41, M24= M42 

For N(i) = I + J/i + 8(i)/i2 (nk1), k, j = 1(1)4, (7.4) holds and this yields 
4 4 4 4 

(7.5) E Inij = Y In3,, fn2jl = E fn4j 1. 
j=l j j = j j=1 

Motivated by (7.5), we choose for lA(l, J) in (7.1), 

(7.6) A (1, J):= diag(S (1, A), 8 (1, A), 8 (1, A), 8 (1 A)), 

where 8(.) is defined as in the scalar case. Furthermore, (7.5) justifies the "Jordan- 

boxwise" considerations of the sytem (4.12). 
7.2. Case 3. a > 0. We now restrict our attention to the scalar case. The results 

can be carried over to systems in a similar manner as in Subsection 7.1. Let n = 1 

and consider (N(i))-', 

+ - + c (a +Ab b) + (a + Ab) 

_______ +e i L --(a + Xb) ( + .A (a + X b) 

Then we have 

|(Ni))ll ll|1+ -A - 2(a + Ab) |-| 2 (a + Ab)|. 

Since there exists an index io such that for all i > io, 11 + A/il > 12c(a + Ab)/i21, 
we conclude that 

(7.7) I(N(i))-11 - 1 1 + X - - (i) X< I + X + I8(i, A) 

where 

(7.8a) Re(3(i, A)) = -I8(i) Icosqg -sign(Re(1 + I ) (i) Icos p, 

(7.8b) Im(S (i, A)) = -sign(Im A) I E) (i) |sin qi, Pt = arctan( i+ 

Because of (7.7) we define 

ZrI(,k + I J + A(, J) k >j 

where A(l, J) = diag(8(l, A), 3(1, A)) and 8(1, A) is given by (7.8). Finally, we define 
for A, 21(A) and Q22(A) as in Lemma 2.2 and for 8(1, ,u) as in Lemma 2.3, 

L 1 k = j, 

(7.9) Zkj(G 8(()): {Hl /( + ( ) + 

1 < k < j, j = 2(1)N + 1, 
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and show that there exists a constant q > 0 such that 

IZkj(A,8())I < const(tk/tj)', k j, j = 1(1)N. 

To see this, we choose an index 10 so large that for all 1 > to, jy + 8(1, A)/1/1 < 1. 

Then we have 

+ + 8( [ = I -it+ 
I=k ( ( / ) I=k ( /( / ) 

and there exists an index A > 1 such that 18(1, jf)j < 8 for all 1> p5. The result now 
follows from Lemma 2.3 for all k > ko maxf io, lp, 48/a }. Since for k < k 0, 
Zkko(l, 8(*)) consists of at most ko terms, the result holds for all k > 1. Since 

} - 2='i f zj+lk+l(X,())(XI -J)1 dX, IF = (J 1X - A < a/4} 

and IZj+l kI < IZ+l, kI for all k > j, the estimate (4.25) holds. It should be men- 

tioned that in the case when n > 2 we have 

+ i/ + -ke(1)) < m(l, n) (i + + +A (, J)) 

for 1 < 1 < N, and m(l, n) is uniformly bounded with respect to 1 and n. 
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