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Some Practical Runge-Kutta Formulas* 

By Lawrence F. Shampine 

Abstract. A new selection is made of the most practical of the many explicit Runge-Kutta 
formulas of order 4 which have been proposed. A new formula is considered, formulas are 
modified to improve their quality and efficiency in agreement with improved understanding of 
the issues, and formulas are derived which permit interpolation. It is possible to do a lot better 
than the pair of Fehlberg currently regarded as "best". 

1. Introduction. In [19] the author and H. A. Watts compared many pairs of 
explicit Runge-Kutta formulas with the goal of selecting the most suitable for an 
effective code. A pair of formulas of orders four and five due to Fehlberg [4] were 
chosen for implementation. Codes based on this pair showed up very well in 
extensive numerical comparisons [2], [11], [21], so the pair is now regarded as the 
method of choice at orders (4,5). 

It is time to reconsider the choice made in [19]. For one thing, Dormand and 
Prince [1] subsequently derived a very efficient pair which needs to be considered. 
For another, certain issues of quality and efficiency are better understood now, and 
there has been an accumulation of evidence that the Fehlberg pair, though very 
good, is not all one might hope for. Most important of the reasons for a reconsidera- 
tion is the recent progress [9], [15] made in providing " interpolation" for Runge-Kutta 
methods. In the author's opinion, this capability and the features it makes possible 
will be the hallmark of the next generation of Runge-Kutta codes. 

In Section 2 we compare the leading possibilities with respect to efficiency, 
quality, and stability. We propose modifications to existing pairs to improve their 
behavior according to one or another of these criteria. Section 3 is devoted to 
"interpolation." Schemes of orders 4 and 5 are derived for the Dormand-Prince pair 
which are counterparts of formulas derived by Horn [9] for the Fehlberg pair. After 
a brief summary of the main points of comparison in Section 4, the recommended 
formulas are collected for the convenience of the implementor. 

2. Accuracy, Quality, and Stability. In [19] we considered a great many explicit 
Runge-Kutta formulas as candidates for the basis of an effective code. Three pairs of 
formulas were selected as the main contenders of order four. The pair chosen for 
implementation in RKF45 [19] (and its successor DERKF [20]) is due to Fehlberg. 
This pair is that given by Fehlberg in [4], but it is the second of two pairs he gave in 
the original report [3]. The first of these pairs was also one of the three contenders. A 
pair due to Shintani [22] was the third main possibility. 
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The RKF45 code has been extremely successful, appearing, for example, in a 
major software library and three textbooks. It performed very well in extensive 
comparisons with other codes [21]. Hull and Enright [10] wrote a research code, 
RKF4, based on this pair which also showed up well in extensive comparisons [2]. 
As a consequence, the Fehlberg # 2 pair, or for short, the Fehlberg pair, is 
considered a standard for judging new formulas at this order. 

The present investigation began when the author realized how to modify the 
Fehlberg # 1 pair to make it more efficient and more reliable than the Fehlberg # 2 
pair. The same idea improves the quality of the Shintani pair. After the study [19], 
Dormand and Prince [1] presented a pair of formulas they call RK5(4)7M which is 
more efficient than our modification of the Fehlberg #1 pair. It is, however, 
desirable to modify RK5(4)7M a little, too. 

Recent investigations [9], [15] have shown how to "interpolate" with the Fehlberg 
and Shintani pairs. In the next section we show how to accomplish this with the 
Dormand-Prince pair. Because of their great efficiency and because interpolation is 
practical with them, we shall study here only these three pairs and their variants. 

The initial value problem 

y' = f (X, A), y(a) given, 

is to be solved by an explicit Runge-Kutta formula. Such a formula advances from 
an approximation y, of the solution at x, one step of length h to an approximation 

yn, of the solution at x,1 = xn + h by a recipe of the form 

Jo =f (Xn Yn), 
J_1 

(2.1) j = f Xn + ash, yn + h E Pfkfk), j = 1,..., s, 
k =O 

S 

yn+ = yn + h E cif1 . 
j=O 

Here, the constants a., 1j3,ke c define the formula. 
The local solution at (xn, yn), u(x), is defined by 

u = f (X, U), u(xn) = Yn 

For sufficiently smooth f, a Taylor expansion about (Xn, yn) leads to expressions for 
the local error: The first defines the principal error function 4, 

(2.2) U(Xn + h) -yn+l = hV+1 + O(hP+2), 

and the second provides more detail, 
Xp+1 

U (Xn + h) )-n+l1 = h P+ Tp + 1JDp+ 1 J 

(2.3) 1=1 

+ p+2 E Tp2, 21Dp+21 + O(hp+3). 
J=1 

Accordingly, formula (2.1) for yn+1 is said to be of order p. Here the elementary 
differentials Dp+i b are functions only of f and (xn, yn), so depend only on the 
problem. The truncation error coefficients TL ?j, depend only on the formula. An 
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introduction to such expansions is provided by Chapter 10 of [6]. The statement that 
a method is of order p is expressed by the equations of condition, Tq j = O for 
j = 1, ..., Xq, 0 < q < p. Expressions for the truncation error coefficients Tq j in 
terms of the coefficients defining the formula can be found, e.g., in Chapter 10 of [6] 
and in [1]. 

It is presumed that in addition to (2.1), there is available another formula using 
the same f1, namely 

E~~~~~~ 
=n+1 =yn + h E Crf, 

j=O 

which is a formula of order p + 1. Then 

Yn+E Yn+1 = (U(xn + h) -yn+?) -(U(xn + h) - ynE+l) 

= (U(Xn + h) -yn+,1) + O(h P+2) 

furnishes a computable estimate of the local error of yn+ 1 
The user specifies a norm 11 11 and an error tolerance T. At each step, codes 

attempt to select h so as to satisfy a local error requirement. Two possibilities are 
seen. Error per step (EPS) requires 

|| local error j< T 

and error per unit step (EPUS) requires 

II local error < hoT. 

The formulas are developed on the assumption that the integration is advanced with 
the approximation yn+ . Another possibility is to continue the integration with the 
higher-order result yn<+1. This is called local extrapolation. All four possibilities are 
seen in practice, but the most popular codes today, D02PAF [5], RKF45, and 
DVERK [12], all use EPS and local extrapolation. For this reason we concentrate on 
this case. Which choices are made have important implications that are discussed in 
[16]. 

The Fehlberg pair needs only the minimal number of evaluations of f, or 
"stages," to achieve order 5, namely 6. The Shintani pair requires 7. Dormand and 
Prince exploit an idea used earlier by Fehlberg [4] and others. They derive a 
fifth-order result y + 1 and then add the stage fA(Xn+ ? 1nE+ lf) for the computation of 
a fourth-order result yn + If the step succeeds and if local extrapolation is done, this 
stage is the same as the first stage of the next step. We do not count it as a seventh 
stage in the current step, but rather we say it is "free" because it is just an early 
formation of a stage counted in the next step. It is an extra stage when the current 
step is rejected, but step-size selection algorithms are effective enough to make 
rejected steps unusual, so it is fair to say that this pair costs nearly the same as 
Fehlberg's. If local extrapolation is not done, the stage is not used in the next step, 
and then the pair costs 7 evaluations per step. 

Traditionally, formulas are compared by solving test problems. The expansion 
(2.3) of the local error makes it clear that the relative performance of two formulas 
depends on the problem considered. For this reason, one must solve a lot of 
problems numerically to determine which formula is " usually" better. Another way 
to compare formulas of the same order is by examination of their truncation errors. 
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Schemes for the automatic selection of the step size depend on the dominance of the 
leading term of the local error expansion (2.3), so that some attention is given in the 
codes to making this so. Accordingly, if the leading term in (2.3) for one formula is 
rather smaller than that of another formula of the same order and cost, the first 
formula will normally be more efficient, and in about the same proportion. Because 
the elementary differentials Dp+11 depend on the problem, we cannot compare these 
terms directly. Still, if we ask about the "typical" behavior over a large ensemble of 
problems, we might reasonably hope that the relative sizes of the coefficients of the 
elementary differentials, i.e., the truncation error coefficients, will tell us how the 
methods "usually" compare. One measure of the "size" of the coefficients used for 
this purpose is 

p + 1 1/2 
\2/ 

11 Tp+ 1112 = E Tp2 1 ,_ ~'p12 I T+ 
j= i 

In some respects the two ways of comparing formulas are complementary. When 
they can both be applied, e.g., to some aspects of efficiency, the author's experience 
has been that a thoughtful comparison of truncation error coefficients provides more 
detail and more reliable conclusions than does the study of a battery of numerical 
tests as is done in [2], [11], [21]. 

We define efficiency for a formula as the distance advanced in a single step 
divided by the cost of the step. A conventional and useful way to measure "cost" 
here is to count the number of function evaluations made. When we speak of the 
"first measure of efficiency" we mean that the step size used is the optimal one for a 
given tolerance T. When we speak of the "second measure of efficiency" we mean 
that the step size used is the optimal one for achieving a given accuracy ?. 

Experimentally, the first measure corresponds to counting the number of function 
evaluations needed to solve a problem when a tolerance T is given the code. In 
contrast, the second measure relates the cost to the accuracy - of the approximate 
solutions returned by the code. A more complete discussion of these issues can be 
found in [16]. For now, we discuss only the first measure of efficiency. In this 
measure, we must consider the two possible implementations of EPUS and EPS. For 
a given T and EPUS the optimal step size hA satisfies 

(2.4) h AT - h 1hA 11 
for a principal error function OA (from (2.2)) depending on the formula A and f at 
the current point (xn yn). If the cost of a step is CA evaluations of f, the efficiency is 
about 

A - 1 r 

A CC A || O 

When compared to a formula B, the relative efficiency is about 

(2.5) ( hA )_( hB ) _ C I ) 1 /p 
hB 

) 

As we discussed earlier, we shall use the ratio JIT B7 ll/l TA?1 as a way of assessing 
the size of IIII/IkAII for a "typical" problem in a large ensemble of problems. This 
then provides a computable measure of efficiency. 
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TABLE 1 

Measures of the size of truncation error coefficients 
of some good Runge-Kutta formulas 

Formula order p 11T5112 11T61i2 11T7112 

Fehlberg 5 0 .0034 .0068 
4 .0018 .0058 .0094 

Shintani 5 0 .0011 .0018 
4 .00040 .0014 .0021 

modified 4 .0016 .0026 .0032 

Dormand-Prince 5 0 .00040 .0040 
4 .0012 .0018 .0041 

modified 4 .00079 .0012 .0039 

If we compare the efficiency of the Dormand-Prince pair to the Fehlberg pair, 
reference to Table 1 leads to 

6 l.0018 01/4 

6( .0012 )1/ 1.11. 

This says that the Dormand-Prince pair is about 11% more efficient. Dormand and 
Prince [1] present results of computations on a standard set of test problems for pure 
absolute error tolerances 10-3, 910-4 ... . 10-1. The total costs were 

evaluations of f successful steps 

Fehlberg 226208 36363 
Dormand-Prince 209305 33126 

The observed relative efficiency is 

226208 1.08. 
209305 

The agreement looks too good to be true. It is. This is made clear by computing the 
average cost of a successful step to be about 6.22 in the one case and 6.32 in the 
other. A successful step costs 6 evaluations, so it is clear that failed steps played an 
important role. A number of problems in this test set are so easy that even for the 
comparatively stringent tolerances specified, how good the initial step size is, how 
failed steps are handled, and output play important roles. The fact that Dormand 
and Prince implemented the formulas in identical fashion does minimize the 
variation usually seen when comparing codes. 

The efficiency of the Shintani pair relative to the Fehlberg pair is 

6 .0018 14_ 2 
7 .00040 

which is much more efficient. As we have noted, EPS is preferred in practice. 
Because 1/p is replaced by 1/(p + 1) in (2.5), the differences are less marked with 
EPS. The efficiencies for the Dormand-Prince and Shintani pairs compared to the 
Fehlberg pair are then 1.08 and 1.16, respectively. 
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Given a pair ( yf<E ) of embedded formulas of orders 4 and 5, respectively, 
the result 

(2.6) Yn+1 = aYn+1 + -(1 a)yn+ 

is another embedded formula of order 4 for any a * 0. It is easily seen that 

||T5 || = 1al IIT5II1 

so that we can form a formula that is as accurate as we like. How accurate should we 
make it? To answer this, we need to consider the quality of a pair of formulas. 

Algorithms for the adjustment of the step size assume that the leading term in the 
expansion (2.3) of the local error dominates. Except in very special circumstances, 
this is true when h is small enough, but how small is "enough"? Arguing as before, 
the smaller JIT61 is compared to IIT51I, the better the behavior for "large" h 
(equivalently, crude tolerances T). If we compare the estimated local error to its true 
value, we have 

(U(xn + h) -yn+) -(yn+l -Yn+1) = U(Xn + h) -yE+ 

X6 

= 6E T EfD6 + 0(h7). 
J=1 

Although we are supposing that the leading term of the expansion (2.3) of the local 
error dominates, we consider here how well all the terms are estimated. The size of 
the local error is indicated by IIT5 , and we see now that the error made by its 
estimator is indicated by IIT6EII. Thus, the smaller IIT6EII is, compared to IIT5h, the 
better the local error estimator. It is not so important to have a very accurate 
estimate, but a reasonable accuracy which can be relied upon even at crude 
tolerances is important. The matter is more serious when local extrapolation is done; 
then we really do need a Y + 1I which is more accurate than yn+ 1 

Doubling, or Richardson extrapolation, is considered to provide a superior error 
estimate when applied to one of the four-stage, fourth-order formulas. When written 
as a pair of formulas, it is found that JIT611 is no more than about 1.5 times IITsh [17] 
and that IIT6EII is about half IIT51. The quality is demonstrated by computations in 
[18] which also support the claim that a good error estimate is provided by a pair of 
England. This pair has JIT611 about 1.5 times IIT511 and IIT6EII a little smaller than IIT5II. 
Other pairs from [18], [19] with good error estimates show similar ratios. This gives 
us an idea as to appropriate relative sizes of truncation errors for good quality 
formulas. 

According to the measures of the truncation errors given in Table 1, the Fehlberg 
pair is of slightly better quality than the Shintani pair but much worse than the 
Dormand-Prince pair. By the standards of the good pairs cited, the Fehlberg pair 
does not have the quality one might hope for. 

We have modified the fourth-order Shintani formula by forming the linear 
combination (2.6) with a = 4. The quality of the modified pair is comparable to that 
of England's and others which showed up well in [18], [19]. Unfortunately, the new 
pair is less efficient than the Fehlberg pair in the first measure of efficiency. With 
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EPS the relative efficiency is 

6( .0016 ) _ 0.88 

A situation opposite that of the Shintani pair occurs with the Dormand-Prince pair. 
The latter is unnecessarily conservative. We have chosen to modify the fourth-order 
formula as in (2.6) with a = 2/3. This improves its efficiency relative to the 
Fehlberg pair in the first measure with EPS to 1.18, which is quite significant, while 
still meeting the standard of quality proposed. From the sizes of the truncation error 
coefficients, we are led to expect that the local error will be estimated much more 
accurately with this pair than with the Fehlberg pair. We also expect that the local 
error estimate will be much more reliable at crude tolerances, hence that local 
extrapolation is better justified. This was our intention because the structure of the 
formula presupposes local extrapolation. It is worth remarking that even if one does 
not do local extrapolation, the new formula is as accurate as Fehlberg's. The relative 
efficiency is then 

7( .00079)1/ 1.01. 

The first measure of efficiency is blind to the effect of local extrapolation [16]. 
This is because the selection of the step size is based on the lower-order formula and 
no attention is paid to the extra accuracy achieved by local extrapolation. We turn 
now to the second measure of efficiency which is concerned with the accuracy 
achieved. For a given accuracy ? achieved, one has 

? |*p+20E || C h 

where the principal error function 4E is that of the higher-order formula of the pair. 
Arguing as before, the relative efficiency in the second measure is 

( l 1/(p+2) 

CA EllTE 

Comparing the Shintani pair to the Fehlberg pair in this way leads to 

6 .0034) 
011 1.03, 

and comparing the Dormand-Prince pair to Fehlberg's pair leads to 1.43. Dormand 
and Prince present several plots comparing efficiency in this second measure. They 
note that for one problem an absolute accuracy of 10-6 was achieved in 1450 
evaluations of f with the Fehlberg pair, and in 800 with their pair. This relative 
efficiency of 1.81 is in reasonable agreement with our prediction of 1.43 when one 
keeps in mind that the observed efficiency is for a single problem. 

Figure 1 shows the stability regions of the three fifth-order formulas scaled for 
equal work. Figure 2 shows the fourth-order Fehlberg formula and the modified 
Shintani and Dormand-Prince fourth-order formulas. Because the formulas do not 
differ a great deal with respect to stability, this issue is not important to the selection 
of the best pair. 



142 LAWRENCE F. SHAMPINE 

_ 0.8 

0.7 

0.6 

-0. 8 -0. 7 -0. 6 -0. 5 -0. 4 -0. 3 -0. 2 -0.1 0.0 
FIGURE~ 1 

Stability regions of the fifth-order formulas considered. 
*-*-* Fehlberg #2, -Dormand-Prince, E- E- E 
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FIGURE 2 

Stability regions of the fourth-order formulas considered. 
S-S-S Fehlberg #2, -modified Dormand-Prince, 
rn-n-0 modified Shintani. 
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3. Interpolation. Traditionally, one of the strongest advantages of Adams methods 
in comparison to Runge-Kutta methods has been the capability of producing 
approximate solutions at any x, not just mesh points, by interpolation. This allows 
the step size to be chosen more or less independently of output with the consequence 
that the integration can be more efficient. The capability has other implications. One 
is that the error behaves more regularly when the step size is not altered for output. 
For some tasks, such as finding where an associated algebraic equation has a root, 
the capability is nearly indispensable. The next generation of Runge-Kutta codes 
will have the capability. Interestingly, its theoretical justification is far better than 
that of the procedures in the Adams codes. 

One approach to interpolation has been developed and applied to the Fehlberg 
pair by K. Horn [7], [8], [9]. The idea is an extension of the idea of an embedded 
pair. In addition to the usual step from (xv, y) of length h as in (2.1), we 
independently advance the integration a step of length h* = oh by another formula 
according to 

Jo = f(Xn, Y), 
j-1 

(3.1) X + aj h * Yn + h E fY, k fk), j 1. s 
k=O 

*~~~~~S 
Y*+1 = yn + h* E C*f* 

j=O 

If we take 

aj =a/a, =1, ..., s 

fli, k =Ad8, k/, I < k < i < s, 

then fi* = fj for j = 1, .. ., s. It may be necessary to add stages (s* > s) to achieve 
a desired order. Notice that a new formula is derived for each a of interest. The code 
is attempting to control the error of the fourth-order formula in stepping to Xn + h. 
It is appropriate, then, to compare the error of this new formula to that of the basic 
fourth-order formula. A little care is needed. The local error expansion for the new 
formula has the same form as (2.3), 

Xp?1 

u(xn + h*) -yn*+, = h*P+l E Tp7' 1JDp+l? + O(h*p+2) 
j=1 

and the Dp+l j are the same in the two expressions. In the limit process considered, 

(X,, yn) is fixed as is a (hence the new formula) and h -- 0. The factor 

h*P+l = aP+lhP~l 

so in comparing the error of the new formula to that of (2.1), we need to compare 

aP+1IITP*+A1I to IITP+111. 
Notice that the analysis of the error here refers to the approximation of the local 

solution and, indeed, the whole "interpolation" issue is, in this analysis, purely local. 
This is the main reason why the approach is so much more soundly based than 
interpolation in the Adams codes. 
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Horn [9] showed that for the Fehlberg pair, there is a fourth-order result available 
at a = 3/5 for "free"-meaning that no extra stages are necessary. With one extra 
stage she produces fourth-order results for all a. The formula has the C * as cubic 
polynomials in a so that the scheme is easy to implement. For any given a, she 
shows how to produce a fifth-order result with two extra stages. With five extra 
stages she shows how to produce a fifth-order result for all a. The coefficients for the 
last two procedures were not supplied in rational form. A serious disadvantage of 
Horn's "interpolants" is that they do not connect smoothly from one step to the 
next, i.e., yn*+i(a) does not tend to yn+l as a -- 1. 

Shampine [15] proposes and justifies a local interpolation procedure. He observes 
that interpolation is done only after a successful step so that one can obtain 
f(xn+l, yn+?) as the first evaluation of the next step. Thus approximations to the 
solution and derivative are available at both ends of the step. Some methods produce 
other accurate approximations within the step, e.g., Shintani's scheme produces both 
a fourth- and a fifth-order result at the midpoint. The accurate approximate solution 
and derivative values computed in the step from Xn to Xn+1 are interpolated by a 
polynomial, a quartic in the case of Shintani's formula. By virtue of interpolating to 
solution and derivative approximations at both ends of the step, the polynomial 
approximations on the various [x", xn+1] connect up to form a globally C1 piecewise 
polynomial interpolant. It does not matter whether local extrapolation is done, nor 
even if one decides at each step whether to do local extrapolation, as in [13]. 
Although apparently quite different, the approach is a special case of embedding 
and so can be analyzed in the same way. 

We have considered using the fourth-order result at a = 3/5 in the Fehlberg pair 
to obtain a free interpolant. Unfortunately, the result at this point is not very 
accurate as compared to the result at the endpoint and we do not recommend this. 
The result obtained at a = 1/2 with Horn's scheme requiring an extra stage has very 
nearly the same accuracy as the fourth-order result at the end of the step, namely, for 
a= 1/2, 

5IIT5* 112/11T5 112-0.97 

We propose that Horn's scheme with a = 1/2 be used with the Fehlberg pair to 
form a triple of formulas. Local quartic interpolation is used for other a so as to 
avoid the lack of continuity from step to step of Horn's interpolant. Alternatively, 
the fifth-order formula at a = 1/2 could be used at a cost of two function 
evaluations. This is not our preference because the fourth-order result is good 
enough, the cost is greater, and the coefficients and implementation are less 
convenient. 

We have examined a number of formulas for their potential in connection with 
interpolation, including an improvement for a general class of methods [17] and the 
first Fehlberg formula. Here we just report our investigation of the Dormand-Prince 
pair. It appears to be possible to obtain a fourth-order result for any given a with no 
extra stages. We also considered adding one stage and found that it is apparently 
possible to obtain a fifth-order result then at any given a. These results are obtained 
with one fewer extra function evaluations than Horn needed for the Fehlberg pair. 
This is not surprising because the Dormand-Prince pair is really a seven-stage pair; 
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it is just effectively a six-stage pair when overlap with the following step is taken into 
account. Thus, in a way, the extra evaluation Horn needed with the six-stage 
Fehlberg pair is built into the Dormand-Prince pair. In contrast to the derivation of 
Dormand and Prince, we, like Horn, employ the notation of Fehlberg [3]. 

Let us define 
k-1 

Pkj Z klal j = 1, 2, 3. 
1=1 

The pair of Dormand and Prince satisfies the simplifying assumptions 

(3.2) a2 = Pk1 

(3.3) 3ak Pk2 

for k = 2, .. ., 6. We shall consider two cases. One does no extra function evalua- 

tions (s = 6). The other does one extra evaluation (s = 7), and in this second case 

we insist that (3.2), (3.3) hold for the additional stage with k = 7. 
We shall take cl = 0 and solve the order condition of order 1 to get 

S 

C* C0 = 1 - k 

k=2 

Then assuming that (3.2) and (3.3) hold for k > 2, the remaining equations of 
condition through order 4 for (3.1) have the reduced form 

S 

(3.4) a c aj' = a+_ 1 
k=2 j? ' j ,23 

(3.5) E Ck=kl ?0 
k=2 

Case I. We seek a "free" approximation at xn + ah and so have s = 6. On using 
the facts that a6 = 1 and /61 = 0, we can rewrite (3.4), (3.5) as 

5 15 s 
a c* j = 923 cka= 1-c j = 1, 2, 3, E Ckkl = 0. 

k=2 k=2 

For a given a we regard c* as a parameter and solve the linear system for c*, c*, c, 
C*. All the ak and Pkl are given, and it turns out that the matrix is nonsingular. This 
specifies c*, .. ., c * as linear functions of c . 

There are nine truncation error coefficients T5 i which would need to be set to zero 
to get a fifth-order formula. This is not possible in the present circumstances, so we 
ask if it is possible to select c* to obtain an "optimal" fourth-order formula. 

Everything is specified except for c* and the c*, ... , c* which are linear functions of 

c*. The c* appear linearly in the truncation error coefficients so that 
C6. 

T5.i = Pi + pic69 i 1 ... ., 99 

for suitable Pi, pi. But then it is easy to determine the c* which minimizes JIT5112, 
namely, 

9 9 

C*2 6= - E Pi. 
i=1 i=1 
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The scheme described was programmed in exact rational arithmetic. The formula 
for a = 1/2 is given in the next section. Its accuracy is quite pleasing. When referred 
to the modified fourth-order formula, 

51 I T5* 11 2/ 11 T5 112 -0.51 

which is considerably more favorable than with Horn's interpolant which costs a 
function evaluation. It is as good as that of the England formula considered as an 
example in [15]. 

Case II. Now a stage is added so that s - 7. Five of the equations of condition at 
order 5 are satisfied if, in addition to (3.4), (3.5), 

(3.6) k a2 j j 4 

(3.7) L Ckaj3,l ?0 
k=2 

In these equations a7, /71, a are to be regarded as parameters. We much prefer 
a = 1/2, but are prepared to choose a different value, if necessary, to make the 
system solvable. A value a7 = 1/2 is reasonable, considering the other ak used by 
Dormand and Prince, and is convenient. In our limited experimentation the equa- 
tions (3.4)-(3.7) always formed a nonsingular system for the determination of 
C ... , C*. The coefficient C7* = 0, because only fourth-order formulas can be found 
with c* = 0. 

Three equations of condition at order 5 are satisfied if, in addition, 
7 dr4 

E Ck pk 3 - 20 
k=2~ 2 

We have not yet specified f7j for j = 2,.. ., 6. This will be done so as to satisfy the 
simplifying assumptions (3.2), (3.3) for k - 7 and this equation. A little manipula- 
tion shows that the three equations are equivalent to 

1 2 

/72a2 + 373a3 + 374a4 = -a7 - [f71a1 + f75a5 + /76a6J 

1372a2 + 373a3 + 374a4 = a- [7- 71a1 + 375a5 +R76 

fi72a2 + 373a3 + 374a4 = -=[f71a? + f75a5 + Th6a61, 
C7 

where 

J4 6 

For the Dormand-Prince pair, a2 = 0.3, a3 = 0.8, a4 = 8/9, so the Vandermonde 
matrix here is nonsingular, which allows us to determine /72, /73, /74 in terms of 
known quantities and the parameters a7, /71, a and /375, /76* It only appears that 
both /375 and /876 are free. Because a5 a6 = 1, only the sum /75 + I76 appears 
here and elsewhere. Let us then set 375 = 0 and continue with I76 as a free 
parameter. 
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There is only one equation of condition left to satisfy at order 5, 

7 k-1 l-1 4 

kE C k* E3 PklE flim Pml12 
k=4[1=3 (rn=2 )] 

120 

(This can be simplified, but we leave it in the form we dealt with numerically.) The 
values /72, /73, 374 are linear functions of /76. Examination of this last equation 
shows that for given a-7, /71, A, it is a linear equation in the variable /76* Provided 
that it is nonsingular, we can determine /76 so that it is satisfied and the resulting 
formula is of order 5. 

After some experimentation in real arithmetic, we programmed the process de- 
scribed in exact rational arithmetic. The results were checked via another program 
for computing truncation error coefficients. A modest amount of experimentation 
led to the coefficients given in the next section. 

Let us now go into the matter of implementation a little. When using a scheme 
which provides a result for " free", i.e., the Shintani fifth-order result or our 
fourth-order result, it is convenient always to form the result at the midpoint. (The 
result can then be used to improve a relative error control as described in [14].) At 
every step the value and slope at both ends and the value at the midpoint are 
returned to the user. If the user should want to interpolate within this step, it is then 
easy to do quartic interpolation to these five data points. 

The implementation is less obvious with a scheme requiring an extra stage such as 
our fifth-order result or Horn's fourth-order result. We certainly do not want to 
form the result at the midpoint at every step. (We would then have 7-stage formulas 
instead of 6.) A relatively convenient way to proceed is to form at each step the two 
vectors 

6 

(3.8) v = yf + h E Z 7kfk, 
k=O 

(3.9) W = Y+ E * 
2 
j=0 

and return them along with the value and slope at both ends of the step. This is only 
one more vector of storage per step than in the simpler case. If the user should want 
to interpolate within this step, he would first compute 

(3.10) f7 =f (Xn + v) 

and then 

(3.11) Yn*+ 1/2 = W + h C7*f7- 

Now quartic interpolation can be done to find as many approximate solution values 
as are needed. 

It should not be assumed that the schemes with an extra stage cannot compete 
with the "free" schemes. Properly used, the extra evaluation is done only on those 
steps where interpolation is required. At stringent tolerances such steps are compara- 
tively rare. At crude tolerances such steps may be frequent, but then there are 



148 LAWRENCE F. SHAMPINE 

comparatively few steps altogether. It must be kept in mind that only one extra 
evaluation is required, independent of the number of interpolations to be made in 
the step. This is pertinent at crude tolerances and crucial when a point is being 
located, as for example, when one seeks to find that x for which a given function 
g(x, y(x)) = 0. The interpolation capability allows the step size to be chosen more 
or less independently of where answers are desired. This is often advantageous and 
when answers are desired at many specific points, it is enormously better than the 
traditional scheme of adjusting the step size so as to step exactly to a specific output 
point. 

4. An Evaluation. How one intends to use formulas is important to the decision 
about which formula to use. This author's preference is to use the error per step 
criterion with local extrapolation and to emphasize measuring efficiency in the sense 
of cost to achieve a given accuracy. From this point of view the case for the scheme 
composed of the basic Dormand-Prince Runge-Kutta process with their fifth-order 
formula, the simple modification of the fourth-order formula given in Section 2, and 
the fourth-order formula for the midpoint given in Section 3 along with local quartic 
interpolation is very strong. This Dormand-Prince-Shampine (DPS) triple is a lot 
more efficient than the Fehlberg-Horn triple when local extrapolation is done. This 
is so in both measures of efficiency, but especially in the second. It is also a triple of 
superior quality; in particular, local extrapolation is better justified than with the 
Fehlberg pair. Differences between the formulas as regards their stability are not 
easy to interpret. Fortunately, they are also not particularly important. The Shintani 
triple appears to be the best as regards interpolation because a fifth-order result is 
available at the midpoint. The DPS triple would follow with its free fourth-order 
result at the midpoint. We have argued that the DPS triple with fifth-order result at 
the midpoint is competitive, as is the Fehlberg-Horn triple with fourth-order result 
at midpoint. These arguments are based only on the order of the results available for 
interpolation and their cost. At present, we are doing a more delicate truncation 
error analysis of some of these possibilities which we shall report on another 
occasion. 

Because of their importance, we collect here the DPS formulas recommended: 

aj Pij,k 

0 
1 1 

5 5 
3 3 9 

10 40 40 
4 44 -56 32 
5 45 15 9 
8 19372 - 25360 64448 - 212 
9 6561 2187 6561 729 

1 9017 - 355 46732 49 - 5103 
3168 33 5247 176 18656 

35 500 125 - 2187 11 
384 1113 192 6784 84 
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c1-result at x, + h c result at x + h 

order 4 order 5 order 4 

1951 35 6,025,192,743 
21600 384 30,085,553,152 

0 0 0 
22642 500 51,252,292,925 
50085 1113 65,400,821,598 

451 125 - 2,691,868,925 
720 192 45,128,329,728 

- 12231 - 2187 187,940,372,067 
42400 6784 1,594,534,317,056 

649 11 - 1,776,094,331 
6300 84 19,743,644,256 

1 0 11,237,099 
60 235,043,384 

The formulas are used according to (2.1). The result at the midpoint is computed 
according to 

l6 

Yn + 1/2 = Yn + h Y. Ci*f1. 
j=O 

Notice that 16 = f(xn+l, Yn+) when local extrapolation is done. At the completion 
of a successful step, the value and slope at both ends, namely (yn o f) and (yn+ 1 f6)q 

are available along with Yn+1/2* Interpolation is done by a local quartic interpola- 
tion to this data. 

An alternative for the interpolation is to compute (3.8), (3.9) at each step with the 
coefficients that follow and then, if interpolation at this step is desired, to do the 
function evaluation (3.10) and then form Yn*+1/2 according to (3.11). This furnishes a 
fifth-order result at the midpoint for the local quartic interpolation. The coefficients 
are 

#7,k k* 

- 33,728,713 7,157 
104,693,760 37,888 

2 0 
- 30,167,461 70,925 
21,674,880 82,362 

7,739,027 10,825 
17,448,960 56,832 

- 19,162,737 - 220,887 
123,305,984 2,008,064 

0 80,069 
1,765,344 

-26,949 - 107 
363,520 2,627 

-5 
37 



150 LAWRENCE F. SHAMPINE 

5. Acknowledgments. J. R. Dormand kindly brought to the author's attention his 
important work with Prince, supplied preprints and reprints of their work, and 
provided valuable details not appearing in [1]. L. S. Baca carried out most of the 
computations reported here. I. Gladwell and an anonymous referee provided the 
author with exceptionally helpful criticism. The author acknowledges with gratitude 
his debt to all. 

Numerical Mathematics Division 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 

1. J. R. DORMAND & P. J. PRINCE, "A family of embedded Runge-Kutta formulae," J. Comput. Appl. 
Math., v. 6, 1980, pp. 19-26. 

2. W. H. ENRIGHT & T. E. HULL, "Test results on initial value methods for non-stiff ordinary 
differential equations," SIAM J. Numer. Anal., v. 13, 1976, pp. 944-961. 

3. E. FEHLBERG, Low-Order Classical Runge-Kutta Formulas with Stepsize Control and Their Applica- 
tion to Some Heat Transfer Problems, Rept. NASA TR R-315, George C. Marshall Space Flight Center, 
Marshall, Alabama, 1969. 

4. E. FEHLBERG, "Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittwei- 
ten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme," Computing, v. 6, 1970, pp. 61-71. 

5. I. GLADWELL, "Initial value routines in the NAG library," ACM Trans. Math. Software, v. 5, 1979, 
pp. 386-400. 

6. G. HALL & J. M. WATT, eds., Modern Numerical Methods for Ordinary Differential Equations, 
Clarendon Press, Oxford, 1976. 

7. M. K. HORN, Scaled Runge-Kutta Algorithms for Handling Dense Output, Rept. DFVLR-FB81-13, 
DFVLR, Oberpfaffenhofen, F.R.G., 1981. 

8. M. K. HORN, Scaled Runge-Kutta Algorithms for Treating the Problem of Dense Output, Rept. NASA 
TMX-58239, L. B. Johnson Space Center, Houston, Texas, 1982. 

9. M. K. HORN, "Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output," 
SIAMJ. Numer. Anal., v. 20, 1983, pp. 558-568. 

10. T. E. HULL & W. H. ENRIGHT, A Structure for Programs that Solve OrdinaryDifferential Equations, 
Rept. 66, Dept. Comp. Sci., Univ. of Toronto, Canada, 1974. 

11. T. E. HULL, W. H. ENRIGHT, B. M. FELLEN & A. E. SEDGWICK, "Comparing numerical methods 
for ordinary differential equations," SIA M J. Numer. Anal., v. 9, 1972, pp. 603-637. 

12. T. E. HULL, W. H. ENRIGHT & K. R. JACKSON, User's Guide for DVERK-a Subroutine for Solving 
Non-Stiff ODE's, Rept. 100, Dept. Comp. Sci., Univ. of Toronto, Canada, 1976. 

13. L. F. SHAMPINE, "Local extrapolation in the solution of ordinary differential equations," Math. 
Comp., v. 27, 1973, pp. 91-97. 

14. L. F. SHAMPINE, Robust Relative Error Control, Rept. SAND82-2320, Sandia National Laboratories, 
Albuquerque, New Mexico, 1982. 

15. L. F. SHAMPINE, "Interpolation for Runge-Kutta methods," SIAMJ. Numer. Anal., v. 22, 1985, pp. 
1014-1027. 

16. L. F. SHAMPINE, "The step sizes used by one-step codes for ODEs," IMACS J. Numer. Anal., v. 1, 
1985, pp. 95-106. 

17. L. F. SHAMPINE, "Local error estimation by doubling," Computing, v. 34, 1985, pp. 179-190. 
18. L. F. SHAMPINE & H. A. WATTS, "Comparing error estimators for Runge-Kutta methods," Math. 

Comp., v. 25, 1971, pp. 443-455. 
19. L. F. SHAMPINE & H. A. WATTS, Practical Solution of Ordinary Differential Equations by 

Runge-Kutta Methods, Rept. SAND76-0585, Sandia National Laboratories, Albuquerque, New Mexico, 
1976. 

20. L. F. SHAMPINE & H. A. WATTS, DEPA C-Design of a User Oriented Package of ODE Solvers, Rept. 
SAND79-2374, Sandia National Laboratories, Albuquerque, New Mexico, 1980. 

21. L. F. SHAMPINE, H. A. WATTS & S. M. DAVENPORT, "Solving non-stiff ordinary differential 
equations-the state of the art," SIAM Rev., v. 18, 1976, pp. 376-411. 

22. H. SHINTANI, "On a one-step method of order 4," J. Sci. Hiroshima Univ. Ser. A-I, v. 30, 1966, 
pp. 91-107. 


