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Julia Sets and Mandelbrot-Like Sets Associated With 
Higher Order Schroder Rational Iteration 

Functions: A Computer Assisted Study 

By Edward R. Vrscay 

Abstract. Schroder iteration functions Sm (z), a generalization of Newton's method (for which 
m = 2), are constructed so that the sequence Z,+I = Sm (zn) converges locally to a root z* of 
g(Z-) = 0 as O(Iz,, - z*In). For g(.z) a polynomial, this involves the iteration of rational 
functions over the complex Riemann sphere, which is described by the classical theory of Julia 
and Fatou and subsequent developments. The Julia sets for the Sm (z), as applied to the 
simple cases g, (Z) = Z - 1, are examined for increasing m with the help of microcomputer 
plots. The possible types of behavior of zn iteration sequences are catalogued by examining 
the orbits of free critical points of the Sm,(z), as applied to a one-parameter family of cubic 
polynomials. 

1. Introduction. The theory of iteration of rational functions, originating in the 
classical research of Julia [19] and Fatou [13], has witnessed a dramatic resurgence of 
interest in the last twenty years. The works of Brolin [6], Guckenheimer [15] and 
Myrberg [22] foreshadowed this revival, which has since witnessed many significant 
contributions: the theoretical works of Douady and Hubbard [10], [11], Mahe et al. 
[21], Sullivan [26] and Thurston [27], to name but a few, as well as the pioneering 
experimental work of Mandelbrot [20]. A comprehensive account of this research is 
given in the excellent review of Blanchard [5]. The fact that the iteration of even 
simple quadratic maps of the form f(z) = z2 _ X is associated with a wealth of 
remarkable phenomena, including Julia sets and Mandelbrot bifurcation diagrams, 
attests to the richness of this subject. It has understandingly become an object of 
vigorous pursuit in mathematical physics in the context of renormalization theory, 
dynamical systems and chaotic phenomena. We mention here two recent applica- 
tions of Julia set theory in physics. The self-similar spectra associated with hamil- 
tonians over fractal lattices, as discovered by Domany et al. [9], have been shown to 
be condensed Julia sets of a simple quadratic map by Barnsley et al. [3], with 
spectral densities given by the associated balanced measures. The concept of iterated 
electrical networks associated with the iteration of rational impedance functions has 
also been introduced recently [4], again finding a natural expression in the language 
of Julia sets of rational maps over the complex sphere. 

Julia-Fatou theory and its subsequent developments are also of paramount 
importance in the context of numerical analysis. Here, studies have only begun [8], 
[17], [25]. Consider, for example, the classical Newton iteration function constructed 
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to converge to the zeros of a polynomial g(z): 

(1.1) N(z) = z - g(z)/g'(z). 

Clearly, N(z) is a rational function. One is interested in the initial conditions for 
which the iteration sequence 

(1.2) Zn+1 = g(Zn n)/gg'(Zn ) 

converges to a solution z* of g(z) = 0. More generally, what is the set W(z*) of all 
initial values z0 E C for which the sequence { Zn converges to a given root z*? For 
what z0 E C will the sequence not converge at all? Is it possible that the zn converge 
to points or cycles other than the desired roots z*? Classical theory of iteration of 
analytic functions [7], concerned with the behavior of sequences in the neighborhood 
of a fixed point p, is not equipped to attack such global problems. It is here where 
the Julia-Fatou theory provides insight into the dynamics of iteration schemes. For 
example, Curry et al. [8], with a series of numerical experiments and the main 
concepts of this theory, were able to catalogue the behavior patterns associated with 
Newton's method as applied to a one-parameter family of cubic polynomials. 

A portion of this paper was motivated by [8] and could be considered an extension 
of it. We consider a generalized family of Schroder iteration functions [24], [16], 
having the form 

rn-i 

(1.3) SM(Z) = z + L cn(Z) [_g(Z)] n, m >, 2, 
n=1 

and constructed so that the iteration sequence Zn +? = S(Zn) converges locally to a 
root z* of g(z) = 0 as O(lZn - z*I ). The function S2(z) is identical to the Newton 
function in Eq. (1.1). When g(z) is a polynomial, the degree of the rational function 
Sm(z) increases with m. The attractive basins of the roots z *, when plotted by 
computer, are seen to exhibit more complicated patterns as m increases. The various 
types of behavior of iteration sequences { Zn } for Newton's method are also observed 
in the cases m > 2. These higher-degree rational functions, however, possess extra 
fixed points which are generally distinct from the desired roots z1* and, if attractive, 
may trap an iteration sequence. 

In Section 2, we explicitly introduce the family Sm(z) of Schroder iteration 
functions, motivated by the concept of order of convergence to an attractive fixed 
point. The features of Julia-Fatou theory relevant to this study are then outlined. In 
Section 3, with the aid of microcomputer-generated plots, we examine the basins of 
attraction of the Schroder scheme as applied to the set of functions gn(z) = zn - 1 
and compare their features with those of Newton's method. The common boundaries 
of these basins of attraction constitute the Julia sets of the Sm(z). In Section 4, again 
with the aid of microcomputer plots, we examine the dynamics of Schroder maps for 
the one-parameter family of cubic polynomials gA(Z) studied in [8]. As in Newton's 
iterative scheme, there exist regions Mm in complex parameter space where the 
critical points of the Sm(z) are attracted to points or cycles which do not correspond 
to roots of the polynomials. These regions exhibit the morphology and classical 
characteristics of Mandelbrot sets. Sequences of period-doubling bifurcations are 
located numerically. In Section 5, we examine the effect of these Mandelbrot regions 
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on the attractive basin-Julia set maps in complex coordinate space. If A E Mm, 
attractive basins for pathological cycles which do not correspond to roots of the 
gA(z) appear in these maps. 

2. Schrdder Iteration Functions and Julia-Fatou Theory. Let f(z) be a complex- 
valued function, analytic on a suitably defined compact subset T of the complex 
plane C, and having fixed point p E T, so that p = f (p). The fixed point p is 
attractive, indifferent, or repulsive depending on whether if'( p) is less than, equal to 
or greater than one. If f'( p) = 0, p is termed superattractive. Given a starting value 

E T, we define the iteration sequence {Znj} by Zn 1 = f(zO) n = 0,1,2. 
Now assume that p is attractive, i.e., that zn --> p as n -- oo. The speed of 
convergence of the iteration procedure is defined as follows. Let en = Zn- p be the 
error associated with the n th iterate. Using Taylor's expansion of f (z), we have 

(2.1) en+1 Zn+1 -p f (en + P) -f (P) 

= f(m)(p)(en)m + o[(en)] n -o, 

where m is the smallest integer for which f ()( p) * 0 (usually m = 1). Then f (z) is 
said to be an iteration function of order m. 

We now consider the construction of iteration functions of prescribed order to 
determine the simple roots of g(z) = 0. The first interesting case, m = 2, corre- 
sponds to quadratic convergence and yields the familiar Newton method. The point 
z* is a zero of g(z) if and only if it is a fixed point of f(z) = z - h(z)g(z), where 
h(z) is an arbitrary nonzero function, analytic in T. The problem is to construct 
f(z) such that f'(z*) = 0. Since 

f'(z) = 1 - h'(z)g(z) - h(z)g'(z) 

and g(z*) = 0, we may choose h(z) = [g'(z)] 1 to give Eq. (1.1) for g'(z) # 0. 

Higher-order iteration functions may be constructed in the same spirit. If g(z) is 
analytic in some region T, then for h arbitrarily small, 

00 

(2.2) g(z + h) = g(z) + E bn(z)hn = g(z) + B(z) 
n=1 

where bn(z) = g(n)(z)/n!, n = 1, 2, 3 .... B(z) may be considered a formal power 
series in the variable h, whose coefficients are dependent upon the parameter z. If 
bl(z) = g'(z) * 0, B(z) may be formally inverted, 

00 

(2.3) B-1(Z) = f cn(z)h, 
n=1 

where [24] 

(2.4) cn(Z)= I[gx( ) d g'( ) 

The coefficients cn(z) are analytic functions for g'(z) * 0, since they are also 
expressible in terms of powers of the bn(z) and [bj(z)]-1, both of which are analytic. 

We now define the Schroder iteration functions as 
m-1 

(2.5) Sm(Z)=Z + Y Cn(Z)[-g(z)]n, m = 2,3,4,.... 
n=1 
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The iteration sequences defined by the Sm(z) converge locally to the roots z,* of 
g(z) = 0 as O[lzn - z<lm]. This follows from the following theorem. 

THEOREM 2.1. Let g(z) be analytic for z E T and g'(z) * 0. The functions Sm(z) 

are analytic. For every z * E Tsuch that g(z*) = 0, 

(2.6) SM(Z*) = z* I SM,(z*) = Sm (z*) = = Smm)(z*) = 0. 

Thus, z* is a superattractive fixed point. 

Proof. See Henrici [16, p. 530]. 
The Sm(z) functions were introduced by Schroder [24] in 1870 (see also [18]) as 

one of several methods to determine roots of equations. The Sm(z) are truncations of 
a general infinite series in g(z), the first three terms of which are given below: 

S(z) = z- 
1 

9g(z)- g"(z [g(z)]2 

(2.7) _[g"(Z)] -2 g'(Z)g (Z) [ 3 
[g'(z)f5 9(z) 

It is easily seen that the construction of Sm(z) requires a knowledge of the first 
m - 1 derivatives of g(z). 

From Eqs. (2.5) or (2.7), we see that for only m = 2-the Newton method-does 
the fixed point condition Sm(z) = z necessarily imply that g(z) = 0. For m > 2, it 
implies that either (i) g(z) = 0 or (ii): 

m-2 

(2.8) Tm(Z)- =Y Cn+l(z) [_g(Z)] n = O. 
n =O 

The introduction of these extra fixed points may complicate the root-finding 
procedure: as repulsive or indifferent fixed points they alter the basins of attraction 
for the roots; as attractive fixed points they may conceivably trap an iteration 
sequence. 

Here we mention that Smyth [25] performed a detailed study of rational iteration 
functions constructed with a specific number M of parameters to converge to a given 
number n of distinct complex points with a specified order a. For the case a = 2 
and deg(numerator) = deg(denominator) + 1, the Newton iteration functions are 
obtained. The Schroder functions are shown to be a subclass of a much more general 
group of iteration functions for a > 2. In addition, some examples of Newton 
iteration functions having attractive cycles other than the desired roots of a poly- 
nomial are given. 

For g(z) in Eq. (2.5) a polynomial, the Sm(z) are rational functions. The standard 
iteration theory of analytic functions is insufficient to describe the global dynamics 
of the Schroder method. It is here where Julia-Fatou theory can describe the possible 
types of behavior of iteration sequences {Zn} associated with the Sm(z). The major 
features are outlined below. The reader is referred to [6] for a more detailed 
presentation of this subject. 
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Let R(z) be a rational function, R(z) = P(z)/Q(z) where P(z) and Q(z) are 
polynomials with complex coefficients and no common factors, and d = deg(R) 
maxtdeg(P), deg(Q)} > 2. The sequence of iterates { R'(z)} of R(z) is defined by 

R0(z) = z, R1(z) = R(z), R+1(z) = R(Rn(z)), n = 0, 1, 2, .... 

The inverses of R(z) shall be denoted by Rj1(z), where the subscript index 
i = 1, 2,..., d enumerates all branches of the inverse. We now consider R: C C 

where C = C U {x }) denotes the Riemann sphere with suitably defined spherical 
metric. Given a point zo E C, the iteration sequence { Zn, }O, given by 

Zn+1= R(Zn) = Rn+l(z0), 

defines the forward orbit of zo. 
If Rk(p) = p and Rm (p) # p for m < k, then p is a fixed point of order k. The 

set of distinct points { pi, i = 1, 2, 3,..., k }, where 

P1 = R(p), P2 = R(p) ... - Pk = R(Pk-l) 

is termed a k-cycle. If k = 1, p is simply called a fixed point of R(z). The k-cycle is 
attractive, indifferent, or repulsive, depending on whether the multiplier I[Rk( p )]' is 

less than, equal to or greater than one, respectively. 
The Julia set J(R) of the rational map R: C -> C is formally defined as the set of 

z e C for which the family of maps Rn(z) is not normal, in the sense of Montel [1]. 
A more working description is that J(R) is the closure of all repulsive k-cycles of 
R(z), k = 1, 2,3, .... Its complement, F = C\J(R), the Fatou set, is the set of all 
z E C for which the family Rn(z) is equicontinuous, in the spherical metric on some 
neighborhood of each point of F. 

Some important properties of J(R) are listed below: 
(a) J $ 0 and J is closed; 
(b) J is invariant with respect to R, i.e., R(J) = J = R-1(J); 
(c) J(R)= J(R), m = 2,3,4,...; 
(d) If J has interior points then J = C; 
(e) J(R) is compact and nondenumerable. In general, its Hausdorff-Besicovitch 

dimension is nonintegral, whereupon J(R) is a fractal, as defined by Mandelbrot 
[20]. 

Let p be an attractive fixed point of R(z). The attractive basin (stable set) W(p) 
of p is defined as the set 

W(p)= {z E CRn(z)- p as n --- o. 

The immediate attractive basin A( p) of p is the maximal domain containing p on 
which the sequence of iterates { R n } is normal. We now have the following 
important property: the boundary of W(p) is J(R). It follows that if R(z) has 
several distinct attractive points, then their basins of attraction share the same 
boundary, the Julia set of R(z). 

For iteration schemes involving rational maps, e.g., Newton's method for poly- 
nomials, it follows that the forward orbits of all points on J(R) never converge to 
the roots of the polynomial. 

3. Attractive Basins and Julia Sets for Schr6der Functions: A Case Study for the 
Polynomials gn(z) = zn - 1. In this section we examine, by means of computer- 
generated plots, the attractive basins and Julia sets of the Schr6der functions Sm(z), 
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m = 2, 3, and 4, constructed to converge to the n th roots of unity. The pictures were 
computed as follows. A square grid of 80,000 points, composed of 400 columns and 
200 rows corresponding to the pixels of a computer video display (the 2: 1 ratio 
corresponds to the height-width ratio of each pixel), would represent a region of the 
complex plane, typically the square R x R = [-1, 1] x [-1, 1]. Given a polynomial 
gn(z) = z- - 1 and a map Sm(z), each grid point would be used as a starting value 
zo of the sequence Zk?l = Sm(Zk). After each step, the Euclidean distances between 
the iterate Zk and each n th root of unity were computed. As soon as any of these 
distances became less than or equal to 0.1, it was assumed that the sequence would 
converge to that particular root. The pixel corresponding to the original grid point 
zo would then be assigned a particular color, according to the root it converged to. If 
the procedure did not converge within a typical maximum of 100 iterations, the 
routine would automatically skip to the next grid point. In most cases, a geometrical 
symmetry was exploited to reduce calculations to one-half or one-quarter of the grid. 
In this way, the attractive basin W(z*) for each root of unity z* would be assigned a 
characteristic color. 

The microcomputer-generated plots of these basins in the region [-1, 1] x [1, 1] are 
presented in Figures 1, 2 and 3 as families of Sm(z) mappings, m = 2, 3, 4, associ- 
ated with the polynomials gj(z) = z- 1. For a given polynomial gn(z), the basin 
maps possess the same geometrical symmetries. However, their "complexity" in- 
creases with the order m of the Sm(z) maps. New sets of "petals" appear to be 
embedded in lower order maps in an infinitely self-similar fashion. In all cases, the 
Julia sets J(Sm(z)) are fractal-like and possess remarkable self-similarity. 

The white regions surrounding the origin in some of the figures is not to be 
interpreted as part of a stable set W(z*). Since g'(0) = 0, z = 0 is mapped to the 
point z = x0. Points near z = 0 may first be mapped many orders of magnitude 
away from it, whereupon a great number of iterations-certainly more than the 
typical maximum of 100 employed in the text-might be required to bring them 
back to the z?*, if at all. As such, these grid points would remain as part of the black 
background, which has been plotted as white. 

The following analysis of these plots considers individually each iteration proce- 
dure Sm(z) as applied to the gj(z). In all cases, the nth roots of unity are denoted as 
Zi~n i = 1 2, 3,... ,n, n = 1,2, 3,.... 

Case 1. m = 2: S2(z), Newton's Method. Figures 1(a), 2(a), and 3(a) show the 
attractive basins W(zil ) associated with the gn(Z), n = 2, 3 and 4, respectively. For 
n = 2, it is well known (the Cayley problem [23]) that W(-1) = L, W(+1)= R, 
where L = { z e C I Re(z) < 0) and R = { z e C I Re(z) > 0) . In other words I, the 
imaginary axis, is the Julia set J(S2(z)). In this particular case, the inverses S2-'(z) 
for which J(S2(z)) is an attractor, are easily computed. In the language of Barnsley 
and Demko [2], I is the attractor for the iterated function system (IFS) 

{C, w+(z), w-(z)}, where 

(Z) =z + z2-1 W_(Z) = Z _ z21. 

The Newton attractive basin plots associated with n = 3 have appeared elsewhere 

[121, [23]. 
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Case 2. m = 3: Cubic Convergence. Manipulation of Eq. (2.7) reveals that the 
fixed point condition S3(z) = z implies that either (i) g9(z) = Zn _ 1 = 0 or (ii): 

zn_3 n0 n=2,3,4,.... 

An additional n fixed points of S3(z), which we denote as (i n, exist between the 
roots z * and z = 0. For n = 2, 3, 4,. .. all (, are repulsive fixed points, since 

- 2(2n - 1) > 1 n=2,3,4. 3SZ)I=~,,, n - 1 

Thus, the k must be on the Julia sets J(S3(z)) for n > 2. This property destroys 
the Newton "funnels of convergence" exhibited by the immediate stable set A(z*) 
which surround each root z* in Figures 1(a), 2(a) and 3(a), and extend well toward 

FIGURE 1 

Schroder basins of attraction W(z* ) for the roots of g2 (z) = _ 1 in the complex region [-1, 1] x [- 1, 1]. 
The black areas comprise the stable set W(1); the white areas comprise the stable set W(-1). 

(a) S2 (Newton) method with quadratic convergence: the Julia set J(S2), the boundary between 
W(1) and W(-1), is the imaginary axis. 

(b) S3 method with cubic convergence. 
(C) SL method with cjuartic convergence. 
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the origin. The attractive basins for n = 2, 3, and 4 are presented in Figures 1(b), 
2(b) an 3(b), respectively. The appearance of these extra fixed points is a striking 
example of the caution that is necessary in the selection of initial values of 
higher-order iteration sequences. 

Case 3. m = 4: Quartic Convergence. The fixed point condition S4(z) = z implies 
(i) z n _ 1 = O or (ii): 

(zn - rn)(zn - in) = 0, 

where 
7n2 - 9n + 2 + n2(39n2 - 54n + 15)7/2i 

22n2 _ 12n + 2 

FIGURE 2 

Schroder basins of attraction W(z*) for the roots of g3 (z) = - 1 in the complex region [-1, 1] x [-1, 1]. 
White regions constitute W(- 2 + rv'); black regions constitute W(- ' - ); grey regions constitute 
W(1). 

(a) S2 (Newton) method. 
(b) S3 method. 
(c) S4 method. 
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In this case a pair of complex conjugate fixed points Il i, Ali, appear in the Newton 
"funnel of convergence" for each z*. This feature is illustrated in Figures 1(c), 2(c) 
and 3(c) for n = 2, 3 and 4, respectively. 

4. The Schrdder Iteration Method in Parameter Space. We now focus attention on 
Schroder iteration methods associated with a particular one-parameter family of 
cubic polynomials, 

(4.1) gA(z) = Z3 +(A - 1)z - A, 

the zeros of which are z = 1, Z2 = -I + 4 1 -4A and z = -2 - 1 - 4A. 
In this section, the A-dependence of z2 and z * will be understood. We shall now be 

FIGURE 3 

Schrbder basins of attraction W(z?*) for the roots of g4 (z) = z4- 1 in the complex region [-1, 1] X [-1, 1]. 
White regions constitute W(i); black regions, W(-i); light grey regions, W(-1); dark grey regions, 
W(+1). 

(a) S2 (Newton) method. 
(b) S3 method. 
(c) S4 method. 
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working in a parameter space where A E C. Each point A = (ReA, Im A) represents 
a dynamical system with its own fixed points, possible attractive cycles and Julia 
sets. The special case A = 1 has already been covered in Section 3 for n = 3. 

This study represents an extension of the work of Curry et al. [8] in which the 
Newton-S2 method associated with the gA (Z) was analyzed. They discovered regions 
in the A parameter space where attractive periodic cycles exist in addition to the 
attractive fixed points associated with the zeros of gA(z). This feature is also 
observed for higher-order Schrdder functions; in addition, extra fixed points corre- 
sponding to the roots of Eq. (2.8), shown to be repulsive for A = 1, may become 
attractive in regions of the A-plane. 

To detect the existence of attractive cycles which could interfere with the Schrdder 
search for the z we observe the orbits of the critical points of the Sm(z) functions. 
Critical values of a function f(z) are defined as those values v E C for which 
f (z) = v has a multiple root. The multiple root z = c is called the critical point of 
f(z). This is equivalent to the statement f'(c) = 0. The underlying reason for 
studying these special orbits rests in the following theorem of Fatou [13]: 

THEOREM 4.1. If R(z) is a rational function having an attractive periodic cycle, then 
at least one critical point will converge to it. 

Among the critical points of the Schrbder functions Sm(z), determined by the 
condition Sn(z) = 0, are the zeros z* which are also attractive fixed points of the 
Sm(z). These points are obviously not free to converge to any other attractive cycles. 
Other roots, which we shall call the free critical points c,, are available, however. The 
free critical points for the first three Sm(z) functions associated with gA(z) are given 
below: 

(4.2a) (i) S2(z): c1 = 0, 

(4.2b) (ii) S3(z): C12 = ? [ 15 ] 

A-1 ]1/2 
(4.2c) (iii) S4(Z): C12 = ? [6 ] ' C3 = 0. 

The dynamics of each Schroder map Sm(z) in complex parameter space was 
studied in much the same way as described in Section 3. A region of the complex 
A-plane was again represented by a grid of 400 x 200 points, corresponding to the 
pixels of a computer video terminal. For each point A = (ReA, Im A), a free critical 
point c, was computed and used as a starting value z0 for the iteration sequence 
Zk+1 = Sm(Zk). After each iteration, the distances between the iterate Zk and the 
zeros z* of gA(Z) were computed. If any of the distances were less than 0.0001, it 
was assumed that the sequence was converging to the corresponding root z * and the 
grid point in A-space was colored accordingly. If, after 200 iterations, no such 
convergence was observed, the grid point was left black. The resulting black areas 
represented regions in parameter space for which additional attractive cycles existed. 

More detailed investigations of A-values associated with k-cycles and period 
doubling bifurcations, to be described later in this section, were performed in 
double-precision (32 significant digit) accuracy on the university CYBER 180/855 
mainframe computer. 
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Case 1. m = 2: Newton's Method. As mentioned, this case has been studied [8] 
and computer plots are presented here for comparison and reference. Figure 4 
represents the region of the complex A-plane [-2,2] x [-2,2]. White regions repre- 
sent values of A for which the sole critical point cl = 0 is attracted to the root 

=1, gray regions correspond to attraction to either of the roots z* =- 

+ 1 4-4A . The small black areas situated at A (0.31, ? 1.64) and (1.01, ? 0.98) 
represent sets of parameter values for which the critical point does not converge to a 
zero of gA(Z). Since no other fixed points exist, these orbits are asymptotic k-cycles, 
k > 2. When magnified, these regions have the same general shape as the remarkable 
Mandelbrot bifurcation sets for quadratic maps R(z) = z2 - X. A magnification of 
the set situated at (0.31,1.64) is presented in [8]. The existence of stable periodic 
cycles as well as regions of period-doubling bifurcations in this set has also been 
shown. 

Within the resolution of the plot in Figure 4, four other sets are detected on the 
real axis at A = 0.26, 0.36, 0.5 and 0.65. When magnified, the characteristic 
Mandelbrot shapes appear, as shown in Figure 5 for the region [0.35,0.37] x 
[-0.01,0.011. 

Case 2: S3(z) Iteration. Figure 6 represents regions in parameter space A E 

[-5, 5] x [-5, 5], for which the critical point cl in Eq. (4.2b) is attracted to either 
= 1 (white regions), z23 = - 4 ? ' 1 - 4A (gray) or neither (black). The corre- 

sponding parameter space map for the critical point C2 = -C1 is obtained by a 
reflection of Figure 6 about the real A axis. Figure 7 is an enlargement of the region 

[1.89,1.95] x [-0.03,0.03], but reflected about the real axis. The upper half (includ- 
ing real axis) of this Mandelbrot-like set corresponds to A values for which cl does 
not converge to the z7, the lower half corresponds to the critical point c2. Unlike in 
the Newton iteration method, there are two possibilities for the orbits of the cl to be 

FIGURE 4 
S2 (Newton) iteration scheme for the one-parameter family of cubic polynomials gA (z) of Eq. (4.1): 

Regions in the complex parameter space A E [-2, 2] x [-2, 2] for which the forward orbits of the free 
critical point cl = 0 converge to z* = 1 (white), the other two roots z* and z* (grey), or none of these 
roots (black). 
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trapped away from the roots z 
(i) convergence to a k-cycle as in Case 1, 

(ii) convergence to additional attractive fixed points (i which satisfy Eq. (2.8) for 

g(z) = gA(z), i.e., the equation 

12z4 + 9(A _ 1)Z2 - 3Az +(A - 1)2 = 0. 

In Section 2, these three fixed points were repulsive for the special case A 1. 

0.01 

0 
T_. 

-0.01 , 
0.35 0.36 0.37 

FIGuRE 5 

A magnification of the black region lying on the real axis of Figure 4 at A = (0.36, 0). For values of A 

lying in this Mandelbrot-like set, there exist attractive k-cycles for the S2-Newton iteration scheme, 

distinct from the roots z,* of gA(z). 

5 

0 

-51 ~ ~ -A 

-5 0 5 

FIGuRE 6 

S3 iteration scheme for the one-parameter family of cubic polynomials gA (z) of Eq. (4.1): Regions in the 

complex parameter space A E [-5,5] X [-5,5] for which the free critical point cl = V(A - 1)/15 in 

Eq. (4.2b) converges to Z* = 1 (white), the roots 72* or 73* (grey), or none of these roots (black). The 

corresponding regions for the critical point c2 = -cl are obtained by reflecting this figure about the 

real-A axis. The white vertical strip lies on the line Re(A) = 1. 
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A more detailed examination of the orbits of critical points reveals that the 
interior of the largest cardioid of the Mandelbrot set in Figure 7, which intersects the 
real A axis on the approximate interval [1.921,1.945], corresponds to A-values for 
which property (ii) holds. This set does not include the smaller "buds" which grow 
on its boundary. The cardioid region to its left, intersecting the real A axis on the 
approximate interval [1.9115,1.921], corresponds to asymptotic 2-cycles. Real values 
of A slightly less than 1.9115 have been observed to produce asymptotic 4-cycles. 

0.03 

-0.03 
1.89 1.92 1.95 

FIGURE 7 
A magnification of the parameter space region [1.89, 1.95] x [-0.03,0.03] of Figure 6, revealing a 

Mandeibrot set for the S3 iteration method. 
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FIGURE 8 

S4 iteration scheme for the one-parameter family of cubic polynomials gA (z) of Eq. (4. 1): Re ions in the 
complex parameter space A E= [-5,5] X [-5,5] for which the free critical points (a) cl = (A- 1)76 

and b) c = converge to the roots z* = 1 (white), z4 or z4 (grey), or none of these roots (black). The 
regions corresponding to c2 = -C1 may be obtained by reflecting (a) about the Re( A) axis. 
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Case 3: S4(z) Iteration. Figure 8(a) represents regions in parameter space 
A E [-5, 5] x [-5, 5] for which the critical point cl in Eq. (4.3c) is attracted to either 

= 1 (white regions), z * = - 2 + 2 1 - 4A (grey) or neither (black). The corre- 
sponding parameter space map for the critical point c2 = -cl is again obtained by a 
reflection of Figure 8(a) about the real A axis. Figure 8(b) is the parameter space 
map for the third critical point C3 = 0. Figure 9 is an enlargement of the region 
[3.07,3.17] x [-0.05,0.05] in Figure 8(b) showing a Mandelbrot-like set associated 
with c3 = 0. As in the previous case, there exist two possibilities for the orbits of the 
c1 associated with the Mandelbrot set A-values: (i) convergence to a k-cycle or (ii) 
convergence to additional attractive fixed points (I which, in this case, are solutions 
of Eq. (2.8) for g(z) = gA(z). As before, the large cardioid which intersects the real 
A axis along the interval [3.119,3.1596] corresponds to convergence of the critical 
point C3 to an extra fixed point {E. The adjacent region associated with the real 
interval [3.101,3.119] corresponds to convergence of C3 to asymptotic 2-cycles. At 
A = 3.097 a transition from real 4-cycles to real 8-cycles is observed numerically. 

In all of the above-cited cases of Mandelbrot-like sets, the "pinch points" 
represent points of pitchfork bifurcation where 2 -cycles give birth to 2 n '-cycles. 
This succession of changes follows the now classical pattern, studied by Myrberg 
[22], Feigenbaum [14], Douady and Hubbard [10] and others. The appearance of 
these Mandelbrot-like sets suggests that for each m, Sm(z, A) constitutes a 
Mandelbrot-like family of polynomial-like maps, to use the terminology of Douady 
and Hubbard [11], being conjugate to the quadratic map Z2 - X(A) in a vicinity of 
its Julia set. This conjugacy is discussed in detail in [11]. 

These observations lead us to define, for convenience, the Mandelbrot set Mm(A) 

associated with the Schroder function Sm(z) for the cubic polynomials gA(z) as the 
set Mm(A) = {A e CIthere exist attractive k-cycles, k= 1,2,3,..., for Sm(Z) 

other than the roots z1* of gA(Z) = 0). 

0.05 

-0.051 
3.07 3.12 3.17 

FIGURE 9 

A magnification of the complex parameter space region A e [3.07,3.17] X [-0.05,0.05] of Figure 8(b), 
revealing a Mandelbrot set for the S4 iteration method. 
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FIGURE 10(a) 

Basins of attraction for the roots of gA (Z) for the S2-Newton method, A = 0.37. White regions constitute 
W(1), the shaded areas constitute W(z*') and W(z*). The Re(z) axis is a part of W(1). 

FIGURE 10(b) 
Basins of attraction for the roots of gA (z) for the S2-Newton method, A = 0.36, shaded as in Figure 
10(a). The black areas correspond to basins of attraction for an additional attractive two-cycle Pi = 
-0.5628255, P2 = 0.01103592. 

5. Julia Sets and Attractive Basins Associated with Pathological Attractive Cycles. 
We now examine the effects of the Mandelbrot regions Mm(A) in parameter space, 
discovered in Section 4, on the attractive basin-Julia set maps in complex coordinate 
space. For A E Mm(A), the sequence of iterates Sm(z), n = 1,2,3,... produce 
attractive k-cycles other than the roots of gA(Z) = 0. Attractive basins for such 
pathological cycles would then presumably appear in the Julia set maps. 

Attractive basin maps corresponding to critical values A E Mm(A) and nearby 
noncritical values for the Newton-S2 and S3 functions, as applied to the gA(Z) cubic 
polynomials, are presented below. These maps were plotted using the procedure 
outlined in Section 2. 
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0.15 

-0.15 0 0.15 

FIGURE 10(c) 
Magnification of the region [-0.15,0.15] x [-0.15,0.15] in Figure 10(b), containing one of the attractive 

basins for the two-cycle. 

Newton-S2 Method. Figures 10(a) and 10(b) show basin maps for the complex 
region [-1, 1] X [-1, 1] corresponding to A = 0.37 and A = 0.36, respectively. A 
look at Figure 5 reveals that for A = 0.37 no attractive k-cycles other than the roots 
z1 exist. For A = 0.36, a remarkable change occurs in this map, even though the 
gross features of the Julia set remain intact. Prominent black regions have appeared 
at z = 0, 0.27 + 0.49i and 0.47 + i. These regions constitute part of the stable set W 
for the attractive two-cycle Pi = -0.5628255, P2 = 0.0110359. They are also 
noticeable on a set of "ladybug"-like regions centered on the real axis at roughly 
A -0.8, -0.5 and -0.3. These "ladybugs" have been observed as far out as 

Al 

=-2 

FIGURE 11 (a) 
Basins of attraction for the roots of gA (z) for the S3 iteration method, A =1.96. White regions constitute 
W(1), the shaded areas constitute W(zfl and W(z*). The Re(z) axis is a part of W(1). 
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3 __-_:__-____-_____i____________-__E___ 
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-3 
-5 -2 1 

FIGURE 11(b) 
Basins of attraction for the roots of g9A(z) for the S3 iteration method, A =1.93, shaded as in Figure 
11(a). The black areas, most noticeably situated on portions of the Re( z) axis where they appear to "sew" 
attractive basins from the upper and lower halves, correspond to basins of attraction to the extraneous 
root 4=0.237564. 
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FIGURE 11(c) 

A magnification of the region [0.1,0.41 X [-0.15,0.15] in Figure 11(b), containing one of the attractive 

basins for the extraneous root 4. 

z = -50 and are presumed to extend outward to z --3 oo. An enlargement of the 

basin containing the points z =0 and P2 is presented in Figure 10(c). The multiplier 

of this two-cycle is [R 2(pi)J 0.371. 
Schroder S3 Method. Figures 11(a) and 11(b) present basin maps for the complex 

region [-5, 1] x [-3,3] corresponding to A = 1.96 (noncritical) and A = 1.93 (one 

extra fixed point =0.237564 ... with multiplier [S3(~)J' 0.655). For A = 1.96, 

we observe that the stable set of z = 1 extends along the negative real axis, passing 

through narrow "straits". These "straits" have been observed at large negative real 
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values and, as in the Newton case, are presumed to extend outward as z -x o. At 
A = 1.93, an actual "sewing" of complex-conjugate basins has taken place. The 
areas of patching correspond to points which belong to the stable set W((). In 
Figure 11(b), these areas are located at roughly A _ -5.0, -2.68, -1.22 and 0.24. The 
basin at 0.24 corresponds to the immediate attractive set of (. Figure 11(c), an 
enlargement of the region containing this basin, reveals the remarkable self-similar- 
ity and complexity of the fractal Julia set boundary. 
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