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Some Evaluations for the Generalized 
Hypergeometric Series 

By J. L. Lavoie 

Abstract. Whipple's theorem on the sum of a 3 F2 (1) plays a key role in obtaining a family of 
summation formulas for the generalized hypergeometric series of unit argument. 

1. Introduction and Main Result. The object of this paper is to put on record a 
family of evaluation formulas for the generalized hypergeometric series of unit 
argument, in terms of the logarithmic derivative of the gamma function +(z)= 
d[ln F(z)]/dz and the polygamma function 4(/)(z) = d'4i(z)/dzn. These results 
are: 
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If a -O 0 in (2), or c 0 in (3), we find 

4 13 1, 1, 1 11 
1 +f1 2-1, 2 

=f(1 f ){4(2)(1 - f 2 f [i(2 - 2- 4)(1 -2 

If c = f in (3), then 

1, 2 , + 

Finally, if f -O 0, the last two relations reduce to the well-known result 

3F2( 1 k = (2) 
- 

2. Proofs. From the elementary relation 

z F~~ 1 ? ap 1 b1*...bq a 
p+1 q+1 1 + bq, 2 Z = ... a \P q bqZJJ1 

often used by Luke [2, p. 166], we write 

(1 + f 2 + 2c -f' 2 ) a(r -a)c 

with 

wr(a, c, f )=3F2 (7 1 + 2c)-f 1) 

We have 

wr(a,cf) = wr(r - a,c,f) 

and the 3F2 can be evaluated by Whipple's theorem ([1, p. 16], or [2, p. 164]) when 
r = 1. Hence 

wl~~a, C, f) = vfJ(f )J(1 ? 2c - f) w1(a~c~f)= _ a -f :r(1 a-f r 1 +c a? +f 'a +f\ 
2 r2+ 2 )r2 2 ) lc 2-r 2) 

R(c) > 0. Using the simplest contiguous function relation given by Rainville [3, pp. 
82, 14], we find, in terms of wl, that 

wo(a,c,f) = 1wl(a,c,f) + 4w,(1 + a,c,f), 

w 1(a,c,f) = 1 
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with increasing complexity as r = -2, -3,.... In particular, we have 

(4) 4F3( 1 + f 2 + 2c-f, 21)f a(l-a)c f{wl(acf)-1} 
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R(c)> 0, and 
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Formula (1) is obtained by letting a -* 0 in (4), with the aid of L'Hopital's Rule. 
Using the fact that w1(a, 0,f) = 1 + sin va/sinn7f, we similarly find that (2) is a 

limiting case of (5), when c -- 0. 
Formula (3) is obtained by letting a 0 in (5) and employing L'Hospital's Rule 

twice. In each case, simplifications have been effected using familiar identities 
involving the psi and the polygamma functions. 

3. A Formula of Watson. Our formula (1) is, essentially, a result given by Watson 
in 1917, [4], in the form 
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This can be readily seen by considering a special case of a fundamental relation 
between 3F2(1) [1, p. 141. We have 

321 
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Hence (1) can be used on the right and (6) is obtained, after an obvious change of 
variables. 

4. Contiguous Relations. Most of the above formulas possess contiguous relations. 
That is, there exist analogous formulas where some of the parameters are increased 
or decreased by unity. In illustration, a relation contiguous to (6) will be obtained. 

With the aid of Gauss's theorem for the sum of 2F1(1) [1, p. 2] and two of the 
simplest contiguous function relations found in [3, pp. 84, 14, 15], we obtain a 
relation between two nonterminating Saalschatzian series: 
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Specializing the parameters so that (6) can be used on the right, we eventually obtain 
the evaluation 
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