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On the Definiteness of Gauss-Kronrod
Integration Rules

By Philip Rabinowitz

Abstract. The nondefiniteness of the Kronrod extension of the Gauss-Gegenbauer integration
rule with weight function w(x; p) = (1 — x2)*~1/2,0 < p < 1, is shown when there are more
than three abscissas.

In a recent paper, Akrivis and Forster [1] have shown that the Clenshaw-Curtis
and related integration rules are nondefinite, i.e., that the error Rf cannot be
expressed in the form

Rf = of “*D(¢)
where d is the precision of the rule. Using their approach combined with some of
our previous results [3], we shall show that the same holds for the Kronrod extension
(KE) of the Gauss-Gegenbauer integration rule (GGIR) with respect to the weight
function

(1) wlx;p) = (1 - x?)*72
when p satisfies 0 < p < 1. In particular, the usual Gauss-Kronrod rule (p = 1/2)
is nondefinite. We shall first give the results in [1] needed for our presentation. Then
we shall introduce the KEGGIR. Finally, we shall prove the nondefiniteness of the
KEGGIR for p € (0,1). The results on the KEGGIR appear in [3] and we shall not
mention this in the sequel.

Consider the open integration rule Q,, satisfying

2) / ‘1 w(x)f(x) dx = Q,f + R, f,

where

3) 0.f= L wf(x), -l<x<x< - <x, <1,
i=1

and w(x) is a weight function which is positive for x € (-1,1). Q,, is said to be of
(exact) precision d if R,f = 0 when f is a polynomial of degree < 4 and if there
exists at least one polynomial p of degree d + 1 for which R,p # 0. A slight
generalization of Proposition 1 in [1] states that if there exists a function f € C[-1,1]
such that f@*D > 0, f(4*D =« 0 and R, f < 0, then the open rule Q, of precision d
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is nondefinite. We shall now introduce the KEGGIR, Q,,,;, and determine a
function f, satisfying the hypotheses of this generalization. This will prove our claim
that the KEGGIR’s are nondefinite.

The abscissas x,, i = 1,...,n, of the GGIR are the zeros of the Gegenbauer
polynomial C#(x) and lie in (-1, 1). These polynomials are orthogonal with respect
to w(x; p) and have the following normalization:

(4) [ w(x; ) CH(x)Ci(x) dx = 8,,h,,
-1
where
(5) By, =a2T(n+2p)T(p + 1/2)/((n + p)n'T(p)T(2p)).
The KEGGIR, 0Q,, ;. is given by
n n+1

(6) Qrpirf = Z uf(x,)+ Z v.f (%),

i=1 i=1

where the y, are the zeros of the Szegd polynomial E,,; ,(x) which satisfies the
orthogonality conditions

/1 w(x; p)CH(x)E, .y ,(x)x*dx =0, k=0,1,...,n.
-1
For 0 < p <1, the y, lie in (-1,1) so that Q,,,, is an open integration rule. The

precision d of Q,, ,, is given by

d={3n+1, n even,
3n+2, nodd,

for 0 < p < 2, p # 1. The Szegd polynomials are given by
m—1 A Ti(x), neven,
(7) En+1.p.(x) = E Ai;A,T;t+1—2i(x) + %A n Odd,

i=0
where m = [(n + 1)/2] and the T;(x) are the Chebyshev polynomials of the first
kind. The A, are given by

mp>

k
(8) Aow = 2%, > fiwhiein=0, k=1,2,...,
i=1

where
Y= VaT(n+20)/T(n+p+1),  fo,=1,

fu=Q=p/)A = p/(n+p+5))fi-1
and we have not shown the dependence on 7 of the f,, and the A,,. For0 <p <1,
the sequence {A,,: i = 1,2,...} is strictly monotonic increasing.*

*Professor H. Brass has pointed out a gap in the proof in [3, p. 1279] that the sequence {A,, = A oa,,:
i =1,2,...} is strictly monotonic increasing, since it does not follow that if a sequence { f,: j =0,1,...}
is strictly completely monotonic and £ ga,u' = {£52f,u’ }71, then the sequence {-a,: i =1,2,...} is
strictly completely monotonic. All that we can say is that it is completely monotonic. The following
sequence provides a counterexample: f, =27/, a5 =1, &y = -1/2, &, =0, i > 1. Professor Brass has
also shown how to close this gap in our case, since if we did not have strict monotonicity, then
A, = A1, for some integer i = iy. Hence by complete monotonicity, A,, = A, , forall i > iy which
would imply that F(u) = X% f,u’ is a rational function. However, this is not the case since F(u) is the
hypergeometric function , F(1 ~p,n+ 1;n+p+ Lu)and 0 <p < 1.
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The Gegenbauer polynomials and the Szegd polynomials are related by the
following equality:

© GO Epnp(3) = X eChire (),

where the ¢; = c,(p, n) are certain constants. For our purpose, the values of ¢, and
¢, are important. They are given by

Yy
— (A, — A s even,
(10) co = 2Yn+l.p( m m“'ﬂ) ey
0, n odd,
Ynp
— (A -A s odd,
(11) ¢ = 2Yn+2,u( motn ™ Amei) 1
0, n even.

By the monotonicity of the sequence {A,,}, it follows that for 0 <p <1, ¢, is
negative for m > 1, i.e., for n > 2 and ¢, for m > 2, i.e., for n > 3. We now define

(12) fk(x)= Cr:‘(x)En+1,u(x)Cri‘+l+k(x)9 k=0,1.
Then, since Q,,.,f, =0,

1
(13) Ryuirfu= -/—1 w(x; p) fi(x) dx = Pt viep k=0,1.

Furthermore, f&"*2*%) > 0. If n is even, ¢, + 0 and we choose k = 0 so that
3n+2+k=d+1.1f nisodd, ¢, =0 but ¢, # 0 and we choose k =1 so that
again 3n + 2 + k = d + 1. In either case, R,, ,f, <0 for n > 2 which implies
that Q,, ., is nondefinite. For n = 1, Q,,,,, is the 3-point GGIR,which is definite.
For p =0, Q,,.; is a Lobatto-Chebyshev rule of the first kind [2, p. 104] and
hence is definite. Similarly, for p = 1, Q,,.; is a Gauss-Chebyshev rule of the
second kind [2, p. 98], which is also definite. For 1 < p < 2, in which range
KEGGIR’s exist, the question of definiteness is still not settled. The same holds for
the KE of the Lobatto-Gegenbauer integation rules except for that of the Lobatto-
Chebyshev rule of the first kind, which is itself a Lobatto-Chebyshev rule and hence
is definite.
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