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On the Definiteness of Gauss-Kronrod 
Integration Rules 

By Philip Rabinowitz 

Abstract. The nondefiniteness of the Kronrod extension of the Gauss-Gegenbauer integration 
rule with weight function w(x; [) = (1 - x2)- 1/2, 0 < [L< 1, is shown when there are more 
than three abscissas. 

In a recent paper, Akrivis and Forster [1] have shown that the Clenshaw-Curtis 
and related integration rules are nondefinite, i.e., that the error Rf cannot be 
expressed in the form 

Rf = Cf(d+l)(t) 

where d is the precision of the rule. Using their approach combined with some of 
our previous results [3], we shall show that the same holds for the Kronrod extension 
(KE) of the Gauss-Gegenbauer integration rule (GGIR) with respect to the weight 
function 

(1) W(X; I) = (1-X2)A-1/2 

when 1 satisfies 0 < t < 1. In particular, the usual Gauss-Kronrod rule (t = 1/2) 
is nondefinite. We shall first give the results in [1] needed for our presentation. Then 
we shall introduce the KEGGIR. Finally, we shall prove the nondefiniteness of the 
KEGGIR for 1i E (0,1). The results on the KEGGIR appear in [3] and we shall not 
mention this in the sequel. 

Consider the open integration rule Qn satisfying 

(2) f w(x)f(x) dx = QJf + RJf 

where 
n 

(3) QJ Wif (xi), -1< XI < X2 < ... < Xn <1 
i=1 

and w(x) is a weight function which is positive for x E (-1,1). Qn is said to be of 
(exact) precision d if Rnf = 0 when f is a polynomial of degree < d and if there 
exists at least one polynomial p of degree d + 1 for which Rnp # 0. A slight 
generalization of Proposition 1 in [1] states that if there exists a function f E C[-1, 1] 
such that f(d?1) > 0, f(d?1) 5 0 and Rnf < 0, then the open rule Qn of precision d 
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is nondefinite. We shall now introduce the KEGGIR, Q2nu 1, and determine a 
function Ik satisfying the hypotheses of this generalization. This will prove our claim 
that the KEGGIR's are nondefinite. 

The abscissas x,, i = 1,..., n, of the GGIR are the zeros of the Gegenbauer 
polynomial C,(x) and lie in (-1,1). These polynomials are orthogonal with respect 
to w(x; j) and have the following normalization: 

(4) |w(x; t) C(x) Cl(x) dx = 8nnhnj1 

where 

(5) ho = 11/2F(n + 2tL)F(tL + 1/2)/((n + t)nT!(t)F(2t)). 

The KEGGIR, Q2 n 1 is given by 
n n+1 

(6) Q2nalf Uf (x,) + LVif (Yi), 
i=1 i=1 

where the y, are the zeros of the Szego polynomial En+ 1 1(x) which satisfies the 
orthogonality conditions 

J w(x; L)Cn(x)En, +l (X)Xk dx = O0 k = 0,1, ..., n. 

For 0 < j < 1, the yi lie in (-1, 1) so that Q2 n - is an open integration rule. The 
precision d of Q2 n- ?1 is given by 

Id 3n + I n even, 
\ 3n + 2, n odd, 

for 0 < t < 2, t # 1. The Szegb polynomials are given by 

rn-i (Xmi(x), n even, 
(7) En +, (x) = ? X 1 - 2i(X) + imt, n odd, 

where m = [(n + 1)/2] and the Tk (x) are the Chebyshev polynomials of the first 
kind. The Xi, are given by 

k 

(8) X = 2Y,, Efi Xki, = 0, k = 1,2, 
i=1 

where 

Yntt = x/(n + 2t)/P(n + t + 1), fox= 1, 

fj, = (1 - t/j)(l - t/(n + t +j))fj-l,,us 

and we have not shown the dependence on n of the f4, and the Xir. For 0 < y < 1, 
the sequence { Ai,: i = 1, 2,. .. } is strictly monotonic increasing.* 

*Professor H. Brass has pointed out a gap in the proof in [3, p. 1279] that the sequence { ,A, = Atoms 
= 1, 2,. .. } is strictly monotonic increasing, since it does not follow that if a sequence {f : j = 0,.1,... . 

is strictly completely monotonic and Y2 20au' = {E of, u' }I, then the sequence {-a,: i = 1, 2,... } is 
strictly completely monotonic. All that we can say is that it is completely monotonic. The following 
sequence provides a counterexample: f, = 2-', a0 = 1, al = -1/2, a, = 0, i > 1. Professor Brass has 
also shown how to close this gap in our case, since if we did not have strict monotonicity, then 

XIA = XA,+ 1 for some integer i = io. Hence by complete monotonicity, X,, = A, A for all i > io which 
would imply that F( u) = E2 Oft,, u1 is a rational function. However, this is not the case since F( u) is the 
hypergeometric function 2 Fj(I - AL, n + 1; n + [L + 1; u) and 0 < < 1. 
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The Gegenbauer polynomials and the Szego polynomials are related by the 
following equality: 

(9) C(x)E (x) = CiCl+i(X) 
i=O 

where the ci = ci(/A, n) are certain constants. For our purpose, the values of co and 
cl are important. They are given by 

(10) C =r1 2Yn 
_ (my - Xm+?I,)' n even, 

( 0, n odd, 

(11) ci{2 Yn?2Z (Xm;> i~t Xm1 -A ), n odd, 
(1 ) Ci -\yn + 2/1, 

0 0, n even. 

By the monotonicity of the sequence { XAi}, it follows that for 0 < 1 < 1, co is 
negative for m >i 1, i.e., for n >r 2 and cl, for m > 2, i.e., for n > 3. We now define 

(12) fk(X) = Cn (x)En+l,,(x)Cn+l+k(X), k = 0,1. 

Then, since Q2n l +k = 0, 

(13) R2n+1 fk = f W(X; ,I)fk(x) dx = Ckhn+ll+k,A, k = 0,1. 

Furthermore, fk(3n+2+k) > 0. If n is even, co * 0 and we choose k = 0 so that 
3n + 2 + k = d + 1. If n is odd, co = 0 but cl 0 and we choose k =1 so that 

again 3n + 2 + k = d + 1. In either case, R2n+lfk < 0 for n > 2 which implies 
that Q2n+1 is nondefinite. For n = 1, Q2n+1 is the 3-point GGIR,which is definite. 

For A = 0, Q2n+1 is a Lobatto-Chebyshev rule of the first kind [2, p. 104] and 
hence is definite. Similarly, for M = 1, Q2n+1 is a Gauss-Chebyshev rule of the 
second kind [2, p. 98], which is also definite. For 1 < ,t < 2, in which range 
KEGGIR's exist, the question of definiteness is still not settled. The same holds for 
the KE of the Lobatto-Gegenbauer integation rules except for that of the Lobatto- 
Chebyshev rule of the first kind, which is itself a Lobatto-Chebyshev rule and hence 
is definite. 
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