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Weight Distributions 
of Some Irreducible Cyclic Codes 

By Robert Segal and Robert L. Ward 

Abstract. The theory of weight distributions of irreducible cyclic codes over a finite field has 
been extensively developed by R. J. McEliece and others. We apply that theory to compute 
the weight enumerators of some binary codes which have hitherto not been possible. In so 
doing, we correct an error by McEliece and describe his process in somewhat more detail. 

1. Introduction. Given a prime p and a natural number N not a multiple of p, let 
k be the order of p modulo N, denoted k = ordNp. Set q = pk and n = (q - 1)/N. 
Then there is an irreducible polynomial of degree k over GF(q) which has N cycles 
of length n (and the zero cycle of length 1). These cycles are equivalence classes of 
n-tuples of the form 

(T(4), T((O), T( 482) T(to n-1) 

under the equivalence relation generated by the cyclic shift operator. Here ( E 

GF(q), 0 is a primitive nth root of unity in GF(q), and 

T(4) = + Up + (p2 + . + 4pk-1 

is the trace function from GF(q) to GF(p). These n-tuples form an (n, k) irreduci- 
ble cyclic linear error-correcting code. We wish to find the weight enumerator of the 
code, or the weights of the cycles. 

Let ' = e2'ri7p, and set 

n-1 

i=O 

If 4 is a primitive root in GF(q) such that pN = 0, set qj = q (4'). Notice that i j 
(mod N) implies j = -.j Set up the generating function 

N-I 

H(x) = ix (modxN- 1) 
i=O aEGF(q)* 

Let /3 = e 2Ti/N Then 

H(O3) = E /3ind(a)t T(a) 

aeGF(q)* 

is a Gauss sum. 
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For each codeword, the frequency of occurrence of the element y E GF(p) will 
be the coefficient of Dy in the expression for (4). The frequencies will be the same 
for each of the n codewords in any equivalence class, since they are only cyclic shifts 
of each other, so we need only find the values of qi for 0 < i < N. This will give us 
the value for one codeword from each equivalence class. 

The qi values can be determined if we can determine the generating function 
H(x) modulo xN - 1. This can be done if H(x) is known modulo d(X), the 
cyclotomic polynomial of order d, for each divisor d of N, by Moebius inversion. 
The hardest part of this is for d = N. This can be determined if we know H(x) 
evaluated at any primitive Nth root of unity, for example, /1. Thus we seek to 
determine H(,8). As a first step in that direction, we compute the ideal (H(,8)) in 
the ring of integers of a certain algebraic number field of small degree, as defined 
below. This can be done using Stickelberger's theorem. Next, we can give a short list 
of possibilities for the actual value of H(/3) by considering the units in the ring. 
Finally, we can shorten the list of possibilities by using the integer coefficient 
criterion of Baumert, together with the known H(x)'s for divisors of N. Each of 
these possibilities remaining will lead to a possibly different generating function 
H(x), but all will finally give the same weight enumerator for the code. In fact, there 
will be an isomorphism of the code which will carry any generating function found 
in this way into any other, which is induced by a change in the choice of the n th root 
of unity 9. 

2. Applying Stickelberger's Theorem. The quantity H(,8) whose value we seek lies 
in Q(/3, '), a cyclotomic number field generated by the Npth roots of unity. Baumert 
and McEliece have shown [1, Corollary to Theorem 2] that if (q - 1)/(p - 1) 0 
(mod N), then H(f3) lies in a subfield Q2 of Q(/3) whose degree over Q is 
K = 44N)/k. In fact, i is merely the fixed field of the Frobenius automorphism of 
Q(/3) over Q defined by Ap(,/) = fP. More precisely, H(,8) lies in the ring of 
integers of the field t2, which we denote by Ou. 

Another useful fact given by Baumert and McEliece [1, Corollary to Theorem 1] is 
that H(13)H(f/) = 

pk. This implies that the prime ideal divisors of the ideal (H(,/)) 
in the ring O are among the prime ideal divisors of the ideal (p). 

We are thus interested in knowing what the decomposition of (p) into prime ideal 
factors in O might be. Once again, Baumert and McEliece give the answer to this 
question [1, Theorem 3]. In OQ, (p) decomposes into a product of K distinct prime 
ideal factors. They can be labelled P1, P2,..., PK in such a way that under the 
automorphism Aa of 2 over Q defined by Aa(fl) = Baa, the Pi's are permuted 
according to the rule Aa(Pi) = PJ if A a = X-a_, a Here the ai's are a complete set 
of K coset representatives of the cyclic subgroup generated by p in the multiplica- 
tive group of units modulo N, which is isomorphic to the Galois group of Q(13) over 
Q. The quotient group is isomorphic to the Galois group of Q over Q. 

Here we must call attention to a misprint in [1], which gives a different numbering 
than the above, defined by Aa = AaXa,. This slip would have no effect at this point, 
but would make the application of Stickelberger's theorem incorrect whenever one of 
the elements of the Galois group had order greater than two. 
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We have now established sufficient notation to state 

STICKELBERGER'S THEOREM. There is a labelling of prime ideals consistent with the 
above notation such that 

K 

( H( A3)) - J7Jpiwp(Iain)/(p -) 
i=1 

where, if z = E2zipi, with 0 < zi < p, then wp(z) = 2zi. 

Now let us describe the computational procedure we use to solve those cases we 
can with these tools. 

Start with the given values of N and p. Compute k, q, n, ?(N), and K. Next we 
want to know the structure of the Galois group of Q over Q, so we find the 
subgroup generated by p of the multiplicative group of units modulo N, and a 
complete set {ai: 1 < i < K} of coset representatives. The group structure of the 
Galois group is then apparent, since the parameters we have chosen insure that its 
order K will be small (usually 4 or 6). We then construct the lattice of subfields of 
Q2, and attempt to factor the ideal (p) in the rings of integers of an increasing tower 
of subfields by applying 

KUMMER'S THEOREM. Let E be a separable simple field extension of F, E = F(o), 
f(x) the minimal polynomial of X over F, {1, , , n-l an integral basis for OE 
over OF and let P be a prime ideal in OF. Then the irreducible factorization of f(x) 
over OF/P is of the form 

r 

f(x)= HGi (X) e, 
i=1 

where r is the number of prime ideals Qi lying over P in OE Gi(x) * Gj(x) for i * j, 
degGi(x) is the degree of Qi over P, and ei is the ramification index of Qi over P. 
Moreover, if g1(x) E OF[x] is a monic polynomial such that gi(x) Gi(x) (mod P), 
then 

r 

POE = I(P, gi M)) 
i=1 

is the factorization of POE into prime ideals in OE [3, 4-9-1, p. 168]. 

The application of this theorem takes the following form. Start in Q, and pass to a 
quadratic extension. Find a simple generator of the field, call it W. Find the minimal 
polynomial of X and factor it modulo p. Find a monic polynomial with coefficients 
in Z which is congruent to each factor mod p. Use each of these polynomials 
together with p as generators of all ideals lying over (p). This gives the prime ideals 
in a quadratic extension of Q. Next, try to extend each of these ideals by the same 
process to the next level of extension also using Kummer's theorem. For quadratic 
extensions, this is no problem, but for higher degrees, one must verify that an 
integral basis of powers of X exists, which may be false. 

If this fails, the next fall-back is to cast about in Ou for random elements, looking 
for a z whose norm 

K 

Ng/Q(Z) = llXaj(Z) 
i=1 
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(which lies in Z) contains p to exactly the first power in its prime factorization. Then 
the ideal I = (z, p)OQ must have norm 

K 

NuX ( I )= 1 1a Mt (I, 
i=1 

exactly (p)Z, a prime ideal in Z, and hence be a prime ideal P1 = I. The remaining 
prime ideals P, can then be obtained by applying the automorphisms from the 
known Galois group. In either case, the numbering is assigned according to the 
scheme described above. 

Notice that here we have a K-fold ambiguity in the choice of P1, corresponding to 
applications of the K automorphisms of the Galois group. 

Once we have successfully identified the prime ideals Pi, we can multiply their 
appropriate powers given in Stickelberger's theorem and obtain a representation for 
the ideal (H(,/)) in terms of its generators. Unfortunately, although we know in 
advance that the ideal is principal, in general we are left with a set of K generators, 
and no good way to find a single generator of which they are all multiples. 

An alternative is to borrow an idea from Dedekind via an example in Weiss [3, p. 
170]. Search for principal ideals with norms of the form pa for some a. First we 
want to find an integral basis for Ou over Q. We can begin by considering the basis 
of integers 

B= {Xa,(Z):1 ?i?K}, 

and triangularize it by an integral row-reduction process, to get a new version of B. 
Next we construct all the characters of the Galois group of Q over Q and their 
conductors, whose product is then the absolute value of the discriminant of Q over 
Q, AO/Q. Given this number, we can test whether the basis of integers B forms an 
integral basis. This has been successful in all examples worked so far, though a proof 
is lacking. If B is not an integral basis, we can find what rational prime factors are 
missing from the denominators of the integers in a triangularized version of B, and 
find a true integral basis. Say B = { b,: 1 < i < K }. Now we can take 

K 

z = CAcb1, Ci EZ 
i=1 

as generators for principal ideals (z) and compute their norms, selecting those whose 
norms are of the form pa. 

We then factor the ideal (z) into powers of the prime ideals P, by using the 
following technique. Compute Aij E Z such that X a, (Z)- A1j (mod Pjt) for some 
moderate value of t (say 16). Now 

K 

(Z)= 
H 

Pei 

J=1 

where 

pe, = g.c.d.(L CiA1, Pt) 

if e. < t. We can also use the additional fact that a = 1 ej in case one ej > t. 
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Once a long enough list of useful factorizations of ideals has been compiled, the 
matrices 

Z ~ ~ ~ Le1(z1) ... eK (zl) a(zl)1 

F Z2 1 F el (Z2) ... eK(Z2) a(Z2) 

ml K]and M2 ..=.. .J . 

el(Zr) ... eK(Zr) a(zr) 

whose rows contain the elements zi and the corresponding exponents ej and a, hold 
much information concerning products of powers of the prime ideals Pj which are 
principal. Now, addition or subtraction of two rows of M2 corresponds to multipli- 
cation or division of the corresponding principal ideals, and hence, to multiplication 
or division of their generators zi appearing in the same row of M1. An interchange 
of two rows of M1 and M2 corresponds to an interchange of the ideal generators Zi. 
Thus we can perform additive row operations on M2 as long as we perform the 
corresponding multiplicative row operations on M1. We do this in such a way that 
we create a row in M2 of the form 

[w,(aln) 
... wp(aKn) k/2], 

and then the corresponding generator in M1 is a principal generator of the required 
ideal (H(f3)). 

3. Resolving the Unit Ambiguity. Given that we know a generator z of (H(f/)), we 
wish to calculate the value of H(,/) itself. In general, this is not possible without 
some ambiguity. Recall the K-fold ambiguity which was available in our choice of 
the prime ideal P1. This is equivalent to an ambiguity in the choice of z in that a 
conjugate of z, Xa(Z), will also work (so far). This gives us a list of at most K 
possibilities for the value of z. We do know that the equation H(/3) = uz must hold, 
where u is a unit in OQ. 

In order to proceed, we need some detailed information about what the units in 

0. are. They form a group U about whose structure we know a few facts. U can be 
decomposed into a direct sum of its torsion subgroup T (consisting of all elements of 
finite order) with a free group U'. In the case at hand, T is the set of all units of 
absolute value one, viz., ? the elements of the cyclic group of all (p - 1, N)th roots 
of unity. The remaining part U' is a free group of rank R = r + s - 1, where 
K = r + 2s, and s = 0 if Q C R. Here r is the number of real isomorphs of Q, and 
s is the number of conjugate pairs of complex isomorphs of Q. This is the Dirichlet 
unit theorem [3, p. 207]. Thus, we must find what is called a system of fundamental 
units for the ring of integers of the algebraic number field 02, that is, a set of 
generators of U'. 

In general, this is a nontrivial task. Much effort has been spent in calculating 
fundamental units for various algebraic number fields. One can start with units in 
any of the subfields of Q. We have employed two techniques for finding units. The 
first is not particularly elegant or efficient, but has served its purpose. We simply 
search for integral linear combinations of the integral basis with small coefficients 
and having norm + 1. The second is to use the matrices Mi above and to create as 
many all-zero rows in M2 as possible. Then the corresponding generators in M1 will 
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be units. Once some units are found, others may be generated by multiplying 
positive or negative powers of known ones together. Redundant ones can be 
removed from the set until the number of generators remaining is equal to the rank 
we need. 

Actually, as long as we are "close" to having a system of fundamental units, that 
is good enough for our purposes. We do need to have R independent units, but it 
suffices to have a set which generates a subgroup of the unit group U' of small finite 
index. Let E = { E1, ..., ER } be the set of independent units that are known. There 
may be units not in the subgroup generated by E, e.g., a square root of E,. Then 

R 

H(13) = zeo E, x 
i=1 

where e- is a unit of absolute value one. We can take absolute values of both sides 
and then logarithms to any convenient base, and obtain the following Diophantine 
equation with real coefficients: 

R 

E xi logiE, I = x0(logj H(P) I - logj z ). 
I=1 

Now we can use another result of Baumert and McEliece [1]: IH(P)j = q172. The 
solution we seek consists of an (R + 1)-tuple of integers (x0, ..., XR). x0 must be a 
divisor of the index of the subgroup of U' generated by E. If E generates U', this 
guarantees that each x,/x0 will be an integer. 

The solution of this Diophantine equation may be accomplished by a direct 
search, since the xi's tend to be small (and x0 is usually 1). Another technique which 
we have used is based on a generalized continued fraction algorithm to find 
approximate solutions, i.e., sets of integers xi which make our equation nearly true. 
With the proper choice of algorithm, we quickly arrive at the correct solution. 

There remains the ambiguity in the choice of the torsion unit E. There are 
[2, (p - 1, N)] choices for E. Combined with the choices for z, this gives at most 
[2, (p - 1, N)]K possibilities for the value of H(,3). Some of these will be 
eliminated as impossible in the next section. 

4. Constructing the Generating Function from Its Values. We are now given one of 
a list of possible values for H(,/3), and wish to construct the generating function 
H(x) modulo xN - 1, whenever that is possible, and determine when it is not 
possible. The main tools for this task are the following theorems of Baumert and 
McEliece [1]: 

Semiprimitive Case. If N > 2, and there exists a divisor j of k/2 for which 
p i -1 (mod N), then 

P+ (1+ X + +XN-1) (modxN ) H(x)=p~xc N (o 

with c = 0 unless N is even and (pi + 1)/N is odd, and then c = N/2. 
Quadratic Residue Case. If N = 2 and k is even, 

H(x) - { [ _ (_ 1)k(p-1)/4pk/2 - 1_/2) 

+ {[(_)k(P 1)/4pk/2 - 1]/2)x (modx - 1). 
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If N = 2 and k is odd, 

H(x) - [(- )k(p-l)/4pk/2 - 1]/2 

+ {[-(-i)k(p 1)/4pk/2 - 1] /2} x (modx - 1)X . 

Integer Coefficient Criterion. Suppose that, for each prime divisor d of N, an 
integral polynomial gy/d(X) is known such that H(x) gN/d(X) modulo xN/d-1. 

Then a necessary and sufficient condition for the existence of an integral polynomial 
congruent to H(x) modulo xN -1 is that 

H(x)= - N/d (X) (mo dN X) 

for all prime divisors d of N, where N = d aN, with (d, N1) = 1. 
The idea is to apply these theorems according to the following process. First, 

compute the values of H( / N/d), where d ranges over all divisors of N. This is the 
place that we use the semiprimitive and quadratic residue cases (and possibly the 
table given by Baumert and McEliece [1] of all H(x) for N < 100 with p = 2). We 
then know what H(x) is congruent to modulo 4'd(x), call it Hd(x). Next, we apply 
the integer coefficient criterion to eliminate some of the possibilities for H(/3). 
Lastly we reconstruct H(x) modulo xN - 1 by applying the Chinese Remainder 
Theorem and Moebius inversion: 

H(x)- Hd(x) E I(LL- d)x -1 
NdIN d'Id kd x1- 

The result of this procedure may still be a short list of possibilities for H(x). It 
can happen that not all the ambiguities in the value of H(/3) can be removed. This is 
not a problem, however, as the weight enumerators calculated in the next section will 
be independent of the remaining choice of H(x). 

5. Finding the Weight Enumerator. At this point we know the values of qj for 
0 < i < N - 1. They are polynomials in ', say 

p-l 

7i= E ojj9i J=0 ,j=O 

where aij is the number of occurrences of the field element j in the ith codeword. 
Thus the weight of codeword i is Wi = n - a?o. We can compute the coefficients ajo 
in the following way. Let aj for 1 < j < p - 1 be the automorphism of Q(') over Q 
defined by aj(') = ti. Then 

atit = -( n + E aG ( q) X-i' . 

From this we now know that 

Win = n - - (n + E a- (l%))p 

If qi is in fact a rational integer, then ajo = (n + ( p- 1)qi)lp, and 
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Now we can compute the weight enumerator polynomial 
N-1 

A(z) = 1 + n E zw, 
i=O 

and we are finished. 

6. An Illustrative Example. As an exercise of this method, we solve the case with 
N = 187, p = 2. 

First we readily find that k = ord187 2 = 40, q = 240, and n = 5,879,741,325. Let 
,8 = e2ri/187. Its minimum polynomial is DI187(x) which has degree 4(187) = 160. 
Since p = 2 and NIq - 1, we have (q - l)/(p - 1) 0 (mod N), so H(fl) lies in a 
subfield Q of Q(fl) of degree over Q, K = 160/40 = 4. 

We wish to know exactly what the Galois group of Q over Q is, and we can do 
this by explicitly constructing the automorphisms. 

They are defined by the equations Xa(1) = /3", where (a, 187) = 1. Since 
X a[ b( /3P)] = X ai,( /3), the Galois group is isomorphic to the multiplicative group of 
units modulo 187 modulo its subgroup of powers of 2. The cosets have representa- 
tives 1, 3, 9, and 27 (among other choices), so it is cyclic, and is generated by X 3. 

We next construct the lattice of fields contained in Q and containing Q. Since the 
Galois group has only one element of order two, there must be exactly one subfield 
which is a quadratic extension of Q. Since the Legendre symbols (2/11) = - 1 and 
(2/17) = + 1, that quadratic extension must be Q( 17) = Q(w), where W2 + - - 4 
= 0. We introduce X here because {1, o } is an integral basis of OQ(7) over 
Z = OQ. Thus the lattice must look like the following diagram. 

QGO 
Q( o) 

Q 
Next we must try to factor the ideal (p) in the ring 0s. Here we can use 

Kummer's theorem, since each extension field is quadratic over the last, and each 
ring of integers has a basis consisting of powers of a single element. In fact, if we 
express Q as a quadratic extension of Q(co), we find that we can get Q by adjoining 

, where 

c2+ c + 22 + 58 = 0. 

Once again, we introduce (01 here because {1,9 1 } is an integral basis of Os over 
= Z[o]. Thus 0s = Z[o, o1]. Now in OQ(,,) we have 

(2)= (+ 2)(o- 1), 
and in O., 

(2) = ( + 2)(col,co - 1)(w1 + 1,co + 2)(c1 + 1,co -1). 

Kummer's theorem guarantees that these are all prime ideals in Os. Now we 
arbitrarily pick P1 = (1 + 1, o+ 2). We now compute the effect of X3, the 
generator of the Galois group: 

X3(Co)= -o - 1, 

X3G1)= 2oo1 - 3R1 + o - 2. 
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Now we find that 

P2 = X3(P1) = (w1 + 1,w -1), 

P3 = X3(P1) = (w1,, + 2), 

P4 = X3(P1) = (W11 - 1).o 

We also compute the exponents 

w2(n) = 21, w2(3n) = 16, 

w2(9n) = 19, w2(27n) = 24, 

so that 

(H(f3)) = p 21p26p39p24 

Now we hunt for principal ideals whose norms are powers of 2. A short search 
reveals the following: 

(w-1)= P2P4, (co + 2) = P1P3, 

(X1 + 2w + 3) =P1P2, (w1 + 2w + 6) = P33P45. 

The matrices M1 and M2 now look like 

-1 1 0 1 0 1 21 

Ml= |1?2? 
+ 3 j 

and 
M2= 0 0 3 5 81' 

[ w+2 6 8 2 0 0 10 

which lead us, after suitable row operations, to the equation 

P1 21 16 24 = (W - 1)14(W + 2) 13(w + 2w + 3)(w1 + 2o + 6)2 

= 216(COO + 4w1 - 28w - 72). 

Our next task is to determine the units in the ring O.. The only units of absolute 
value 1 are + 1. The rank of the group of units is R = r + s - 1, where K = 4 = r 
+ 2s, and since 2 is not a subfield of R, r = 0 and s = 2. The rank of the group of 
units in OQ is 'thus R = 1. In the subfield Q(cw), a real quadratic number field, the 
units also have rank one, and a fundamental unit can be found from the solution of 
the Pellian equation x2-17y2 =-4. In this case, we find that in OQ1(,,) a 
fundamental unit is 2w c+ 5. We suspect that this is also a fundamental unit in OQ, 
but, as indicated above, as long as we allow the parameter x0 to be bigger than one, 
we do not really care. At any rate, 

H(,B) = ?216(2 iw + 5)Xi/X0(GwwO + 4w1- 28w - 72). 

We need to solve the Diophantine equation 

xilogj2o + 51 = x0(log24 - loglww, + 4w1 - 28w - 721). 

When we substitute in the complex values of w = 1.561552813 and w1 = -.5 + 
9.597091324i, we obtain the equation x1 = -x0. Thus we may take the solution 

X0 = 1 and x1 = -1. Therefore, 

H(,B) = + 216(3w1 - 4w1 - 4w - 8). 

Next we need to express both w and w1 in terms of /P. The first part is easy, using 
a famous theorem of Gauss: 

(p-1)/2 
2(_)p - 

1)/2P I E 1 2 

,j=l 
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where p= e2 l/P. In our case this takes the form 
8 

j/ = 1 
llj 

whence 
= /3154 _ 3132 _ 3121 _ /110 377 - /66 - /55 - /33 - 1 

We cannot repeat this process in the next higher extension field Q, but we can 
compute 39 

z = TraceQ()/Q(/3) = E /2' 
l=0 

which is an element of U. Then we use linear algebra to find the minimal polynomial 
of z over Z[o], which must be monic and of degree 2. It is then simple to compute 
what linear combination of (1, z } our c1 must be and thus find c1 as a polynomial 
in /3 modulo ?187(A). In fact, 

(= 3159 - 2/3158 - 2/3155 + /3154 + 3153 - 2/3144 + /3143 + /3142 - 2/3141 - 2/3140 

+2/3137 - 2/3133 + /132 + 2/3131 - 2/3129 + 2/3126 + /3125 - 2/3124 - 2/3123 

-2/3122 + 2/3120 - 2/3118 + 23115 - 2/3112 - 2/111 + 23109 + /108 - 2/3107 

_2/3106 + 2/3103 - 23101 - 23100 + 2/398 2/396 - 2/395 + 2/392 + /391 

-2390 - 2/89 + 2387 + 2/86 _ 385 - 2/84 + 2/381 - 2/#79 - 2/78 + 2376 

+2 #75- /374 - 2/l73 - 2/372 + 2/369 - /68 - 2/367 + 2365 + 2/364 - 2362 

-2/361 + 2/358 - /57 - 4/56 - /55 + 2/l54 - /51 - 2/5o + 2/347 - 23 45 

-/344 + 2/3 - 340 - 2/39 - 2/34 - 333 + 2/332 - 2328 - 323 - 2/322 

/317 - 2312 /311 _ 36 - 2/35 - 1. 

Direct substitution will now yield an explicit expression for H(/3): 
H(/) = ?(8/159 - 3158 - 43155 + 6/3154 _ /3153 - 33149 + 9/148 _ 33147 - 4/144 

/ 3143 + 8/3142 _ /3141 - 4/140 - 3/3138 + 1o3137 - 3/3136 - 3133 

+ 3/3132 + 73131 - 3/130 - /3129 - 3/127 + 73126 + 5/125 - /3124 _ 4/123 

/ 3122 + 3121 + 7/120 - 33119 _ 43118 - 33 16? 73115 + 6/114 

- 3/3113 _ 3112 - 4/111 + /110 + 73109 + 5/3108 - 4/3107 - 4/3106 

_ 3/105 + 3/104 + 7/3103 _ 33102 _ 43101 - 4/100 - 3/99 + 4398 

+ 6 97_ 4396 - 395 - 3/394 + 3/393 + 4/392 + 5/391 - 4/390 - 4/389 

3/388 + 4/387 + 7p86 - 5/385 - 4/84 - 3383 + 6382 + 4/381 + 6/380 

-4/79 - 4378 + /77 + 4/76 + 4/75 + 4/74 - 4/73 _ 7372 + 6/37 

+7/369 _ 5368 - 4367 + /66 + 4365 + 4364 + 3363 - 4/62 - 4361 

?3/360 + 4/58 + 4357 - 5356 - 355 + 4354 + 3352 - 5351 - 7/50 

+ 3/49 + 3/348 + 4/347 + 3/46 - 7345 - 5344 + 4343 + 3/41 + 4340 

_7339 + 3338 + 3/37 + 3335 - 7334 - 333 + 4/332 + 3/331 + 3/329 

_7328 + 3/327 + 3/324 + /323 _ 7p22 + 3/320 + 3/318 - 8g/17 + 3316 

+ 3/14 + 2/312 - 8311 + 3310 + 337 + /6 + 2/5 + 3/3 + 3/ 9). 
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Call this expression +fo(I3). Alternate choices of the ideal P1 would give the 
expressions 

H(/3)= ?fj(f3)= ?f0[X3(f)], 
for 0 < j < 3. Then H(x) - ? 216j (x) (mod 4D187(x)). This gives us the eight cases 
for d = 187. Now since 11I25 + 1, and 1712' + 1, d = 11 and d = 17 are both 
semiprimitive cases, so H(x) - 22o (mod >11(x)), and H(x) 220 (mod 4Fl7(x)). 
Also, H(x) -1 (mod 1(x)). 

Now we apply the integer coefficient criterion. We can eliminate the "-" sign in 
this way for each j, leaving four possible choices for H(3), namely +fj(/). Lastly 
we apply Moebius inversion, and reconstruct the function H(x) modulo x187 - 1, 
obtaining its coefficients. Recall that mi = %2i, so that the 1j's are equal for any two 
subscripts whose quotient is a power of 2 modulo 187. Thus, we list the coefficient 
and the weight for only one subscript from each coset of the multiplicative subgroup 
of powers of 2 in the multiplicative semigroup of integers modulo 187: 

mo = -148595, number= 1, 

q = 48013, = 40, 

%13 = 48013, = 40, 

?q9 = - 83059, = 40, 
?1l1 = -214131, = 8, 

117 = 113549, = 10, 

123 = - 17523, = 40, 

%3 = 113549, = 8. 

Now we use the formula Wi = (n - qi)/2 to compute the codeword weights: 
W0 = 2939944960, number = 1, 

WI = 2939846656, = 40, 

W3 = 2939846656, = 40, 

W9= 2939912192, = 40, 

Wi1l = 2939977728, = 8, 

W17= 2939813888, = 10, 

W23 = 2939879424, = 40, 

W33 = 2939813888, = 8. 

Then the weight enumerator polynomial will be 

A(z) = 1 + 5879741325z2939813888(18 + 80z32768 + 40z65536 + 40z98304 

+z131072 + 8z163840). 

7. More Examples. As another example, let us take N = 161 = 7 - 23, p = 2. 
Then k = 33, q = 23, K = 4, and n = 53,353,631. Let /3 = e2 '7161. Its minimum 
polynomial is 0'161(x) which has degree 4(161) = 132. Then H(,B) lies in a subfield 
of Q(,/) of degree 4 over Q. call it S2. The Galois group of S2 over Q is the noncyclic 
Abelian group of order 4 consisting of {1, X3, X5, A15). Since there are three 
elements of order 2 in the Galois group, there are three quadratic subfields of S2 over 
Q, namely Q(l1-7) = Q(w1), Q( -23) =)Q(w2), and Q(161 ) = Q(wo), where 

c2 + c + 2 = 0, C02 + ?+ 6 = 0 ^,2 + o - 40 0 
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For no particular reason we work with the last of these. We introduce o here 
because {1, o } is an integral basis of OQ(161) over Z = OQ. Now S is a quadratic 
extension of Q(W), and we may take S = Q(W, W). Now we need to find an integral 
basis of Os over Z. As a first approximation we try the set B = {1,co,co1,coco1}. 
These are certainly linearly independent integers, but they may not generate the set 
of all integers in 0Q. Now the discriminant of this set is computed to be 11272, and 
the discriminant of the field i is 1612, there being an extra factor of 72 present. This 
implies that B is not an integral basis, and that there exists an integer of the form 
y = (oo1 I + hoI+ j+ + k)/7, where 0 < i, j, k < 6. This integer must satisfy a 
monic quartic polynomial equation, and congruence considerations modulo 7 then 
lead us to the unique solution i = 4, j = 4, k = 2, satisfying the equation y4 + y3 

- 16y2 + 12y + 144 = 0. We change the set B to B = {1,xo, 91,y}, and now we 
have an integral basis. We can express each of these in terms of /3 by using Gauss's 
theorem: 

#=323 + A346 + /929 

6x = 37 + /14 + /321 + /28 + 342 + /356 + 363 + 384 + /391 + /112 + /126 

c = -2W1W2 - W1 
- 

72 
- 1, Y = -WIW2- 

Next we try to factor (2) in Qu. We can observe tha (2) = (o + 7)(W - 6) and that 
(2) = (X1 + 1)(X1). Likely candidates for prime ideals are the greatest common 
divisors of any two of these principal ideals, one from each equation. These work, as 
can be readily verified by checking norms, and all four possible choices form the 
four prime ideal divisors of (2). We arbitrarily select 

P1 = (,1,0 + 7), 

and then compute 

P2 = X3 (P1) = (P 1 + 1, -6), 

P3 = X5-'(P) = (W1 + 1,c + 7), 

P4 = X-'(P1) = (WI9,(c -6). 

We can now compute that 

(0i-1O and Co2=6 (modPI4), 

c - 5 and W2 -6 (modP2 ), 

- 5 and W2 9 (modP34), 

o 
I 10 and 2 -9 (modP4). 

We have the following factorizations into prime ideals: 

(o + 7)=-P1P3, (co-6)= P2P4 
(W1 + 1) = P2P3, (o1) = PIP4, 

and a short search reveals that 

(y + 4) = P 3P2p4, (y + 2) = PP22P43P, 
(y-2) = P1P24P42, (-y - 4) = P16P2P4. 
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Now we apply Stickelberger's theorem, and obtain 

(H(1A)) = p1p211p311p418- 

Using the matrices M1 and M2 we can get the following: 

(H(13)) = 218(y + 2)/(y - 2)(y + 4) = 2'5(1-(2), 

and we can also find the unit 
8 = -58w1 - 32X2 - 45. 

The only units of absolute value 1 are + 1. As above, the group of units U' has rank 
1, so that E or some root of it will generate it. We have the following equation: 

H(/)= ? 215xl/xo(1 - 
2 

We need to solve the Diophantine equation 

x1 log| El = xo(log2 3/2 - logil - w21) 

When we substitute in the complex values of wo, C2, and 8, the result is x1 = 0. 
Thus 

H(3) = ?2'5(1 -2) 

and H(3) E Q(W2), a quadratic extension of Q. Other possibilities for P1 would 
yield 

H(P) = ?215(2 + 2) 

so we have four possible values of H(3). 
Next we apply the integer coefficient criterion to determine which of these values 

is correct. Reducing modulo 23 and ?7(X), we find that the upper sign holds in both 
equations. Reducing modulo 7 and 023(x), we find that only the second equation 
holds. This implies that 

H(x)--32768(X126 + x112 + x9l + x84 + x63 + X56 + X42 

+X28 + X21 + X14 + X7 + 2) (mod >D6, W) 

We use the known generating functions H(x) for codes with N = 7 and N = 23 to 
compute that 

H(x)-- -32768-28672(x18 + x16 + x13 + x12 + x9 + x8 

+x6 + x4 + X3 + X2 + X1) (mod 23W), 

and that 

H(x) -45056 + 47104(x4 + x2 + xl) (mod F7(x)). 

Now Moebius inversion yields the desired result: 

m= 50335, number= 1, 

'qI = 3231, = 33, 

% 
= 1183, = 33, 
= -2913, = 33, 

'q7 = 9375, = 11, 

'qII = - 865, = 33, 

'q23= 7327, = 3, 

35 = -19397, = 11, 

'q69 = 5279, = 3. 
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Now we use the formula Wi = (n - q,)/2 to compute the codeword weights: 
W0 = 26651648, number = 1, 

WI1 = 26675200, = 33, 

W3 = 26676224, = 33, 

W5 = 26678272, = 33, 

W7= 26672128, = 11, 

Wi1l = 26677248, = 33, 

W2V3 = 26673152, = 3, 

W35= 26686464, = 11, 

W6I9 = 26674176, = 3. 

Then the weight enumerator polynomial will be 

A(z) = 1 + 53353631z 26651648(1 + liz20480 + 3z 21504 + 3z 22528 + 33z 23552 

+33z24576 + 33z25600 + 33z26624 + liz34816) 

Other cases which would be amenable to this technique, which have k > 28, 
K > 3, and are neither semiprimitive nor degenerate, are: 

N 4(N) k K 

215 = 5 43 168 28 6 
223 222 37 6 
231 = 3 7 11 120 30 4 
233 232 29 8 
247= 13 19 216 36 6 
259= 7 37 216 36 6 
279 = 32 31 180 30 6 
285 = 3 5 19 144 36 4 
287 = 7 41 240 60 4 
291 = 3 97 192 48 4 

The restriction k > 28 is due to the table of MacWilliams and Seery [2] covering all 
smaller values of k. This exhausts all such cases with N < 300. 
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