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A Convergent 3-D Vortex Method 
With Grid-Free Stretching 

By J. Thomas Beale* 

Abstract. We prove the convergence of a vortex method for three-dimensional, incompressible, 
inviscid flow without boundaries. This version differs from an earlier one whose convergence 
was shown in [4] in that the calculation does not depend explicitly on the arrangement of the 
vorticity elements in a Lagrangian frame. Thus, it could be used naturally in a more general 
context in which boundaries and viscosity are present. It is also shown that previous estimates 
for the velocity approximation can be improved by taking into account the fact that the 
integral kernel has average value zero. Implications for the design of the method are discussed. 

1. Vortex methods are a means of simulating time-dependent, incompressible fluid 
flow, in which the flow is represented by a collection of vorticity elements. The 
configuration of the elements at a given time determines an approximate velocity 
field. The velocity, in turn, is used to compute new positions for the elements, and, 
in the case of three-dimensional flow, the vorticity is updated in a similar way. The 
result is a system of ordinary differential equations for particle paths followed by the 
centers of the elements and, depending on the version, their vorticities as well, This 
approach has several important advantages. Computational elements are needed 
only in regions with vorticity, and obvious sources of numerical diffusion are 
avoided. Although it is generally difficult to maintain stability in numerical methods 
for nonlinear problems without some dissipation, the vortex methods discussed here 
are nonlinearly stable. As a consequence, this class of methods seems especially 
appropriate for inviscid or slightly viscous flows with concentrated vorticity. The 
main purpose of this paper is to prove convergence of one version of the vortex 
method for three-dimensional flows. This method was suggested by C. Anderson; its 
properties were discussed in [1]. 

Vortex methods have been used for two-dimensional flow for some time, but 3-D 
calculations are newer, and the methods are still under development. Recent 
simulations of inviscid phenomena have included aircraft-trailing vortices and 
turbulent spots [22], vortex breakdown [25], the merger of vortex rings [17], and the 
possible formation of singularities in an initially smooth configuration [11], [28]. See 
Leonard [22], [23] for a more complete description of applications to date. When 
boundaries are present, the effect of viscosity must be incorporated, and there is 
some choice in how this can be done. In a general method developed by Chorin and 
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others [10], vorticity elements of a second kind, representing vortex sheets, are 
generated at the boundary to satisfy the no-slip condition, and a random component 
is added to the velocity of all the elements to simulate viscosity. For a general 
description of this combined method, see [12]. Applications have included instabili- 
ties in flow past a flat plate [10], and start-up flow past a cylinder at high Reynolds 
number [9]. An alternative is to use a mesh in the boundary layer; airfoil calculations 
were done in this way in [29]. There are a number of related methods in use, such as 
cloud-in-cell methods; see [22], [23]. 

The convergence of vortex methods has been rigorously established for versions in 
two or three dimensions for inviscid flow without boundaries [19], [4], [5]. Other 
theory [8], [13], [24] lends partial support to the full method with boundary layers. 
The first proof of the convergence of vortex methods was given by Hald [18], [19] 
who established second-order convergence for two-dimensional flow by reducing the 
argument to consistency and stability estimates. A. Majda and the author, following 
the outline of Hald's approach, showed that a three-dimensional version also 
converges and that high-order accuracy can be achieved [4], [5]. (Hereafter, [4], [5] 
are referred to as [I] and [II].) In [6] we developed high-order accurate versions of the 
method given by simple, explicit formulas and illustrated the theoretical predictions 
with tests of exact solutions in 2-D. Further improvements in the theory have been 
made by Cottet and Raviart [14], [15], [26] and Anderson and Greengard [1]. For a 
concise summary of the present state of the theory, see [7]. 

In three-dimensional flow, unlike the simpler 2-D case, the vorticity is stretched 
and contracted by the changing geometry of the flow, and the numerical method 
must of course take this process into account. In the method of [I], which is in one 
sense the simplest possible version, the current vorticity is calculated from a 
difference approximation to the Jacobian matrix of the Eulerian coordinates of the 
elements with respect to the Lagrangian ones (see [I], [1], [7]). The differences are on 
a rectangular grid covering the support of the initial vorticity. Thus, the calculation 
makes explicit reference to the Lagrangian configuration of the particles, and this 
information must be retained in the computation. In the present method, however. 
the vorticity stretching term (X - V)u is computed directly from the integral 
expression for the velocity (see (1.11) below), and the Lagrangian grid is not needed. 
In principle, then, this method could be combined with the vortex-sheet representa- 
tion of the boundary layer, together with a random walk to simulate viscosity, as 
already described. This method was described in [1], and comparisons were made 
with the method of [I]. C. Anderson has also developed related methods for fluids of 
variable density using the Boussinesq approximation [2], [3]. 

The crucial stability estimate in the convergence argument assesses the error in the 
calculated velocity due to the error in the particle locations and in the transported 
values of vorticity. A similar estimate must be made for the errors in the calculated 
vorticities of the elements. For the method of [I] this second estimate followed more 
or less automatically from the first (see [I] or [1]), and it appeared that the stability 
might be a property special to this version of the method. However, the necessary 
estimates can be established for the present version through more detailed analysis, 
as shown in the last section of this paper. One implication is that more flexibility is 
allowed in the design of 3-D vortex methods, without loss of stability, than was 
thought earlier. 
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Cottet and Raviart [14], [15] made the important observation that the treatment of 
consistency in [II] could be greatly simplified by regarding the error in discretizing 
the velocity integral directly as a quadrature error in Lagrangian coordinates. We 
follow their approach here, and derive improved estimates by taking into account 
the fact that the kernel of the integral operator has average value zero. Because of 
cancellation, the discretization is actually more accurate than it appears. The same 
observation holds, of course, for the discretization of the velocity integral in the 
two-dimensional vortex method. We also discuss modification of the present method 
to achieve the same advantage in the computed expression for the vorticities of the 
computational elements. Numerical examples are given to illustrate the improvement 
in accuracy possible from such modification. The derivation of the improved 
estimates is given in a supplement at the end of this issue. 

We now describe the formulation of the vortex method to be discussed. For 
incompressible flow in R3 the velocity u(x, t) can be found from the vorticity 
w(x, t) according to the Biot-Savart Law 

u(x,t) = - Ix-x 3 X ( , xt)dx', 

assuming velocity zero at infinity. This expression has the form 

(1.1) u(x, t) = J K(x - x') w(x', t) dx' 

with K the matrix-valued kernel, 

(1.2) K(x,t)=- 3X = VG(x)x, 

where G(x) = 1/(47TIxI) is the Green's function for -v 2. To discretize, we replace 
the kernel with a smoothed version, in direct analogy with two-dimensional vortex 
methods; see [II], [7], [19]. Let Tp8(x) = 8-3p(x/8) be a smooth approximation to 
the delta function, the length 8 being a scaling parameter. We replace G above by 

= G * P and then K by K8 = K * Pe, where * denotes convolution, 

(1.3) K8(x) = VG8(x) x = (x) x . 

It can be seen that K8 has the form 

(1.4) K8(x) = - f(xI1/8) 3 X 

with f a function determined by q; f (p) 1 as p -x o, and f (p) = 0(p3) as 

p -- 0, so that K8 is smooth. The choice of K8 and the relation between q and f is 
discussed further in Section 2. 

Our strategy will be to follow the trajectories 

(1.5) dxi/dt = u(xi, t) 

of a collection of particles { xi(t)}, each representing a material region of volume h3; 
we will choose the particle locations at the initial time to be centers of grid cubes of 
side h. We assume the vorticity is zero outside a bounded set and write wi(t)= 

(x1, t). The discrete version of the velocity is then 

(1.6) u(x, t) - YK8(x -xj)tjh 
I 
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We will approximate the particle trajectories and their vorticities by a system of 
ordinary differential equations, with the particle velocities computed from this 
discrete velocity field. The most familiar expression for the evolution of vorticity is 

(1.7) W, +( * V)W = ( X V)u. 

Thus, to find the material derivative of a, we would like to form an approximation 
for (w - V ) u in terms of {x;, wj }. A natural way to evaluate V u is to differentiate 
(1.6), applying the gradient to the smooth kernel K8: 

(1.8) Vu -EVK8(x-x-j)tjh3. 

More explicitly, we have 

(1.9) auk 2 kmnGS,lm(X - Xj)(W ) h3 
a/ jm, nm 

where 6kmn is the usual permutation tensor and indices after a comma denote 
derivatives. Applying (1.8) to (1.7), we write 

d = d3 
dt dt A@ (xi(t), t) - Xi - EVK8(x - xj) tjh3 

Finally, we obtain a system of differential equations for the particle locations 
{xi(t)} and their vorticities { xi(t)} approximating (1.5), (1.7): 

(1.10) dt- = Ks(gi- j)Cjh 

(1.11 l ) =dt Xi* EVK8(ii - Xjjh 

(We use tildes to distinguish the solutions of the O.D.E.'s from the corresponding 
quantities in the actual flow.) Once {Yci,&i3} are known, the velocity field can be 
computed from (1.6); a similar expression for the vorticity is discussed below. We 
prove here that all these quantities converge to the correct values as the particle 
spacing and the smoothing parameter approach zero in a certain way; see Section 2 
for precise statements. An insightful discussion of this method is given in Section 4 
of [1]. The method (1.10), (1.11) and that of [I] are closely related to the method of 
Chorin [10] and also similar in spirit to earlier calculations such as Leonard [21], 
[22]. Saffman [27] coined the term " vortons" for the elements in a discretization of 
(1.5), (1.7). 

A variant of (1.10), (1.11) is based on the familar fact that 

(1.12) VU- X = VSU U 

where V Su is the symmetric part of V u, i.e., the rate-of-strain tensor 

VSU = (u+(,vU) T), VU=2 (VU +(V)) 

with T indicating the transpose. We might therefore replace (1.11) with 

(1.13) dt i * ( VK8( - j)Cxjh3 
dt~~~ 
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s meaning the symmetric part. Whereas (1.9) involves arbitrary second derivatives of 
G8, the corresponding symmetrized version uses only mixed partial derivatives or a 
difference of two repeated derivatives: If k = 1 in (1.9), repeated derivatives occur 
only for m = 1 = k and the term in the sum is zero. If on the other hand k # 1, 
m = 1, there is a unique value of n so that 6kmn = 6kln is nonzero. If k and 1 are 
switched we have the two terms 

'klnG8,ll( J)n + ElknG8,kk( 'j)n = (Ge in- Ge kk)G'j) 

as claimed. As a result, the kernel whose discretization appears in (1.13) has average 
value zero. It is shown in Section 4 that this property can be used to modify (1.13) so 
that improved consistency estimates are possible for the discretization of (w - V )u, 
and numerical examples are given in Section 2 in which improvement is evident. On 
the other hand, Greengard has pointed out that (1.10), (1.11) has an advantage 
which is apparently not shared by the symmetrized version; namely, the computed 
flow map preserves vortex lines in a certain natural sense, as does the actual flow 
(see Section 4 of [1]). Thus, in a computation with only a few vortex lines, the 
alignment of vorticity arrows may appear more realistic in the first method. 

The smoothing of the kernel followed by discretization can be interpreted as an 
approximation of the vorticity by a sum of elements of "blobs" of vorticity centered 
at the particle locations. The expression for the computed velocity field (1.6) is 
equivalent to 

u(x, t) - FVG8(x - x) X jh3 

i 

=v X ?G(_V2-xjY~),&X jh3 jh 
i = v x (-~V2)l- 8( ?g(-X @ 

A natural vorticity approximation is the curl of the above, 

(1.14) o(x, t) X V x(_V2)1 E8(x -x)tj h 3. 
J~~~~~~ 

This is, in fact, the orthogonal projection, in the L2 sense, of the "blob" sum 

(1.15) Y?9,(x xj)tj-h -b(x,t) 
i 

onto the subspace of divergence-free vector fields. Suppose that, conversely, we 
began with (1.14) as an approximation th(x, t) to the vorticity, so that th = Pb, P 
being the projection; then (I - P)b is a gradient, and consequently the velocity field 
corresponding to Ah is, using (1.2), 

V X (-V 2)-1 jh = V X (-V 2)-lb VG8(x - xj) X ojh3, 

which is the same as (1.6). Thus (1.14) is the representation of the vorticity as a 
collection of elements, as mentioned earlier. It determines the velocity field (1.6) 
used to update the location of the elements. We can view (1.14) as the analogue of 
the approximation of the scalar vorticity in two dimensions by a sum of "blobs" [7], 
[19]. 
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The rest of this paper is organized as follows. In Section 2 we discuss the choice of 
the modified kernel K8 and describe the convergence results in detail, as well as the 
consistency and stability lemmas. We also present a numerical example illustrating 
the discretization of the velocity u and the stretching term (- V ) u. Section 3 gives 
the proof of convergence, assuming the consistency and stability lemmas, and 
reviews the simplified treatment of consistency. The stability argument is presented 
in Section 5, after a few lemmas in Section 4. Finally, the improved consistency 
estimates, taking into account the average-zero property of the kernel, are derived in 
the Supplement. (These improved estimates are not necessary for the proof of 
convergence.) 

It is a pleasure to thank A. Majda for a number of stimulating conversations 
concerning the questions dealt with here. The author also wishes to thank Majda and 
A. Chorin for arranging a visit at the University of California at Berkeley during 
which this work was undertaken. 

2. Summary of Results. We begin by introducing some notation. Let A be the 
lattice of points in R3 with integer coordinates and Ah the discrete grid hA of size h. 
We assume the initial vorticity is zero outside some radius RO; AMO will denote the 
intersection of Ah with { x: lxI < R0 }. We write a for the Lagrangian position. The 
particle trajectory 

(2.1) dx = u(x, t), x(o; a) = a, dt 

determines a coordinate mapping 4X(a) = x(t; a) from Lagrangian to Eulerian 
location. We discretize the flow by introducing particles at time zero at locations 
a= ih, ih e Aho. Let xi(t) = Ft(ai) and xi(t) = w(xi(t), t). Associated with the 
particle configuration we have approximate velocity and vorticity fields, as in (1.6), 
(1.14), 

(2.2) uh(x, t)= ? Ka(x-x>)j -h3, 
jhe MOA 

(2.3) Wh(Xt) ? V [K&(x-xj) jh3 
jh e MO 

In a corresponding way, &i(t) and Ci(t) will denote the solutions of the ordinary 
differential equations (1.10), (1.11) or (1.10), (1.13), the sums being over jh e A'O. 
The initial data is the same as for the actual flow: 

(2.4) ,i (O) = ai, i (?) = tj (aj. 

Similarly, we write rih(X, t), rh(x, t) for the expressions analogous to (2.2), (2.3) 
with xj, wj replaced by xcj, Cjj. We also write for simplicity 

rih(t) = [uh(yi(t), t), u h(t) = Uh(Xi(t), t), 

and similarly for Vie, VUh. 
We now discuss the choice of the smooth delta function Pa and the modified 

velocity kernel K8, where again 

(x) = 8-3q(x/3) K8 = K * 
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Our assumptions on p will be that 
(i) p is a smooth, even function of the radius r = lxi, decaying at infinity; 

(ii) f (x) dx = 1; 
(iii) f xOp(x)dx = 0 for 1 < P1 < m -1. 

The decay at infinity will be made more specific below. Here /B is a multi-index and 
m is a positive integer. Since (iii) holds by symmetry for /B odd, we can take m to be 
even. In fact, (iii) is satisfied for any radial p with m = 2, and higher order can be 
achieved by imposing further conditions. The value of m determines the order of 
accuracy of the method in the convergence theorem. 

If q is chosen, it is easily seen by an integration that the modified velocity kernel 
K8 has the form (1.4), with 

(2.5) (X) = () r =IxI. 
4'lr r2' 

We may equivalently choose p or f, and it is natural to make a choice of f so that 
K8 has a simple expression. This approach was developed in [6]. It was shown that 
the conditions (i)-(iii) on q will hold, provided f satisfies 

(Fl) f(r)/r3 is a smooth function of r 2; 

(F2) f(r) -- 1 as r oo; 
(F3) f' fP(r)r2kdr =0, 2 < 2k < m - 2; 

and f(r) - 1 decays well enough at infinity. Specifically, we will assume 
(F4) IDif(r)l < Cjrl- 1i, r > 1,~ 

for each j > 1 and a fixed 1. It is sufficient for our results here to suppose 
1 > m + 1. With 1 = m + 1, (2.5) and (F4) imply that 

(2.6) D ip(r) |< Cjr( 
It was noted in [6] that if f2 is a function satisfying (Fl), (F2), then 

f(r) =f2(r) + {rf2(r) 

satisfies (F1)-(F3) with m = 4. Two choices which have worked reasonably well in 
preliminary tests are based on the second-order functions 

f2(r) = (tanhr2)3/2, f2(r) = r 3/(1 + r 6)/2. 

The corresponding fourth-order versions are 

(2.7) f(r) = T3/2 + 3r2T1/2(1 - T2), T = tanhr2, 

(2.8) f(r) = r3{(1 + r6)-1/2 + 3(1 + r6)-3/2} 

These have performed somewhat better in preliminary tests than the two examples 
given in [6], perhaps because the earlier ones decay extremely rapidly. Some sample 
errors for computed values of u and (w - V ) u at time zero are given below. 

In stating the convergence results below we assume that the solution u of the 
Euler equations is sufficiently smooth for the time interval under consideration. It is 
known that, if the initial data has several derivatives in L2, then a classical solution 
exists for a time interval depending on a norm of the initial data, and the solution 
has the same number of derivatives in L2 as the data. The time interval is 
independent of the number of derivatives. (See [20], [31] for precise statements and 
proofs.) Thus, the smoothness assumptions on the solution can be regarded as 
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assumptions about the initial data. Regularity of the velocity field implies that the 
derivatives of the flow map IV are bounded. 

We will measure errors in continuous and discrete L P-norms and related norms. 
These are most convenient for the stability estimates because of the central role of 
singular integral operators. The discrete LP-norm for ui defined on ih e Ah is 

i//p 
I UIph= lUil h3 

ihA e 

We also use the discrete inner product 

(u, vi)h= E Uivih- 
ih Ah 

If the velocity is measured in Lg, it is natural to measure the vorticity in a discrete 
version of the negative Sobolev space W 1-P. We first define the Whl'P-norm as 

3 

giglI,ph =Igi Oph + E ILDJgI0O, 

where D+ is the usual forward-difference operator in the jth coordinate direction. 
As in the continuous case, we then define W-1P as the dual space to W1p* 
(l/p) + (l/p*) = 1. Thus, 

I Wi 11p h = sup (wi, gi) h 

{gi} E hs'P* I gi I l,p*,h 

It follows easily that 

(2.9) |wi W 1,p,h < lWilOp,h, 

(2.10) | wi lo posh < 2h | wi 1-1,psh , 

(2 .11 ) | DJ gi 1 -l p h < I gi 10,p ,h - 

(For the last, see Proposition 2.1 in [I].) Finally, we are ready to state the main 
result. 

CONVERGENCE THEOREM. Assume that the velocity field u(x, t) is smooth for 
o < t < T and that the initial vorticity wo(x) is zero outside a bounded set. Suppose 
that the modified kernel K8 is chosen subject to conditions (F1)-(F4) with m > 4 and 
l > m + 1. Set 8 = cohq for fixed co and q with j < q < 1. Choose p with 1 < p < x. 
Then, for 0 < t < T, the following convergence estimates hold for the method defined 
by (1.10), (1.11), (2.4), or the symmetrized version with (1.11) replaced by (1.13): 

(1) the particle paths 

l[i(t) - xi(t) IOph < Chfmq 

(2) the particle velocities 

jI4(t) -U(Xi(t), t) loph < y.mq 

(3) the particle vorticities 
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(4) the velocity field 

Ir h(. t) - u(', t) |LP(B(R)) < Chmq 

(5) the vorticity field 

|@h( (, t) (,t) I LP(B(R)) < Ch(m-l)q 
where B(R)= {x: IxI < R }. The constants depend on T, 4pq, co XR, and bounds for 
several derivatives of u. 

We were not able to include the case m = 2 in our stability argument; this seems 
inconsequential, since there is no disadvantage in using fourth-order kernels. The 
difference between the two versions of the method does not appear in the statement 
of the theorem; it does appear, however, in the consistency estimates below. The 
inequality (3) for the particle vorticities can be converted to an estimate in Lf using 
(2.10). 

The following two lemmas are the essential parts of the convergence proof. 

CONSISTENCY LEMMA. With the same hypothesis as the Convergence Theorem, 
except that h and 8 are regarded as independent parameters, we have 

(Cl) Iuh(X9 t) - u(x, t) < C(8m + 8 (h/8;) ) 

(C2) |VUh(X, t) -VU(X9 t) I < C(Sm + (h18)) ), 

(C3) Ivuh(Xtt) v(Xgt)| < C(8 +?(h/8)'). 

The estimates hold uniformly in x and t for IxI < R and 0 < t < T, where R is an 
arbitrary radius. Here 1 can be taken arbitrarily large, depending on the smoothness of 
the solution, and the constants depend on 1. 

STABILITY LEMMA. With the hypothesis of the Theorem, choose E and p so that 
O < e < q/2, 2e < 3q - 1, andp > 3/e. Suppose that for some time t with 0 < t < T 
we have 

(2.12) 71(t) -Iii(t) - X1(t) 10,psh + |?~i(t) -oWi(t) |-1,psh < h 
Then the following estimates hold: 

(S1) |Ut - 10(tlp h 1< Cq1(t)g 

(S2) |V,(i it u (t@it 1-1,psh < Cq(t)g 

(S3) 
I 

Uh(. * t) - Uh( t) |LP(B(R)) < Cr(0t), 

(S4) Ih(. t) - Wh( t) |LP(B(R)) C8171(t). 

The constants are independent of t. (S2) also holds with V u replaced by V Su. 

The consistency estimates for the velocity and symmetrized gradient, evaluated at 
the particle locations, can be improved by taking into account the average value zero 
of the kernels. The following conclusions are described further in the Supplement. 

IMPROVED CONSISTENCY LEMMA. With the hypothesis as in the Consistency Lemma, 
we have for 0 < t < T. 

(C4) |ui (t) _ u(xi(t), t) | < C(8m + 82(h/8)'). 

At time zero, we have 

(C5) Ivsu.,(O) - Vsu(ai,0) I t C(8m + t(h/z8)'). 
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Moreover, VS Uh can be replaced by a modified discretization Vsuh of V S u so that 

(C6) |VsUh(t) - VsU(xi(t), t) I < C(8m + 8(h/8)') 
for 0 < t < T. 

As mentioned before, the improved consistency estimates do not affect the 
statement of the Convergence Theorem, because we assume 1 large enough so that 
the term O(83) in the error dominates the rest. However, it will be apparent in the 
proof of the theorem that the total error estimate is improved by these more special 
consistency estimates if we regard h and 8 as independent parameters. 

To illustrate the difference between the two expressions for vorticity stretching, we 
describe the relative errors in a calculation of u and V u * w at time zero for a simple 
test problem. With modest resolution, the errors in the unsymmetrized form of the 
stretching term were 20%-50% higher than those of the symmetrized version. We 
took the velocity field to be 

(1-r2)4(x2, XI, O), r =I < 1, 

and zero otherwise, corresponding to the vorticity 

2(1 - r2)3(4x-x3, 4x2x3, -5x-2 5X2 -_ X). 

We covered the support with a cubic grid of 17 intervals across and assigned 
vorticities at the centers of the grid cubes. We computed u, V u w, (V u)S W 
according to (1.10), (1.11), (1.13) in the upper quadrant of the x2x3-plane. Because 
of the symmetry, these values should be typical. We use the fourth-order kernels 
(2.7), (2.8), and also a version of (2.8) which satisfies (F3) with m = 6, 

(2.13) f(r) = r3((1 + r6)-1/2 + 27 (1 + r6)-5/2} 

The relative L2 errors are given in Table 1. For reference, the errors in computing u 
or (Vu)s * X with no smoothing are 3.6% and 2.6%. The relative error was found as 
the square root of a ratio of integrals evaluated by the trapezoidal rule, 

- Pli2 Pih2)/( E2 luiluPih2), 
i2, i3 > 0 i2, i3 > 0 

where i = (0, i2, i3), pi = hli21, and ai = .5 if i3 = 0, as = 1 otherwise. The factor of 
Pi is inserted to account for rotational symmetry about the x3-axis. 

TABLE 1 

Percentage errors for three modified kernels 

Kernel (i) Kernel (ii) Kernel (iii) 

8 1 1.5 2 2.2 1 1.5 2 2.3 1.5 2 2.5 

u .48 1.3 4.0 5.5 .67 1.2 4.2 6.4 .69 .94 2.1 
Vu * X 2.8 3.1 6.4 9.2 4.6 4.0 6.6 10.4 2.9 2.7 1.9 

(Vu)s X w2.3 2.5 4.8 6.8 3.8 3.2 4.9 7.8 2.0 1.9 1.3 

Errors obtained with kernels determined by (i) (2.7), 

(ii) (2.8), and (iii)(2.13). 
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3. Proofs of Convergence and Consistency. In this section we present the proof of 
the Convergence Theorem, using the lemmas of consistency and stability stated 
above. We then discuss the derivation of the consistency estimates, largely relying on 
previous work. 

The theorem is easily proved by using the Consistency and Stability Lemmas to 
obtain a differential inequality for iq(t), as defined in (2.12). We present the 
argument for the unsymmetrized version; it will be apparent that some of the 
estimates can be improved in the symmetrized case. We need only prove the theorem 
for sufficiently large p: Since the estimates are in a fixed bounded set, the LP 

estimates imply LP' estimates for p' < p. We therefore choose fixed values of e and 
p satisfying the conditions of the Stability Lemma. 

Let 

ei(t) = Xi - xi, Wi(t) = ci - air 

so that 

tq(t) = I ej 10,P,h + I Wi -I1,p,h 

Since 71(O) = 0, condition (2.12) holds at least for some time interval, say 0 < t < T*. 
To assess the growth of ei, we write 

ei(t) = uFh(t) _-U(Xi, t) 

= [Fh(xi, t) - uh(xi, t)] + [uh(xi, t) - u(xi, t)]. 

Provided 0 < t < T*, we can apply the stability estimate (Si) to the first term and 
the consistency estimate (Cl) to the second to obtain 

Iei(t) IO,p,h < C(71(t) + 3m + 3(h/3)'). 

(Estimate (C4) could be used here to improve the last term.) In an entirely similar 
manner, we have 

i(t) = - vu(x, t)w(x,, t) 

- [vih( I_ t)&(i, tvu(Xi, t)w,] 

+ [Vuh(xi, t) - Vu(xi, t)] w(xi, t) 

and, therefore, by (S2) and (C2), 

I*i(t) I-1,ph < C(q(t) + 8m +(h/3)'). 

We now use the relation 8 = cohq to write (h/3)'= Ch-(l-q). We choose 1 large 
enough so that (h/3)' < Chmq, viz., 1 > mq/(l - q). Combining the two inequali- 
ties, we then have 

I ~(t) IOph + I 'i(t) 1-1,ph < CO(Iei O,P,h + IWi I-1,ph + hm) 

for 0 < t < T*, with initial condition 

ei(O) = 0, Wi(O) = O. 

It follows from standard arguments for differential inequalities that 

Iei(t) IOp,h + Iwi(t) |-1,p,h < y(t), 0 < t < T * 

where y is the solution of y' = CO(y + hmq), y(O) = 0. Therefore, 

(3.1) lei10,P,h +I Wi K1,P,h < Clhmq 
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as long as (2.12) holds. Here C1 depends on CO and T but not on T*. Now for h 
sufficiently small, say h < ho, we have CjhE < 2, so that 

Cih mq < h mq- L/2. 

Thus for h < h0, q(t) is bounded by himq-/2 until it reaches hmq-E. This means it 
can never reach h mq-E, so that (3.1) is true for all 0 < t < T. We have now proved 
(1) and (3) of the Convergence Theorem. 

The remaining statements are a consequence of (3.1) and the stability and 
consistency estimates. For (2) we write 

Tih(t) 
_ 

U(Xi, t) = [rh(t) 
_ 

Uh(t)] + [Uh(xi, t) _ U(Xi, t)]. 

Applying (Si) and (Cl) again, we obtain the stated estimate. Similarly, 

h(x, t) - u(x, t) = [h (x, t) - uh(x, t)] + [Uh(x, t) - u(x, t)], 

and (4) follows from (S3) and (Cl). In exactly the same way, (S4) and (C3) imply (5). 
This completes the proof of the theorem. 

We now discuss the consistency estimates. The consistency error separates natu- 
rally into two parts, the error due to the smoothing by 9,a and the error of 
discretization. The behavior of the first part is summarized in the next lemma. 

LEMMA 3.1. The following estimates hold uniformly in x and t, 0 < t < T: 

(1) K(w * (ps)(x, t) - o(x, t)I < CSm, 
(2) l(K8 * co)(x, t) - u(x, t)I < C8m, 
(3) Iv(Ks * co)(x, t) - Vu(x, t)I < CSm. 

Here * denotes convolution. Since u = K * w, each of the three quantities is the 
difference between a function and its convolution with 9%. Such estimates can be 
derived in either of two standard ways, by expanding the function in a Taylor series 
(see [19] or [26]), or by using the Fourier transform and observing that 4p(t) - 1 = 

O(8m) (see [I] or [1]). The latter argument applies under the current assumptions on 
9,. 

It was shown by Cottet and Raviart [14], [15], [26] that the discretization error 
could be treated directly as a quadrature error in Lagrangian coordinates. The basic 
quadrature rule needed here is the following. 

LEMMA 3.2. Let F be a function on Rn such that DOF E L1(Rn) for If I < 1, where 
1> n + 1. Then, 

| A F( jh)h n- F(x) dx < Clhl |DOFI 
jeA 1101=1 

This lemma was proved by Cottet and Raviart using the Bramble-Hilbert Lemma. 
Another proof, based on the Poisson Summation Formula, was given by Greengard 
in [1]. For the sake of completeness we recall the essence of the latter proof here: 
According to the Poisson formula 

EF( jh) hn _ 27TkX F 
Since DIF E we havek*O 

Since DO~F E- L1, we have 
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For given (, we can choose so that I14 > I I'/n' 2n Therefore, 

Fk+ ( |K S IlFII E Ikl k 

where jFjj is the sum over / of the LP-norms. The sum on the right converges 
provided 1 > n + 1. More explicit estimates can be given for the constants; see [1]. 

In order to apply this lemma, we need the following bounds for K8 and its 
derivatives on P: 

LEMMA 3.3. For arbitrary R > 0 we have 

(c, 131 =0?, 
f ID"Ka(x) Idx 6 CI log3 |, 1/3 1= 

Ixlv~ ~ ~~~~C 1 - 1~ 1819 1 At I > 2. 

This integral estimate follows directly from the pointwise estimates 

(3 .2) | OK,, (X )|6 CS -2 -11 | XI | 6 9 

(3.3) IDOKa(x)I 6 CIXI2"X, lXi > S. 

These in turn can be obtained easily from our assumptions (F1)-(F4). (They were 
proved in more general circumstances by a longer argument in [I].) To derive (3.2) 
we recall from (Fl) that f (p) = p3f (p) for a smooth function f *. Substituting in 
(1.4), we have, with r = jxi, 

K8(x) = (4S )lf *(r/3)x X, 

from which (3.2) is clear. On the other hand, (F4) shows that 

(a/ar) kf(r/8) I C_ (r/<-k = Cr-k 

for k > 1 and r > 8, and (3.3) follows inductively from (1.4). 
Consistency estimates such as (C1)-(C3) can be obtained in a straightforward 

manner, as was noted in [14], [15], by combining the last three lemmas. For (Cl) we 
write 

u (x, t) -u(x, t) = {1} +{2}, 

with 

{1} = YK,6(x - xj)wh3 -f K8(X X') (X') dx', 

{2} = (K8 * w)(x) - u(x, t). 

The second term is O(83) by Lemma 3.1. To apply Lemma 3.2 to the first term in 
Lagrangian coordinates, let 

F(a) = K8(x - 4Dt(a))w(4Dt(a)) 

Since x; = t( jh) and the flow is volume-preserving, 

{l} = 1 F(jh)h3 - F(a) da. 
]EA 
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Therefore, 

|{1} | < ChID'F ILp. 
Finally, since 4t and w are smooth, Lemma 3.3 implies that 

ID'F IL <C'-', 

and (Cl) is established. (C2) and (C3) follow from a similar argument; in fact, (C3) 
is really a special case of (C2). 

4. Some Lemmas. In this section we discuss some preliminaries which are used in 
the stability argument. They will be needed primarily to estimate integral operators 
with kernels related to the velocity kernel K8. 

The grid covering the initial vorticity can in principle be extended to a partition of 
the entire plane. With j = (jl, 12, j3) a multi-integer, let 

Qj={a ER: -h/2 < ai-jih < h/2,i = 1,2,3}. 

The particle trajectory x1(t) begins at the center of Qj. At later time t, the cube Qj 
has evolved to a cell Bj = 4t(Qj), and the collection { Bj) again partitions R3. Since 
the flow is incompressible, each Bj has volume h3, and since the mapping 4t has 
bounded derivatives, the diameters of the cells Bj are uniformly of order h. We will 
often use the partition { B1 } in estimating integrals. 

We first recall a standard fact about integral operators on LP spaces, in both 
continuous and discrete versions. For the proof, see e.g., [16, Section O.C]. 

LEMMA 4.1. (a) Suppose XY(x, x') is a 3 X 3 matrix of measurable functions of 

(x, x') E S1 X S2 C ii X Wi. Define the operator X): LP(S2; R3) -* LP(S1; R3) by 

(4.1) (-,ff)(x) = f Y(x,x')f(x')dx', x E S1. 
S2 

Then, we have 

%f ILP(Sl) < 11 III f I LP(S2), 

where I X II is the smallest number satisfying 

(4.2) | [ X(y , x') I dx' < 11 Xf 11, | J | Xx, y') I dx < 11X 11 

for ally E S, y' E S2- 

(b) With S1, S2 as above, suppose Yij is a 3 X 3 matrix defined for all multi- 

integers i, j with ih E S1, jh E S2. If JX: Lf (S2; R3) -* Lf (S1; WI) is defined by 

(4.) (i1f _-e = E ifj h 
jh ES2 

then 

Prf I Lf(Sl) < II Jf fLf l (S2) s 

where 11X11 is the smallest number so that 

(4.4) E ,f |I I h f 

|1 ||, E jI gh -If 91 
the S2 IhES1 

for all ih E S andjh E S2. 
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In applying Lemma 4.1 we use quantities of the form 

M(/)= sup |D'K8(x1-xdy1x+yi)| 
Ayl 6 C08 

1I I 1I 

for some constant CO, estimating uniformly over Bj or Bi. Here, xi = xi(t) = 41t(ih) 
for some fixed time t. We then have bounds for integral operators in terms of the 
following discretized LP-norms of DOK. 

LEMMA 4.2. With x; = xj(t), we have 

(C, 1=0, 

E M,.(Jl~h3 C ( log38, 1I1, 
jjhj<R tCSl+1 I >, 29 

for all i with lihI < R. Here, C depends only on R, CO, and bounds for the flow. 

This is a restatement of Lemma 3.2 in [I]. The proof, in Section 5 of [I], depends 
on the pointwise estimates (3.2), (3.3). They were derived in Lemma 5.1 of [I] in a 
more general setting. 

Because we measure the vorticity in W-1 P, we will need a version of Lemma 4.1 
for operators from W-1P to LP or W ,lP to Lo. This is the purpose of the next 
lemma. 

LEMMA 4.3. (a) With notation as in Lemma 4.1(a), suppose S2 = {z': tz' < R + 1). 
Forf E W 1P(R3) with suppfC {' Iz' < R}, we have 

XYf I0, P < C (||f I| + I IDz, -,f I) If I-1p 

with operator norm as in (4.2). 
(b) With notation as in Lemma 4.1(b), suppose S2 is as above. For f E W ,lP with 

suppfC {t z't < R}, we have 

If kflo,ph < C 1 J 1 + IILDhII )If If-1,p,h, 

where D h is the forward-difference quotient with respect to j and the norms are as in 
(4.4). 

A similar statement holds for operators from discrete to continuous spaces with 
obvious modifications. The lemma is easily proved by dualizing a corresponding 
statement for operators from LP to W1'P. See the proof of Lemma 3.4 in [I]. 

Finally, it will be important to use the mapping properties of K8 on LP spaces. 
As a consequence of the Calderon-Zygmund inequality we know that the first 
derivative of K8 is a bounded operator on LP: 

LEMMA 4.4. For f E LP(R3; R3) of bounded support, 1 < p < so, we have 

I(DKa)*f ILP < COf ILP, 
where D denotes any first derivative. 

Proof. From the representation (1.1), (1.2) we have for f E L2 n L', 

K*f= -V X(v 2)lf 
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so that 
K8 * f = (K * qm) * f = K * (qm * f) 

and 

DK8*f = -D V x(V ) 2Ylp f) 

The second derivatives of (V 2)-1 are integral operators with average value zero, plus 
delta functions for the repeated derivatives. It follows from the Calderon-Zygmund 
inequality (e.g., see [30]) that 

IDKa* f ILP < Cl8* f ILP 
Finally, 1ee * f ILP < CIf ILP since the Ll-norm of qA is independent of S. 

5. Proof of the Stability Lemma. To begin the stability argument we recall the 
assumptions on the parameters, 

(5.1) 3q > 1 + 2e, 
(5.2) 0 < E < q/2, 

(5.3) p > 3/E. 
For simplicity, we will take the constant co = 8/hq to be 1. With ej = ij - xj and 

wJ = Co - wJ as before, the assumed inequality (2.12) can be written as 

(5.4) I1- ej lo p h + I Wj 1_1,p h <8he 

since we suppose that m > 4. Below we will need maximum estimates for ej and wj 
-which are consequences of this bound. From the obvious inequality 

max Iejlph3< E Ie lph3 

we find 

maxlejI < h-3/pIejIO p h9 

and combining (5.3) with (5.4) we have 

(5.5) maxl ej I < h- 2e*4. 

In a similar way we can use (2.10) to obtain 

(5.6) maxlwjl < 2h-12e34. 

We first verify (Si). As in [I], we write ih - Uhi symbolically as 

hih - uh i= -r 

= (K8 - K8)w + K8w +(K8 - K8)w 

-V(1) + V(2) + V(3) I I 1 , 

where K, is evaluated at xi - ij, etc. Condition (5.5) implies, in particular, that 
maxlejl < 3. Under this latter assumption, we have 

(5.7) |v1 V1) 1,p,h < C1 ei 1,p,h 

This can be shown just as in [I, pp. 16-17], for the special case p = 2, taking into 
account the present Lemmas 4.1, 4.2, 4.4 and 3.3; the argument will not be repeated 
here. (For the extension to LP in two dimensions, see [II, pp. 47-49].) 
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Next, we estimate 

(5.8) vi2)- =jK8(xi - xj)wjh3. 

It is convenient to dualize; for gi E Lo*, gi with support in a fixed bounded set 
containing the support of the vorticity, we write 

(Ovh), g1)=, = YK8(xi - xj)wjgih = (w,, by) h' 

where 

b= K8(x, - xj)gih3. 

We will show that 

(5.9) bj ll p*,h -<- C1 9i 0p*,h; 

it then follows that 

|(Vi(2),g)|<CwIlo |io* I(v, gi)j h C1 Iw1L1,pI~I,hl9 1*,h 

and since g is arbitrary, 

(5.10) IV$2)Ioph < C lPh. 

To verify (5.9), we concentrate on estimating tDJhbJtop*,h; the term Ibjt0P*,h can be 
handled more easily. We have 

(5.11) Djhb1 = JD hK8(xi - xj)gih3. 

We treat this expression in a manner similar to the v011)-term in [I]. Let y(x) be the 
step function defined by y(x) = gi for x E Bi, and let /3(x') = Djhbj for x' E Bj. 
Also, let 

XY%(x, x') = Dh^K8(x- xj), x E BA, x' E Bj. 

Then (5.11) is equivalent to 

P3(x')= f (x, x')y(x) dx, 

and because the flow is volume-preserving, 

1 AIlo* = IIlop h I |Y IO,P* = I 9i gO,p*,h- 

It will therefore be enough to show that 

(5 .12) 1 op Cl o* 

Since Djh is a first-order difference operator, we have 

DhK(xi - xj) = DjK8(xi - xj) + rj, 

with trij < CM/(j2)h. Also, for x E Bi, x' E Bj, the Mean Value Theorem implies 

IDKa(x - x') - DK8(xi - xj) | < CM(Nh. 

Thus, we can write 

.)f(X, X')I -.1(X, X') + .XI(X, X') 
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with 

Y',(x, x') = DK8(x - x') 

and 

1X2Y,(x, x') I < CMi(jN), x e- Bi, x' e- Bj 

The XYl-term in /3 is just (DKa * y)(x'), and according to Lemma 4.4, 

I X1YIOp* < C y O,p*. 

On the other hand, the X2-term can be estimated, using Lemmas 4.1(a) and 4.2, by 

I X2y lo,p* < CS -1h I y lo,p* < Cl -y lo,p* . 

It remains to estimate 

V -3) = (xi- -j) -K (xi-xj)] wjh3. 

We can substitute 

K(i- -j) -K (xi- x) = S? (ei - ej) 

with 

i= f VK8(xi-xj + s(ei - ej)) ds, 

so that LXijI < CMi(j'). Using the above, we write 

V3) = -ijeiwjh3 - Yjejwjh3 = Vi31)- V-32) 

j i 

For the first term, ei factors out of the sum, and we find 

Iv$31)Io 3 ~l~h |v 0, h < CJ ei 10,h * max |,Y Xj wj h3 

< Cl ei lo h * | WJ|may *max EMi()h3 
I 

j 

< Cl ei 10h *h-1 - 2-84 * logl 8 

using Lemma 4.2 and (5.6). (Here and below, the norms are understood to be based 
on LP unless otherwise indicated.) For the remaining term we estimate 

Iv202)Ih < CJlog8IIe^wJI0,h 

again by Lemmas 4.1(b) and 4.2, and 

IeJwJI0 h < (maxlwjl)IeI Oh < 281Iej0,h 

by (5.6), (5.1). Combining the last three inequalities, we have 

I V)lo h < C(I eJ IOh + I WK 1 -,h) 

and this completes the verification of (Si). 
The estimate (S3) is obtained in an entirely similar way. We can write the 

difference 

Uih - uh = Ka(x- -j) h3-- K(x-xj)jh3 
j i 
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as a sum V(1) + V(2) + v(3) as before, except that there is no analogue of the 
distinction between xi and xi. The slight modification of the v01)-term is discussed in 
[I, p. 20]. The v(2)-term is handled as above and is in fact somewhat simpler; the test 
function g is now a function of the continuous variable x, but the treatment of the 
j-difference is unchanged. The term v(3) is handled like v$32) above with an obvious 
modification of Lemma 4.1(a) for sums defining a function of a continuous variable. 

To establish (S2), we estimate the difference ?i - si, where 

?i =_ YvK,6(Xi -.j)Cojxoih3 
i 

and similarly for si. We classify the terms as in the velocity case: In shortened 
notation, 

Si - si = (K- K) ww + K((x( - (w) +(K- K)(Co&3 - ow) 

= -S1) + Si2) + S3 

We expand sfl) further as si") + Si12) with 

5,(11) = E[VK8(xi - x;) - vK8(xi -XA xyxih3 

S(12)= E[vK (xi - kj) - vK8(xi - xji ih 
j 

and begin with s 11). Using the Mean Value Theorem we have 

5I(11) 
- 

[D2K8(xi - xi + y)] ejh 3 . 
Wi 

with 1yij1 < h-2*84, since the same is true for ej by (5.5). If we remove the y's in this 
expression, we have 

(5.13) S -1 = [D K8(xi - xj)] ejjh3 . W + e 

with 

Ie}I Ei | CMi(j) . 8 4h - 2E ej Ieh3, 

so that by Lemmas 4.1, 4.2, 

Ei |0 h CS8-2. 84 h2-- 1ee |0 < C' ej |0, 
To estimate the sum remaining in W;j'P we replace one x-derivative with a 
Lagrangian derivative: 

D 2K(xi - xj) = (dit)-l(xi) - {VKa(Dt'(a) - x)}| 

The sum in (5.13) is then a smooth function times 

EDaVKa(4Dt(ai) - xj)ejjh3, 
i 

and it suffices to estimate the latter. We now choose a high-order difference operator 
Da, so that 

(Da - Da)f I f 
chrsupIDr~lf j 
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If we replace Da above by Day, we can estimate the difference in Li', and therefore, 
in Wj',P, by 

| ChrM/r + 2I1Ih3 | C -hr (r+ 1)eJIoh' 
I Oj h' j1, 

which is bounded by Iej1I0h, provided r > (r + 1)q or r > q/(l - q). We are now 
left with 

Dch2vKa(4Dt(ai) -xj)ejxjh 

which is estimated in W;j'P by 

EVK8(xi - xj)ej(jh3 

in Lg. Finally, this last sum is bounded in L f by IejI0 h; this can be shown just as in 
the treatment of (5.11) above. In summary, we have that 

I 11I-1,h < ClejIlOh- 

To estimate S ~12), we again apply the Mean Value Theorem, obtaining 

Si1~2) =ED 2Ka(xi - xj + yij)jh3 * ej 

with maxlyijl < h-2e34 as before. If we remove Yij, the error committed can be 
estimated in Lf by 1ei10,h times the maximum over i of 

,Mi(3)- h-2e34h3 < Ch-2e2 * C' 

We will now have that IS ~12)1Oh < CIei O h' provided we show that 

(5.14) ED2Ka(xi- xjh3 

is bounded uniformly in i. To verify this, we replace the sum with the integral 

f D2K8(xi - x')>(x') dx', 

making an error which, according to Lemma 3.2 applied in Lagrangian coordinates, 
is bounded by 

Ch'I D'+2Ka I8p < Ch 1 
We have used Lemma 3.3 in the last step. This quantity is bounded provided we 
choose 1 large enough so that q < 1/(1 + 1). Finally, the integral above can be 
integrated by parts to give 

f K(x - x')D2W(x') dx', 

which is bounded by a constant. 
To estimate 

-(2) EDK8(xi - xj)[ ~i - iIh 
I 
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we write 

(5.15) - = + oW1 + wjWJ 

and decompose s (2) as s (21) + s (22) + s (23). Since coi is smooth, we may ignore it in 
estimating 52. If we write the derivative in Lagrangian form, as in 5(11), and ignore 
the Jacobian, which is another smooth factor, we are reduced to estimating 

(5.16) EDaKa(4Dt(ai) - xj)wjh3 
I 

in W-1 P. Suppose we replaced Da with a difference operator Da*; then this 
expression has the form Dahv$2) with vi2) as in (5.8), and 

ID( 1)-1lh < I |0,h < C LWi 1-1,h 

using (5.10). It remains to estimate the error in replacing Da by Da. We will estimate 

zi = E (Dh -Da)Ke(4:t(ai) -xj)wjh3 
i 

in Lk in terms of IWjll-,h9 using Lemma 4.3(b). Assume D4h is an rth-order 
difference approximation; then 

D D e,)- Da)Ka(4t(ai) - xj) | ChrMi(r+2) 

and 

hrEM.(r+2)h3 C'h8-(r+l) < C" 

for r > q/(l - q), as in the treatment of 5(11) above. It then follows from the 
Lemma that Izi O,h < ClWjt-lh. 

The next term is 

S ) = wi * Y.DK86(xi -xj)whh3 

To estimate this in Wh',P by Clwi11 ,h' it suffices to show that the sum and its 
i-difference are uniformly bounded with respect to i. It is convenient, and sufficient, 
to replace xi by a continuous variable x and estimate 

Y2DKa(x xj)-jh3 
i 

in C1. This can be done just as in the treatment of (5.14) in 5(12), replacing the sum 
by an integral and integrating by parts. We are now left with the term 

- 23) = YDK8(xi - xj)wiwjh3. 

We will estimate this in Lk by 

maxlwil | *DK8(xi - xj)wjh3 
I O,h 

We have maxtwft < 2h-2e&l84 from (5.6), and using Lemma 4.3(b) again, as well as 
Lemma 4.2, 

YEDK8(xi - xj)wjh 3 < C&IWj1L1,h, 
I O, h 
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so that 

I s1(23)o 1 Ch-1 2ES31 W1l-,h 
< 

CIlWjl-lsh 

by (5.1). 
The final term is 

Si(3)= [ DK(ki - j) -DK (xi - xj)] rijh3 

with rij = Cji - wwi. Writing rij as in (5.15), and using (5.6), we have 

(5.17) max I ri1j I Ch-1 - . 
1,]j 

By the Mean Value Theorem we can express the sum as 

S(3) = D2K8(xi -xj + yij)rij(-ej + ei)h3 

-S (31) +S(32) si~ + Si 
with the two terms corresponding to ej and ei, respectively. We estimate each in Li. 
Since 

S ) < M,(j2) I rij . I ej Jh 3 

Ij 

we can apply Lemmas 4.1(b) and 4.2 to obtain 

I S~31)~0 Chl12E484.l1iIh |I( )0, h < h e ej 1,h '<" Cf Iej 10,h- 

Next, we write 
S -(32) = ei- ED2K6(xi-xj + yij)rijh3 

and again use Lemma 4.2 to estimate 

| 2K,6(xi - xj + yij)rijh3 Ch -2 C', 

so that IS (32)10oh < C'ej10, h. This completes the proof of (S2). 
Estimate (S4) is similar to (S3) except for an extra derivative on K8. We have 

Sh(X) -^Wh(X) = EDK(x - c)h3- EDKa(x -x,)h3, 
j I 

ignoring indices. We decompose this in three terms, t(l) + t(2) + t(3), as in (Si), and 
first consider the term 

-t(l)(x) = 2D2K6(x -j + yj(x))ejwjh 

with Lyj(x)I < h-2e84. Then, 

I()-(x) f| (x, x')f(x') dx', 

where 

f(x') = ejcw, x' e Bj, 
and 

1*'(x, x') = D2K8(x - + yj(x)), x' E Bj. 
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Since J1J < Mi(j) for x E Bi, we have by Lemmas 4.1(a), 4.2, 

| t (') LP(JxJ<CR) < CA | ej | h . 

The term 

t- = YDKa(x - xj)wjh3 

can be estimated by duality like the v(2)-terms in (Si) or (S3), but more simply. For 
arbitrary g(x) E LP(lxl < R) we write 

(t(2), g) = f DK8(x - xj)g(x) dx * wjh3-=(Wj, bj) h 

where 

bj = f DK8(x - xj)g(x) dx 

and establish that 

(5.18) lb1 lp*,h < Cll g loop*. 

This will then imply as before that 

It(2)jop < C_ lw11p h. 

We verify (5.18) just as in the earlier treatment, except that we estimate directly 

D hDKa (x-x1) | Mi7), x EBj 

without separating the kernel into two different terms. Finally, 

t(3) = [DK8(x - j) -DK(x - xj)] wjh3 

can be estimated like v13) in (Si), leading to 

It(3)|sP _< ClejlO~p h- 

This concludes the discussion of (S4). 
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