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Effective Irrationality Measures 
for Certain Algebraic Numbers 

By David Easton 

Abstract. A result of Chudnovsky concerning rational approximation to certain algebraic 
numbers is reworked to provide a quantitative result in which all constants are explicitly 
given. More particularly, Pade approximants to the function (1 - x)113 are employed to 
show, for certain integers a and b, that 

J(a/b)1"3 - p/'q > cq-K when q > 0. 

Here, c and K are given as functions of a and b only. 

In 1964 Baker [1], improving a technique used by Siegel [8], was able to obtain 
effective irrationality measures for the function (1 - x)m/n evaluated at certain 
rational points. In particular, he was able to show that for integers p, q we have 

(1) 121/3 - p/q> 10-6q-2955 when q> 0. 

The technique was further refined by Chudnovsky [2] whose results, when applied 
to 21/3, imply that for any - > 0 there exists a positive integer qo(c) such that for 
integers p, q we have 

(2) 121/3 - p/qI > q-(2.429+E) when q > q0() 

Chudnovsky's result is effective in the sense that it is possible in principle to work 
through the proof and compute, for any particular value of ?, a qo(c) for which (2) 
holds. However, Chudnovsky does not undertake such computations. 

In this article we rework Baker's proof using Chudnovsky's refinement, together 
with a Chebyshev-type result for primes in arithmetical progressions due to McCur- 
ley [6], and obtain the following quantitative result: 

THEOREM. Let a, b be integers with 0 < b < a. Define d by 

(0 if 3 4 (a - b), 

(3) d = I1 if 311(a - b), 
13/2 otherwise. 

Further, define A, K, c and q0 by 

(4) X = (.2328)3d(al1/2 - b1/2) -2 
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(5) K = 1 + log(8.591(a + b)3 d)(logX)1, 

(6) c = 1.69 X 10-2 (a + b)-1[.9302(a1/2 + bl/2 )-1(ab2)11/3(al/2 -bl/2 K- 

(7) qo = 3[00 [.9302(a1/2 + bl/2)-1( ab2)1/3(al/2 - bl/2)] 

Then, assuming X > 1, we have for integers p, q 

(8) |(b/a)1/3 - p/q> cq-K when q> q0. 

We remark that the Theorem yields an improvement on Liouville's Theorem 
provided K < 3, which occurs when 

(158.5)(3-3d)(a + b)(a1/2 - bl/2)4 < 1. 

As a consequence of the Theorem we are able to obtain 

COROLLARY. For the values of a, K, c and qo given by the following table, we have, 
for integers p, q that 

[a -p/q I > cq-K when q > qo. 

a C K qo 
21/3 2.2 X 10-8 2.795 0 
61/3 1.03 X 10-17 2.405 1ol976 

101/3 7.81 X 10-10 2.619 0 
15/3 4.5 X i0-7 2.933 0 
171/3 2.51 X 10-10 2.3391 0 
191/3 1.1 X 10-8 2.473 0 
201/3 3.84 X 10-10 2.333 0 
221/3 5.16 X 10-8 2.482 0 
261/3 7.8 X 10-7 2.9099 0 
281/3 7.59 X 10-7 2.899 0 
371/3 1.31 X 10-8 2.427 0 
391/3 1.46 X 10-11 2.313 0 
421/3 2.12 X 10-7 2.766 0 
431/3 1.94 X 108 2.506 0 

It should be emphasized that in our proof certain choices must be made, which 
essentially correspond to fixing a value for e in (2). Unfortunately, decreasing the 
size of E, and hence of K, causes the value of qo, as given by (7), to increase. 
Moreover, since in some of the estimates we use, we employ bounds which are not 
sharp, we are not able, in our proof, to take E to be arbitrarily small. For example, 
the smallest value of K which our proof can be made to yield in the case of 21/3 is 
K = 2.4862...; here qo = 109X l and c = 10-2. It was our aim in making the 
choices we did, to obtain as small a value for K as possible while keeping qo 
sufficiently small that it is practical, at least for most of the values of a given in the 
Corollary, to compute and employ continued fraction expansions to remove the 
restriction the Theorem places on the size of q. The continued fractions were 
computed at the University of Waterloo on a Honeywell DPS 8/49 using a program 
written in MAPLE. 
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Lastly, we remark that while we have here restricted our attention to cubic 
irrationalities, our proof can easily be modified so that, by employing McCurley [5, 
Theorem 1.2], we are able to obtain results similar to our Theorem for any function 
of the form (1 - X)m/n, where m and n are coprime integers with 1 < m < n, 
n > 10 and n not "exceptional" as defined in [5]. 

I would like to thank Professor C. L. Stewart for his encouragement and guidance 
in the preparation of this article. 

Preliminary Results. The hypergeometric function 2F1(a, b; c; z) is defined by 

2 F (a, ; ; z) 1+ ,a( a + 1) ... (a + n - 1) b(b + 1) 
.. 

( b + n -1) zn 

n=1 

When c and a are negative integers with c < a, the coefficients of zn for n > jal 
are understood to be zero. For r a positive integer we define Xr(z), Yr(z) and Rr(Z) 

by 

(9) Xr(z) = (2/3) (5/3) ... (2r-1/3) 2Fl(-r, -r - 1/3; -2r; 1 - z), 

(10) Yr(z) = zrXr(z1), 

(11) Rr(Z) = (1/3)(4/3) ... (r + 1/3) 2F,(r + 2/3, r + 1; 2r + 2; 1 -z). 
(r?+1)(r +2) ... (2r +1)21 

We shall employ the following Lemmas: 

LEMMA 1. Let r be a positive integer. Then for any real number z with 0 < z < 1, 

(12) Z13X(Z)-Y(z) = (z - 1)2r+lRr(Z). 

Proof. We obtain (12) from (4.2) of [2] upon noting that with v = 1/3, (9) agrees 
with Xr(z) in (4.4) of [2], (10) agrees with Yr(z) in (4.1) of [2] and (11) agrees with 
(4.3) of [2]. 

LEMMA 2. Let r be a positive integer, and define A r to be the smallest positive integer 
such that A r Xr(Z) is a polynomial with integer coefficients. Then 3 + A r. 

Further, let a, b be integers with 0 < b < a, and suppose d is as defined in (3). 
Define do by 

d f3/2 + logr/log3 if d = 3/2, 

? t 0 otherwise. 

Then Arar3do drXr(b/a) and Arar3doYdrr(b/a) are integers. 

Proof. From (4.1) of [2], with v = 1/3 we have 

(13) X,(z) = E (r ) (3r + 1)(3r + 4) ..(3(r e I + 1) + l) 

1=0 2 .5... (31 -1)Z 

hence 3 + Ar- 

Our proof of the second half of Lemma 2 is based on the proof of Proposition 5.1 
of [2]. 

We first note that if 3 + (a - b), the result follows from the definition of Ar 

together with the observation that Xr(z) and Yr(z) are both polynomials in z of 
degree r. 
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If d > 1, we write a - b = 3hgwhere gcd(3, g) = 1. It follows from (9) that 

ArXr(b/a) = (2/3)(5/3) *- (r - 1/3) (2r) 

X2Fl(-r, -r - 1/3; -2r; 3hg/a) 

(14) Ar3rr! 

2 - 5 ... (3r-1) 
rr 

(2r r i)(kH (3k + 1))(i!)Y (-g/a)3('hl)i. 
If d = 1, we observe that h = 1 and that 

2rE r )(i 1j 1(3k + 1) (0) Y 

is a polynomial of degree r with integer coefficients. Hence, since 3 + Arg 
3-rarArXr(b/a) is an integer. 

If d = 3/2, we note that h > 2 and apply Lemma 4.1 of [2] with n = 3, s = 1 and 
see that 

E(2rt r )( k 1 (3k + 1))(0!)-13[i/2]xi 

is a polynomial of degree r with integer coefficients. Hence the sum on the right side 
of (14) is a polynomial in (-g/a) with integer coefficients. Thus, since 3 + Ar, and 
since the exponent to which 3 divides r! is given by 

r13] +[r/9] +[r/27] + -> r _ (ogr 
+ [r/3] 

~~~~~~2 klog 3 2) 

we see that 3do-drarArXr(b/a) is an integer. 
We conclude the proof by noting that the above argument shows that 

brAr3do-drXr(a/b) is an integer, and hence that 

arA r3do dry(b/a) = Ar3dod a (b)'Xr(a/b) 

is an integer. 

LEMMA 3. Suppose r is a positive integer. Then 

(15)~~~~~~~ - 5 . .(3r -1) [tr121 (15) Arl r 

Further, if Ar denotes the contribution to A r of all primes p > (3r)1/2, then 

(16) Arj < exp r E ' logp}, 
A >0 

where the inner sum is taken over all primes p 2 mod 3 satisfying 
r/(A + 1/3) >p > r/(A + 2/3). 

Proof. We verify (15) by noting that from Lemma 4.1 of [2] with n = 3, a = 1, 
s = -1, 2 - 5 - (3r - 1)31r/21(r!)f- 1 is an integer, and moreover, from Lemma 4.2 
of [2] with n = 3, s = 1, 2 - 5 ... (3r - 1)3r/2] (r!)-lXr(z) is a polynomial with 
integer coefficients. 
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To verify (16) we turn to Theorem 4.3 of [2]. In the proof of this theorem, 
Chudnovsky considers A(,2) the contribution to Ar of all primes p > 3r1 2. Putting 
n = 3, and s = 1 in [2], we see that if pIA(r2) we must have p - 2mod3, as is clear 
from the remarks made following (4.22). Moreover, the remarks made just prior to 
(4.20) show that p2 + A(r2); and from (4.22) we see that for some integer A, we must 
have r/(A + 1/3) > p > r/(A + 2/3). This suffices to show (16) with A(r2) in place 
of Ari. Our result follows upon observing that Chudnovsky's arguments are not 
affected by considering primes in the extended range p > (3r)1/2. 

LEMMA 4. Let r be a positive integer. If r(r) denotes the number of primes less than 
r, we have 

(17) -r(r) < (1.001)r(logr) l. 

Further, if we put O(r,3,2) = Ep - 2 mod3; p < r log p, we have 

(18) (.4075) r < 6 ( r,3,2) < (.5094)r for r > 47 

and 

(19) (.4539)r < O(r,3,2) < (.5094)r for r > 233. 

Proof. We obtain (17) from (5.1) of [7]. The right-hand inequalities of (18) and 
(19) follow from Theorem 5.1 of [6], while the left-hand inequalities follow from 
Theorem 5.3 of [6]. 

LEMMA 5. Let a, b and r be positive integers with 0 < b < a. Then if Xr(z), Yr(z) 
and Rr(z) are given by (9), (10) and (11), respectively, 

(20) Xr(b/a)Yr+i(b/a) # Xr+i(b/a)Yr(b/a), 

R( b/a ) = (1/3)(4/3) ... (r + 1/3) 

(21) 
r 

xj1 tr(l - t)r(l -t(a - b)/a)-r-2/3dt. 

Proof. The proof of (20) is standard; see for instance the proof of (16) in [1]. We 
obtain (21) from (11) and (1.6.6) of [9]. 

Technical Lemmas. In this section we establish several estimates which we shall 
employ in the proof of the Theorem. 

LEMMA 6. Let r be an integer with r > 300. Then 

(22) A r < exp { (1.4266) r}. 

Proof. The proof is divided into two parts. First, we estimate the contribution to 
Ar of those primes p < (3r)1/2. We then estimate the contribution of those primes 
p > (3r)1/2. 

To obtain the first estimate, we begin by recalling from Lemma 2 that 3 + A r. 

We now proceed as Chudnovsky does in obtaining his upper bound for A(r') in the 
proof of Theorem 4.3 of [2]. First, we note that from (15), if p < (3r)1/2, p can 
contribute to Ar at most 

p [lOg3r/logP1 < 3r. 
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Hence, if we denote the contribution to Ar of those primes p < (3r)1/2 by Ar, 5W 

have 

Ar' < (3r ) (r') 

Thus, from (17), 

Ars < exp{2.002(3r )1/2)}, 

and since r > 300, we have 

(23) A rs < exp{.2002r}. 
Denote, as in Lemma 3, the contribution to Ar of all primes p > (3r)1/2 by Artl 

We have from (16) that 

A ri < exp{ E (r/(A + 1/3), 3, 2) - 0(r/(A + 2/3), 3, 2)} 

< exp E (A(rO(A + 1/3), 3, 2) - 0(r/(A + 2/3), 3, 2)) 
A =0 

+ O (r/(6 + 1/3), 3, 2)}) 

Hence, since 3r/2 > 233, we have from (18) and (19) that 

A r, < exp ((5094) ( 3r/(3A + 1)) 

(24) 5 
-(.4539)(3r/2) -(.4075) E 3r/(3A + 2) 

A=1 

< exp{(1.2264)r} 

Finally, from (23) and (24), 

Ar = Ar,sAr,l < exp{(1.4266)r}. 

LEMMA 7. Let a, b and r be integers with 0 < b < a and r > 300. Let d be given by 
(3), and let do and A r be as defined in Lemma 2. Put 

(25) - Aar3dodrx r(b/a); Pr = Ara3dodrY(ba). 

Then Pr and qr are integers with 

(26) 0 < q < 3.434(8.591 - 3 (a + b))r. 

Proof. From Lemma 2, Pr and qr are both integers. 
The proof we shall give of (26) is essentially the proof of Lemma 3 of [1]. We 

begin by noting that from (13) we have 

arXr(b/a) = a rf(E (+/);(I 1+/3)(br arx~b/a)=atI ) (2/3)(5/3) (I1 a) 

r r r r 

= H(k-1/3) 1:(1) H (k + 1/3) H (k-1/3)(abr-1). 
k=1 I~o k=r-l+1 k=l+1 
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This, together with (25), gives the left-hand inequality of (26). Using the estimates 
r r 

H (k + 1/3) H (k-1/3) 
k=r-l+1 k=l+1 

K H (k + 1) H k= r!(r 1)? r!2r~l, 
k=r-l+1 k=l+1 

we have 

arXr(b/a) < r!( H (k -1/3) 2r+ E ( )albr- 

(27)/ 

< 2(r!)( (k - 1/3)) (2(a + b))r 

Now 

( k-1 ) 2 k-2 3k- 1 2 1 )) 
r!(H~~k - 1/3)) = <k=2 3keeP\ ~~ d3-x~ 

2 exP{k2 3k 1 <2exPl 3x l dx} 

= 2 exp( - log(3r - 1) - - log2} < 1.717r1/3. 

Since r > 300, 

(28) r! ( (k - 1/3)) < 1.717(1.0064)r. 

Further, since r > 300, do = 3/2 + log r/log 3 < (.02231)r and 

(29) 3do-dr < 3(.02231-d)r 

The result follows from (22), (27), (28) and (29). 

LEMMA 8. Let a, b and r be integers with 0 < b < a and r > 300. Then, 

(30) 0 < (b/a)1/3 _ Pr/qrj < (.4445)(a - b 4.296 (a 12 - ) 
(ab 2)1'3 qr l/)2 

and 

(31) Prqr+1 #Pr+ 1qr 

Proof. It is clear that (31) follows from (25) and (20). To verify (30), we first 
substitute z = b/a in (12). Since from (26) qr # 0, we have from (12), (21) and (25) 
that 

|/)1/3 -P 
A 

rar3dodr( b )r+1 (1/3)(4/3) 
... (r + 1/3) 

(32) - |prlqrj - - ( 

(32) jl t1 
_ 

tr(1 -(a - b)tyr-2/3d 
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Now the left-hand inequality of (30) follows upon observing that the integrand on 
the right side of (32) is positive for 0 < t < 1. To obtain the right-hand inequality of 
(30) we first note that (1 - t(a - b)/a)2/3 < (a/b)2"3 if 0 ' t < 1. Moreover, the 
function t(l - t)(1 - t(a - b)/a)-' obtains a maximum value of a(a'l/2 + bl/2)-2 

on the range 0 < t < 1. Hence 

(33) J' 
tr(l - t)r(l -t(a-b)/a) r-2/3 dt | (a/b)2/3(a(a /2 + /2)-2) r 

Further, in the same way as we obtained (28), we find that 

(1/3)(4/3) ... (r + 1/3) = 4/9 A k + 1/3 

(34) r!kk=2 

< 4/9exp{1/3 ? }) < 4/9(1.0064)r. 

This, together with (29), (32), (33), and (22), implies (30). 

Proof of Theorem. Let X be given by (4) and let p, q be integers with q satisfying 

(5 (1.076)(a1/2 + b1/2)q <Xr+ 

(ab )l/3(al2 - bl"2) 

for some integer r > 300. Choose R = r or r + 1 so that pqR = pAq, as is possible 
in light of (31). Further, note that from (5) 

(36) AX-' = (8.591)3 d(a + b). 

This, together with (26) and the left-hand inequality of (35), yields 

qR < 3.434((8.591)3 d(a + b))r~l < 3.434X(K-l)(r?l) 

(37) 3.434( 1.076(a"12 + bl'2 ) KA 1 
q K-1 

(ab2)1/3(al/2 - b"/2) 

From the right side of (35), together with (4) and (30), we have 

0 <j1(b/a )1'3 - PR/qR j < (.4445)(a - b) 
(ab 2)/3 qRA 

< (.4131) (a - b)X(a /2 - b"/2) < (.0962)3d 
(a'1/2 + b/2 ) qqR qqR 

Since d < 3/2, we have 

(38) |(b/a)' - -PR/qR 2qqR 

From (37) and (38) we have 

(b/a)"3 -p/q > Ip/q PR/qR- (b/a )/3 -PR/qRj 

1 1 _ 1 

qqR 2qqR 2qqR 

f 1456( (ab 2)/3 (a1/2 - b1/2) \ ) 
qK 

\ 1.076(a'1/2 + b1'2) ) J 
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Hence, from (36) and (6), 

1(b/a)" - p/qj> -16 1-2 (a+b-11106a" 12 ~K 
Ik1qK 0(a +) (al.076(al/2 + b1/2) 

C 

qK 

Proof of Corollary. To prove the corollary for a = 21/3, we apply the Theorem 
with a = 128, b = 125 to rationals of the form 5q/(4p) to obtain 

5 -1/ 3.4 x 10-5 
we4P>10478. 412 -q/pI > xi when 4p> 148 

Since it suffices to consider q/p in the range 1 < p/q < 1.3, we have 

/3 ~3.4 x 10- 048 (39) 121/3 p/q I > when q> 10478 

To remove the restriction on q0, we utilize the first 2000 terms in the continued 
fraction expansion for 21/3. We begin by supposing that qi is the denominator of the 
ith convergent to 21/3, and that for some integers p, q with qi < q < qi+ 

/3 ~3.4 x 10O7 (40) 121/3 -p/q1q I< x27 

Now if ai is the ith partial quotient, we have the following well-known identities 
(the first follows from Theorem 9.6 of [4]; for the second see Theorem 182 of [3]): 

1 < 21/3 _ Pi+? 

(a1~ + 2)q7? 2?1~ 

and 

jqi+ 1213 -pi+ I1 < Iq21/3 
_ 

p 

These, together with (40), imply 

( 12) < |q21/3_p < 3.4 X 10-7 3.4 X 107 

(a1+1 + 2)qi1l 

Hence, 
(41) 2.9 x 106 1.795<1. 

(ai?2 + 2q~ 
Employing the identity q +1 = ai+1qi + qi-1, we have 

q_ = qj > 1 

qi+l ai+lqi + qi-1 (ai+1 + 1)' 

and hence from (41), 

2.9 X06qi79 

(a,+2 + 2)(ai+1 + 1) 

This, together with the observations that qi > H>Oaj and j0 a> 
enables us to readily verify that for all integers p, q 

(42) 121/3 _ p/qI > 3.4 x 107 when 0 < q < 10478 
q2795 whn<q 148 
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Hence, from (39) and (42), we have Corollary 1 for a = 21/3. 

The rest of the Corollary is proved in a similar manner. We conclude by listing, 
for each value of a, the values for a and b with which we obtain the result. We also 
list the values obtained for q0. 

a a b q0 
61/3 4673 6 * 2573 lo1976 

101/3 5 . 133 22 143 lo846 

151/3 52 3 23 lo408 

171/3 183 17 . 73 lo1117 

191/3 19 33 83 lo802 

201/3 20 73 193 lo1141 

221/3 11 5 3 22 73 lo789 

261/3 33 26 lo417 

281/3 28 33 lo422 

371/3 103 37* 33 lo890 

391/3 392. 23 233 1o1216 

421/3 72 6 . 23 lo498 

431/3 43 * 23 73 lo751 

The continued fraction expansions for the above values of a are available from 
the author upon request. 
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