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A Lower Bound for the Class Number 
of Certain Cubic Number Fields 

By Gunter Lettl 

Abstract. Let K be a cyclic number field with generating polynomial 

X3 a 3 32 - a + 3 X - 1 
2 2 

and conductor m. We will derive a lower bound for the class number of these fields and list all 
such fields with prime conductor m = (a2 + 27)/4 or m = (1 + 27b2)/4 and small class 
number. 

1. Introduction. Let h.,, denote the class number of the cyclotomic field Q(,m), and 
h +, the class number of its maximal real subfield Q(cos(2T/m)). It is a well-known 
conjecture of Vandiver that p + h+ holds for all primes p E P. This is a customary 
assumption for proving the second case of Fermat's Last Theorem (for more details 
see Washington [16]). Since h+ grows slowly (h+ = 1 for p < 163 with the use of 
the Generalized Riemann Hypothesis (GRH), van der Linden [10]), for no p with 
h + > 1 the exact value of h + is known without using GRH. Masley suggested that 

P P 
perhaps h + < p always holds, but a counterexample was found in [3], [12]. The class 
number of each real subfield of Q(?p) divides h +, and in this way one can find 
primes with h + > 1. Using the quadratic subfield, Ankeny, Chowla and Hasse [1] 
showed that h + > 1 if p belongs to certain quadratic sequences in N, and S.-D. 
Lang [9] and Takeuchi [15] found more such sequences. Similar results were 
obtained for h+, by Yokoi [17]. Using the cubic subfield of Q(tp), which has been 
thoroughly investigated (e.g., [2], [5], [8]), the theorem of the present paper yields the 
following results: 

If a is an odd integer, a > 23, and p = (a2 + 27)/4, a prime, then h+ > 1. 

If b is an odd integer, b > 7, andp = (1 + 27b2)/4, a prime, then h+ > 1. 

A conjecture about primes in quadratic sequences (Hardy and Wright [7, 1.2.8]) 
implies that there exist infinitely many primes p of each of these two forms, because 
one can write 

a2 + 27 (a 3 )2 3(a - 3) + 

and 
1 + 27b2 = 3b- 1)2 3b- 1) 

4 = 3t + 3\ + 1. 
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2. Class Number Bounds and Main Results. Let K be a cyclic cubic number field 
with conductor m and class number h. It is well known that m is the product of 
distinct primes, which are congruent to 1 mod (6), and of 9, if 3 ramifies in K. The 
class number h is congruent to 1 mod (3), if m is a prime or m = 9, and h is 
divisible by 3 otherwise. Set f(s) = L(s, X) - L(s, X) for s E C, where X and X are 
the nontrivial cubic Dirichlet characters modulo (m) belonging to K. Since the 
discriminant of K equals M2, the analytic class number formula yields 

(1) h= m f( ) 
4 R 

where R is the regulator of K. Moser [11] showed that for prime conductors, 
h < m/3 holds, so cubic fields will never lead to a contradiction to Vandiver's 
conjecture. Our aim is to establish a lower bound for the class number of a special 
family of cubic fields and to list all fields of some special types with prime conductor 
and small class number. From a result of Stark [14] one can deduce f(1) > c/log m, 
where c is effectively computable, but this bound is not suited for our purposes. 
From the results of the next section we will obtain: 

(2) If K is a cyclic cubic number field with conductor m > 105, then 
f (1) > 0.023 . 

The harder problem is to find an upper bound for the regulator, which is only 
achieved for the following family of cyclic cubic fields. The polynomial 

(3) fa(X) = X3 
a - 

X2 - a 
X- 1, a N odd, 

(3) 2 X a E2 

is irreducible over Q, has discriminant D(fa) = ((a2 + 27)/4)2, and if E is a zero of 
fa, the other zeros are e' = -1/(e + 1) and E" = -(e + 1)/E. Therefore, fa is a 
generating polynomial of a cyclic cubic field K with conductor m, and we define 
k E N by VD(fa) = (a2 + 27)/4 = km. 

We call the field K of type A, if k = 1, and of type B, if k = 27 and a = 27b with 
b e N odd, b # 1 (in this case we have m = (1 + 27b2)/4). It is well known that 
fields of type A or B have relatively large class numbers (see, for example, the tables 
of Gras [5]). Shanks [13] states that for cubic fields of type A with prime conductor 
"a rough mean value for h is given by h - 12m/35(log M)2 ". 

LEMMA 1. Let K be a cyclic cubic field with generating polynomial fa, conductor m 
and regulator R. Then, 

(4) 4R < ( 2logD( a))2 = (log( km))2. 

Proof of Lemma 1. Since the zeros E, E', e" of fa are units of K, we can estimate the 
regulator of K by R < Reg({e, e'}) =:R', if R' + 0 (see Lemma 4.15 in [16]). 
Choosing 

a - 3 + 4v > cos(1/3 . arctan(VH/a)) 
E6= 6 
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with the principal value of arctan, we obtain 

R' = det loglel log IE'I I 

|~~~~~~~ 1 logs El | logglel| 

= (logie + 11)2 - logle + log|EI +(logiEi)2. 

Series expansions yield 

R' = 4(logkm)2 - 3log(km) 3 + O logkm 
4 ~~2km ~4km (kin)2! 

and elementary calculus explicitly gives (4). 
With (2) and Lemma 1 we immediately obtain from (1): 
Let K be a cyclic cubic field with conductor m > 105 and with generating polynomial 

fa. Then, 
0 e946 

(5) h > 0.023 
m9 

(log km )2 

THEOREM. (a) Let K be a cyclic cubic field of type A with prime conductor m. Then 

h < 16 holds only for the following values of m: 

h m 

1 7, 13, 19, 37, 79, 97, 139 
4 163, 349, 607, 709, 937 
7 313, 877, 1129, 1567, 1987, 2557 

13 1063 

(b) Let K be a cyclic cubic field of type B with prime conductor m. Then h < 43 

holds only for the following values of m: 

h m 

1 61, 331 
4 547, 1951 
7 2437, 3571 

13 9241 
28 4219, 25117 
31 23497 
37 8269 

Proof of the Theorem. From (5) we obtain h > 14 for fields of type A with 

m > 169339, and h > 37.2 for fields of type B with m > 106. It is well known (see, 
e.g., Gras [4]) that primes q -1 mod (3) divide the class number of a cyclic cubic 
field only with an even exponent. The table of class numbers of Shanks [13], and 
Table 1 below, complete the proof of the theorem. 
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TABLE 1 

Class numbers of cyclic cubic fields of type B 

with prime conductor m < 106 

1 +27b2 1 +27b2 
b M 4 h b m 4 h 

173 202021 316 = 22 79 
3 61 1 185 231019 343 = 73 
7 331 1 189 241117 1216 = 26 .19 
9 547 4= 22 191 246247 175 = 52.7 

17 1951 4 = 22 193 251431 247 = 13 19 
19 2437 7 199 267307 196 = 22 72 
23 3571 7 205 283669 541 
25 4219 28 = 22 .7 221 329677 316 = 22 79 
33 7351 49 = 72 227 347821 331 
35 8269 37 231 360187 1732 = 22 433 
37 9241 13 235 372769 553 = 7 79 
39 10267 49 = 72 243 398581 1075 = 52.43 
45 13669 109 259 452797 769 
59 23497 31 261 459817 2257 = 37 . 61 
61 25117 28 = 22 -7 297 595411 2299 = 112 19 
91 55897 133 = 7 19 299 603457 739 
95 60919 193 301 611557 889 = 7- 127 

105 74419 688 = 24 43 303 619711 1156 = 22 172 
115 89269 211 305 627919 1552 = 24 97 
117 92401 532 22 7 . 19 341 784897 688 = 24 43 
123 102121 307 347 812761 769 
129 112327 604 = 22 151 361 879667 688 = 24 43 
131 115837 148 = 22 37 367 909151 787 
137 126691 97 371 929077 1588 = 22 .397 
147 145861 652 = 22 163 373 939121 661 
159 170647 628 = 2' 157 383 990151 532 = 22 7 19 

The class numbers of Table 1 were calculated with a "Sirius 1 Personal Computer", 
using the analytic class number formula (1). We also used that for fields of type B 
the roots of fa are already fundamental units, and therefore R = R' can be 
calculated with the explicit formula for e, given in the proof of Lemma 1. In the 
following way it can be proved that e is a fundamental unit: 

Let K be a field of type B with generating polynomial fa, a = 27b and 
m = (1 + 27b2)/4. Hasse [8] investigated the arithmetic of cyclic cubic fields, using 
the Gauss sums of the corresponding Dirichlet characters. With Hasse's notation, 
every integer a E K can be written as a = [x, y] with x E Z, y E Z[p], where 
p2 + p+ 1 = 0, and x -y mod (1 - p). If a is a unit of K, N(a) = 1 implies 
X3- 27 mod (m) and lxi < 2V/_jyY (Satz 8, [8]). For the roots of f27b we have 
e = [(27b - 3)/2, 3iV3 ] and its conjugates. Since Godwin's conjecture about funda- 
mental units holds for cyclic cubic fields with m > 9 (see Gras [6]), we have to show: 

There exists no unit a = [x, y] E K, a # + 1, with myy = 2 tr(a - a'*)2 
< 2 tr(E - E,)2 = 27m, where tr denotes the trace from K to Q. 

Suppose the contrary. Then x3 27 mod (m) and lxi < 2427m imply x E 
(3, (27b - 3)/2, -(27b + 3)/2) for b > 7. Considering 0 x y mod (1 - p) and 
yy < 27 yields only a few possibilities for y E Z[p], and one can check that for each 



THE CLASS NUMBER OF CERTAIN CUBIC NUMBER FIELDS 663 

of these y, N(a) = 1 has no solution a # 1. For small values of b, one can consult 
the table in [5]. 

In the same way, but with much less computation, one can prove that for k = 1 
(type A) and k = 3 the roots of fa are also fundamental units. In these cases one has 
e = [(a - 3)/2, ?1] with (a - 3)/2 +1 mod (3), and e = [(9b - 3)/2,iV3], 
respectively. 

3. A Lower Bound for L(1, X) * L(1, -). Let m be the conductor of a cyclic cubic 
field K, X and - the nontrivial cubic Dirichlet characters modulo m associated with 
K, and f(s) = L(s, X)L(s, -). To find a lower bound for f(l), we first need an 
upper bound for If(s)I in a disk in C containing 1. Consider C = C(,u, p) = 

sE CIIs - ,ul <p} with 1< u and u -1 <p <Eu, and set ao=u - p. Lets = 

a + it E C. For a > 0 we have the representation 

L s)=m-l X(n) +s f S(XX) dx with S(x, x) = E 
X(n) 

n-i m XS l 16n<x 

(see [16, p. 211]). The inequality of Polya-Vinogradov [16, Lemma 11.8] states that 
IS(x, X)I < V' * log m. For s e C(,u, p), the function IsI/a = 1/cos(args) attains 
its maximum ,u/ VA2 _ p2 if s is the point of contact of a tangent of C through 0. 
Combining these results, we obtain for every s E C(,u, p): 

IL(sX) I < 1 + jm 1 dx+IsIV *Vlogmj +1 dx 

< M _ -__ + A logm 
* 

m?5-?o 
1-a0 AL2_ p2 

Since log x/ VI is monotone decreasing for x > e2, we conclude that for m > in0> 
2 e2 

(6) ~~~~~~~If (s) I < C1 * M2-2,go 

holds for all s E- C(u, p), with 

1 + A logM0 

cl=\l-aO ~Al2_p P g 0 

LEMMA 2. If K is a cyclic cubic number field with conductor m, then f (1) > c6 m - C7, 

with c6, C7 > 0 as given in the course of the proof. Furthermore, C7 can be made 
arbitrarily small. 

Proof of Lemma 2. The proof follows mainly Washington [16, pp. 212-214]. Let 
c(s) be the Riemann zeta function and SK() = D(s)f(s) the zeta function of the 
cyclic cubic field K with conductor m. If s = a + it E C, we have 

DK(S) = l + E S for a > 1, 

with an > 0, and an > 1 if n is a cube. Developing ;K in a power series around 
,u > 1 gives 

00 

;K(S) = E bj(l - s)i, 
j=O 
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with 

(7) bo = (, > t(3,u) > 1 and b jfor (log nfj1. 
j!n=2n 

The integral representation of c(s) for a > 0 yields 

I OS) I < S ~~~~~+ISIf 1 du s-i IS I~()I S 1 1 G+? du= S + IsI 
and 

OS) S|I 1 + +Is I - + j ((u-[u])du 

lS-l 2 a1ff 
Let C = C(,u, p), with ,u - 1 < p < u, be the disk with center ,u and radius p, and 
denote its boundary by ac. Using (6), we get for all s E ac: 

(8) |KK(S) - |< (S)I IW-l If(I) | < C2* m20, 

with 

C2 = C1 max( si 1 +IsI min(i2 1(i + 

Since DK(S) - f ()/(s - 1) is holomorphic in the whole complex plane, (8) holds for 
all s E C(,u, p). Computing the coefficients of 

sK 
(S bj=O -yI~ )(U- 

with a Cauchy integral gives 

A l_______ 
__ f (1) ds C2 2 2o 

b () S ) - < - m J 
A- W1)' 2'lfi S (s - )J?1 PJ 

For O < a < 1, the integral representation of c(s), and f(a) = IL(a, X)I29 show that 
DK(a) < 0. So for any a with ao < a < 1, and any iv E R+ with 1 < i, we have 

f (1) / Al) Lb-1 f (i) 
a-1 >K D(a) 

- a_1> E b.- -(u - 
( a)j 

a-1 M- (-o E -i a 
2.m-ff(y-a)- 

a-i _ ~~~~j= oK] 

> 3 f~i f(1 u -a ~ 2-243(ti- a V1 
a-i- lal4u -l2M ~ p a -a0'9 

[v]-1 

where E bj(,u-a)j > C3 >1 
j=0 

From this inequality, we obtain 

f (l ) > C3 (1 - a)( 1 _ ) P-C2' * a .m22 * P 2(1(-a)(-a) ( _1 
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Choosing i = C4* log m + c5, with 
2 - 2ao 

c4 = 

log P 

and 

log ( (P ) + log log P -log log t_ 

c5 = lo- 
log 

gives f(1) > c6* mC7 with 

C6 = C3(1 -a( 1)5-C2(~)c 
( y 

- a )' 1- a)(a' - Oro) (p ) 

and 

C7 = (2-2aO). log/ 
a 

/log 
A-i p 1- a 

Since c7 -- 0 for a -* 1, the proof of Lemma 2 is completed. 
Numerical computations show that for mo = 105 good results can be obtained by 

choosing p = 10, p = 9.9 and a = 0.975. With these values we obtain c2 = 10.8685 
and v - 315. 

Using (7), and an > 1 for n a cube, we obtain the following estimations for C3: 

[v]-1 300 1 oa 
E b(p-a)j > K(A) + E E n1a)logn)j 

J=0 j=1 J n=2 

No 300 

> 0(3A) + 
E 

1 ((i - a)3 * logk)i 
k=2k _=1 jI 

N0 ((p - a)3 logk)301 302 
>1+ E (- 

k=2 k 3, 301! 302-(p, - a)3 * log k' 

where No < e302/3(-a). With the special values for ,, p and a, and No = 100, we 
obtain 

[v]-1 100 

E bj( - a) > E k-2925- 10-40 > 1.2175 = C3. 

j=O k=1 

These values yield c6> 0.023 and c7 < 0.054, and thus (2) is proved. 
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