A Lower Bound for the Class Number of Certain Cubic Number Fields

By Günter Lettl

Abstract. Let K be a cyclic number field with generating polynomial

$$X^3 - \frac{a-3}{2}X^2 - \frac{a+3}{2}X - 1$$

and conductor m. We will derive a lower bound for the class number of these fields and list all such fields with prime conductor $m = (a^2 + 27)/4$ or $m = (1 + 27b^2)/4$ and small class number

1. Introduction. Let h_m denote the class number of the cyclotomic field $\mathbf{Q}(\zeta_m)$, and h_m^+ , the class number of its maximal real subfield $\mathbf{Q}(\cos(2\pi/m))$. It is a well-known conjecture of Vandiver that $p+h_p^+$ holds for all primes $p \in \mathbf{P}$. This is a customary assumption for proving the second case of Fermat's Last Theorem (for more details see Washington [16]). Since h_p^+ grows slowly ($h_p^+=1$ for p<163 with the use of the Generalized Riemann Hypothesis (GRH), van der Linden [10]), for no p with $h_p^+>1$ the exact value of h_p^+ is known without using GRH. Masley suggested that perhaps $h_p^+< p$ always holds, but a counterexample was found in [3], [12]. The class number of each real subfield of $\mathbf{Q}(\zeta_p)$ divides h_p^+ , and in this way one can find primes with $h_p^+>1$. Using the quadratic subfield, Ankeny, Chowla and Hasse [1] showed that $h_p^+>1$ if p belongs to certain quadratic sequences in \mathbf{N} , and \mathbf{S} .-D. Lang [9] and Takeuchi [15] found more such sequences. Similar results were obtained for h_{4p}^+ by Yokoi [17]. Using the cubic subfield of $\mathbf{Q}(\zeta_p)$, which has been thoroughly investigated (e.g., [2], [5], [8]), the theorem of the present paper yields the following results:

If a is an odd integer, a > 23, and $p = (a^2 + 27)/4$, a prime, then $h_p^+ > 1$.

If b is an odd integer,
$$b > 7$$
, and $p = (1 + 27b^2)/4$, a prime, then $h_p^+ > 1$.

A conjecture about primes in quadratic sequences (Hardy and Wright [7, I.2.8]) implies that there exist infinitely many primes p of each of these two forms, because one can write

$$\frac{a^2+27}{4}=\left(\frac{a-3}{2}\right)^2+3\left(\frac{a-3}{2}\right)+9$$

and

$$\frac{1+27b^2}{4}=3\left(\frac{3b-1}{2}\right)^2+3\left(\frac{3b-1}{2}\right)+1.$$

Received November 6, 1984; revised July 15, 1985.

1980 Mathematics Subject Classification. Primary 12A30, 12A50.

2. Class Number Bounds and Main Results. Let K be a cyclic cubic number field with conductor m and class number h. It is well known that m is the product of distinct primes, which are congruent to 1 mod (6), and of 9, if 3 ramifies in K. The class number h is congruent to 1 mod (3), if m is a prime or m = 9, and h is divisible by 3 otherwise. Set $f(s) = L(s, \chi) \cdot L(s, \overline{\chi})$ for $s \in C$, where χ and $\overline{\chi}$ are the nontrivial cubic Dirichlet characters modulo (m) belonging to K. Since the discriminant of K equals m^2 , the analytic class number formula yields

$$h = \frac{m \cdot f(1)}{4 \cdot R},$$

where R is the regulator of K. Moser [11] showed that for prime conductors, h < m/3 holds, so cubic fields will never lead to a contradiction to Vandiver's conjecture. Our aim is to establish a lower bound for the class number of a special family of cubic fields and to list all fields of some special types with prime conductor and small class number. From a result of Stark [14] one can deduce $f(1) > c/\log m$, where c is effectively computable, but this bound is not suited for our purposes. From the results of the next section we will obtain:

(2) If K is a cyclic cubic number field with conductor
$$m > 10^5$$
, then $f(1) > 0.023 \cdot m^{-0.054}$.

The harder problem is to find an upper bound for the regulator, which is only achieved for the following family of cyclic cubic fields. The polynomial

(3)
$$f_a(X) = X^3 - \frac{a-3}{2}X^2 - \frac{a+3}{2}X - 1, \quad a \in \mathbb{N} \text{ odd},$$

is irreducible over **Q**, has discriminant $D(f_a) = ((a^2 + 27)/4)^2$, and if ε is a zero of f_a , the other zeros are $\varepsilon' = -1/(\varepsilon + 1)$ and $\varepsilon'' = -(\varepsilon + 1)/\varepsilon$. Therefore, f_a is a generating polynomial of a cyclic cubic field K with conductor m, and we define $k \in \mathbb{N}$ by $\sqrt{D(f_a)} = (a^2 + 27)/4 = km$.

We call the field K of type A, if k = 1, and of type B, if k = 27 and a = 27b with $b \in \mathbb{N}$ odd, $b \ne 1$ (in this case we have $m = (1 + 27b^2)/4$). It is well known that fields of type A or B have relatively large class numbers (see, for example, the tables of Gras [5]). Shanks [13] states that for cubic fields of type A with prime conductor "a rough mean value for h is given by $h \approx 12m/35(\log m)^2$ ".

LEMMA 1. Let K be a cyclic cubic field with generating polynomial f_a , conductor m and regulator R. Then,

(4)
$$4R < (\frac{1}{2} \log D(f_a))^2 = (\log(km))^2.$$

Proof of Lemma 1. Since the zeros ε , ε' , ε'' of f_a are units of K, we can estimate the regulator of K by $R \leq \text{Reg}(\{\varepsilon, \varepsilon'\}) =: R'$, if $R' \neq 0$ (see Lemma 4.15 in [16]). Choosing

$$\varepsilon = \frac{a - 3 + 4\sqrt{km} \cdot \cos(1/3 \cdot \arctan(\sqrt{27}/a))}{6} \sim \sqrt{km}$$

with the principal value of arctan, we obtain

$$R' = \left| \det \begin{pmatrix} \log|\varepsilon| & \log|\varepsilon'| \\ \log|\varepsilon'| & \log|\varepsilon''| \end{pmatrix} \right|$$
$$= (\log|\varepsilon + 1|)^2 - \log|\varepsilon + 1|\log|\varepsilon| + (\log|\varepsilon|)^2.$$

Series expansions yield

$$R' = \frac{1}{4} (\log km)^2 - \frac{3 \log(km)}{2km} + \frac{3}{4km} + O\left(\frac{\log km}{(km)^2}\right)$$

and elementary calculus explicitly gives (4).

With (2) and Lemma 1 we immediately obtain from (1):

Let K be a cyclic cubic field with conductor $m > 10^5$ and with generating polynomial f_a . Then,

(5)
$$h > 0.023 \frac{m^{0.946}}{(\log km)^2}.$$

THEOREM. (a) Let K be a cyclic cubic field of type A with prime conductor m. Then h < 16 holds only for the following values of m:

h	m
1	7, 13, 19, 37, 79, 97, 139
4	163, 349, 607, 709, 937
7	313, 877, 1129, 1567, 1987, 2557
13	1063

(b) Let K be a cyclic cubic field of type B with prime conductor m. Then h < 43 holds only for the following values of m:

h	m			
1	61, 331			
.4	547, 1951			
7	2437, 3571			
13	9241			
28	4219, 25117			
31	23497			
37	8269			

Proof of the Theorem. From (5) we obtain h > 14 for fields of type A with $m \ge 169339$, and h > 37.2 for fields of type B with $m > 10^6$. It is well known (see, e.g., Gras [4]) that primes $q \equiv -1 \mod (3)$ divide the class number of a cyclic cubic field only with an even exponent. The table of class numbers of Shanks [13], and Table 1 below, complete the proof of the theorem.

662 GÜNTER LETTL

Table 1
Class numbers of cyclic cubic fields of type B
with prime conductor $m < 10^6$

b	$m=\frac{1+27b^2}{4}$	h	b	$m=\frac{1+27b^2}{4}$	h
			173	202021	$316 = 2^2 \cdot 79$
3	61	1	185	231019	$343 = 7^3$
7	331	1	189	241117	$1216 = 2^6 \cdot 19$
9	547	$4 = 2^2$	191	246247	$175 = 5^2 \cdot 7$
17	1951	$4 = 2^2$	193	251431	$247 = 13 \cdot 19$
19	2437	7	199	267307	$196 = 2^2 \cdot 7^2$
23	3571	7	205	283669	541
25	4219	$28 = 2^2 \cdot 7$	221	329677	$316 = 2^2 \cdot 79$
33	7351	$49 = 7^2$	227	347821	331
35	8269	37	231	360187	$1732 = 2^2 \cdot 433$
37	9241	13	235	372769	$553 = 7 \cdot 79$
39	10267	$49 = 7^2$	243	398581	$1075 = 5^2 \cdot 43$
45	13669	109	259	452797	769
59	23497	31	261	459817	$2257 = 37 \cdot 61$
61	25117	$28 = 2^2 \cdot 7$	297	595411	$2299 = 11^2 \cdot 19$
91	55897	$133 = 7 \cdot 19$	299	603457	739
95	60919	193	301	611557	$889 = 7 \cdot 127$
105	74419	$688 = 2^4 \cdot 43$	303	619711	$1156 = 2^2 \cdot 17^2$
115	89269	211	305	627919	$1552 = 2^4 \cdot 97$
117	92401	532 $2^2 \cdot 7 \cdot 19$	341	784897	$688 = 2^4 \cdot 43$
123	102121	307	347	812761	769
129	112327	$604 = 2^2 \cdot 151$	361	879667	$688 = 2^4 \cdot 43$
131	115837	$148 = 2^2 \cdot 37$	367	909151	787
137	126691	97	371	929077	$1588 = 2^2 \cdot 397$
147	145861	$652 = 2^2 \cdot 163$	373	939121	661
159	170647	$628 = 2^2 \cdot 157$	383	990151	$532 = 2^2 \cdot 7 \cdot 19$

The class numbers of Table 1 were calculated with a "Sirius 1 Personal Computer", using the analytic class number formula (1). We also used that for fields of type B the roots of f_a are already fundamental units, and therefore R = R' can be calculated with the explicit formula for ϵ , given in the proof of Lemma 1. In the following way it can be proved that ϵ is a fundamental unit:

Let K be a field of type B with generating polynomial f_a , a=27b and $m=(1+27b^2)/4$. Hasse [8] investigated the arithmetic of cyclic cubic fields, using the Gauss sums of the corresponding Dirichlet characters. With Hasse's notation, every integer $\alpha \in K$ can be written as $\alpha = [x, y]$ with $x \in \mathbb{Z}$, $y \in \mathbb{Z}[\rho]$, where $\rho^2 + \rho + 1 = 0$, and $x \equiv y \mod (1-\rho)$. If α is a unit of K, $N(\alpha) = 1$ implies $x^3 \equiv 27 \mod (m)$ and $|x| \le 2\sqrt{my\bar{y}}$ (Satz 8, [8]). For the roots of f_{27b} we have $\varepsilon = [(27b-3)/2, 3i\sqrt{3}]$ and its conjugates. Since Godwin's conjecture about fundamental units holds for cyclic cubic fields with m > 9 (see Gras [6]), we have to show:

There exists no unit $\alpha = [x, y] \in K$, $\alpha \neq \pm 1$, with $my\overline{y} = \frac{1}{2}\operatorname{tr}(\alpha - \alpha')^2 < \frac{1}{2}\operatorname{tr}(\varepsilon - \varepsilon')^2 = 27m$, where tr denotes the trace from K to \mathbb{Q} .

Suppose the contrary. Then $x^3 \equiv 27 \mod (m)$ and $|x| < 2\sqrt{27m}$ imply $x \in \{3, (27b-3)/2, -(27b+3)/2\}$ for $b \ge 7$. Considering $0 \equiv x \equiv y \mod (1-\rho)$ and $y\bar{y} < 27$ yields only a few possibilities for $y \in \mathbb{Z}[\rho]$, and one can check that for each

of these y, $N(\alpha) = 1$ has no solution $\alpha \neq 1$. For small values of b, one can consult the table in [5].

In the same way, but with much less computation, one can prove that for k = 1 (type A) and k = 3 the roots of f_a are also fundamental units. In these cases one has $\varepsilon = [(a-3)/2, \pm 1]$ with $(a-3)/2 \equiv \pm 1 \mod (3)$, and $\varepsilon = [(9b-3)/2, i\sqrt{3}]$, respectively.

3. A Lower Bound for $L(1,\chi)\cdot L(1,\bar{\chi})$. Let m be the conductor of a cyclic cubic field K, χ and $\bar{\chi}$ the nontrivial cubic Dirichlet characters modulo m associated with K, and $f(s) = L(s,\chi)L(s,\bar{\chi})$. To find a lower bound for f(1), we first need an upper bound for |f(s)| in a disk in $\mathbb C$ containing 1. Consider $C = C(\mu,\rho) = \{s \in \mathbb C \mid |s-\mu| < \rho\}$ with $1 < \mu$ and $\mu - 1 < \rho < \mu$, and set $\sigma_0 = \mu - \rho$. Let $s = \sigma + it \in \mathbb C$. For $\sigma > 0$ we have the representation

$$L(s,\chi) = \sum_{n=1}^{m-1} \frac{\chi(n)}{n^s} + s \cdot \int_m^\infty \frac{S(x,\chi)}{x^{s+1}} dx \quad \text{with } S(x,\chi) = \sum_{1 \le n \le x} \chi(n)$$

(see [16, p. 211]). The inequality of Pólya-Vinogradov [16, Lemma 11.8] states that $|S(x,\chi)| < \sqrt{m} \cdot \log m$. For $s \in C(\mu,\rho)$, the function $|s|/\sigma = 1/\cos(\arg s)$ attains its maximum $\mu/\sqrt{\mu^2 - \rho^2}$ if s is the point of contact of a tangent of C through 0. Combining these results, we obtain for every $s \in C(\mu,\rho)$:

$$|L(s,\chi)| < 1 + \int_1^m \frac{1}{x^{\sigma_0}} dx + |s| \sqrt{m} \cdot \log m \int_m^\infty \frac{1}{x^{\sigma+1}} dx$$

$$< \frac{1}{1 - \sigma_0} m^{1 - \sigma_0} + \frac{\mu}{\sqrt{\mu^2 - \rho^2}} \log m \cdot m^{0.5 - \sigma_0}.$$

Since $\log x/\sqrt{x}$ is monotone decreasing for $x \ge e^2$, we conclude that for $m \ge m_0 \ge e^2$,

$$|f(s)| < c_1 \cdot m^{2-2\sigma_0}$$

holds for all $s \in C(\mu, \rho)$, with

$$c_1 = \left(\frac{1}{1 - \sigma_0} + \frac{\mu}{\sqrt{\mu^2 - \rho^2}} \cdot \frac{\log m_0}{\sqrt{m_0}}\right)^2.$$

LEMMA 2. If K is a cyclic cubic number field with conductor m, then $f(1) > c_6 \cdot m^{-c_7}$, with c_6 , $c_7 > 0$ as given in the course of the proof. Furthermore, c_7 can be made arbitrarily small.

Proof of Lemma 2. The proof follows mainly Washington [16, pp. 212-214]. Let $\zeta(s)$ be the Riemann zeta function and $\zeta_K(s) = \zeta(s)f(s)$ the zeta function of the cyclic cubic field K with conductor m. If $s = \sigma + it \in \mathbb{C}$, we have

$$\zeta_K(s) = 1 + \sum_{n=2}^{\infty} \frac{a_n}{n^s} \quad \text{for } \sigma > 1,$$

with $a_n \ge 0$, and $a_n \ge 1$ if n is a cube. Developing ζ_K in a power series around $\mu > 1$ gives

$$\zeta_K(s) = \sum_{j=0}^{\infty} b_j (\mu - s)^j,$$

with

(7)
$$b_0 = \zeta_K(\mu) > \zeta(3\mu) > 1$$
 and $b_j = \frac{1}{j!} \sum_{n=2}^{\infty} (\log n)^j \cdot \frac{a_n}{n^{\mu}} > 0$ for $j \ge 1$.

The integral representation of $\zeta(s)$ for $\sigma > 0$ yields

$$\left|\zeta(s)\right| \leqslant \left|\frac{s}{s-1}\right| + \left|s\right| \int_{1}^{\infty} \frac{1}{u^{\sigma+1}} du = \left|\frac{s}{s-1}\right| + \frac{\left|s\right|}{\sigma}$$

and

$$|\zeta(s)| \le \left| \frac{s}{s-1} \right| + |s| \cdot \sum_{n=1}^{\infty} \frac{1}{n^{\sigma+1}} \cdot \int_{n}^{n+1} \left(u - [u] \right) du$$
$$< \left| \frac{s}{s-1} \right| + \frac{|s|}{2} \left(1 + \frac{1}{\sigma} \right).$$

Let $C = C(\mu, \rho)$, with $\mu - 1 < \rho < \mu$, be the disk with center μ and radius ρ , and denote its boundary by ∂C . Using (6), we get for all $s \in \partial C$:

(8)
$$\left|\zeta_K(s) - \frac{f(1)}{s-1}\right| \le |\zeta(s)| \cdot |f(s)| + \frac{1}{|s-1|} \cdot |f(1)| < c_2 \cdot m^{2-2\sigma_0},$$

with

$$c_2 = c_1 \cdot \max_{s \in \partial C} \left(\frac{|s|+1}{|s-1|} + |s| \cdot \min \left\{ \frac{1}{\sigma}, \frac{1}{2} \left(1 + \frac{1}{\sigma} \right) \right\} \right).$$

Since $\zeta_K(s) - f(1)/(s-1)$ is holomorphic in the whole complex plane, (8) holds for all $s \in C(\mu, \rho)$. Computing the coefficients of

$$\zeta_K(s) - \frac{f(1)}{s-1} = \sum_{j=0}^{\infty} \left(b_j - \frac{f(1)}{(\mu-1)^{j+1}} \right) \cdot (\mu-s)^j$$

with a Cauchy integral gives

$$\left|b_{j}-\frac{f(1)}{(\mu-1)^{j+1}}\right|=\left|\frac{1}{2\pi i}\int_{\partial C}\left(\zeta_{K}(s)-\frac{f(1)}{s-1}\right)\frac{ds}{(s-\mu)^{j+1}}\right|<\frac{c_{2}}{\rho^{j}}\cdot m^{2-2\sigma_{0}}.$$

For $0 < \sigma < 1$, the integral representation of $\zeta(s)$, and $f(\sigma) = |L(\sigma, \chi)|^2$, show that $\zeta_K(\sigma) \le 0$. So for any α with $\sigma_0 < \alpha < 1$, and any $\nu \in \mathbb{R}^+$ with $1 < \nu$, we have

$$-\frac{f(1)}{\alpha - 1} \geqslant \zeta_{K}(\alpha) - \frac{f(1)}{\alpha - 1} > \sum_{j=0}^{\lfloor \nu \rfloor - 1} \left(b_{j} - \frac{f(1)}{(\mu - 1)^{j+1}} \right) \cdot (\mu - \alpha)^{j}$$

$$-c_{2} \cdot m^{2 - 2\sigma_{0}} \cdot \sum_{j=\lfloor \nu \rfloor}^{\infty} \left(\frac{\mu - \alpha}{\rho} \right)^{j}$$

$$\geqslant c_{3} - \frac{f(1)}{\alpha - 1} - \frac{f(1)}{1 - \alpha} \left(\frac{\mu - \alpha}{\mu - 1} \right)^{\nu} - c_{2} \cdot m^{2 - 2\sigma_{0}} \left(\frac{\mu - \alpha}{\rho} \right)^{\nu - 1} \cdot \frac{\rho}{\alpha - \sigma_{0}},$$
where
$$\sum_{j=0}^{\lfloor \nu \rfloor - 1} b_{j} (\mu - \alpha)^{j} \geqslant c_{3} \geqslant 1.$$

From this inequality, we obtain

$$f(1) > c_3(1-\alpha) \left(\frac{\mu-1}{\mu-\alpha}\right)^{\nu} - c_2 \cdot m^{2-2\sigma_0} \cdot \frac{\rho^2(1-\alpha)}{(\mu-\alpha)(\alpha-\sigma_0)} \left(\frac{\mu-1}{\rho}\right)^{\nu}.$$

Choosing $\nu = c_4 \cdot \log m + c_5$, with

$$c_4 = \frac{2 - 2\sigma_0}{\log \frac{\rho}{\mu - \alpha}}$$

and

$$c_5 = \frac{\log \frac{c_2 \cdot \rho^2}{(\mu - \alpha)(\alpha - \sigma_0)} + \log \log \frac{\rho}{\mu - 1} - \log \log \frac{\mu - \alpha}{\mu - 1}}{\log \frac{\rho}{\mu - \alpha}},$$

gives $f(1) > c_6 \cdot m^{-c_7}$, with

$$c_6 = c_3(1-\alpha)\left(\frac{\mu-1}{\mu-\alpha}\right)^{c_5} - c_2 \cdot \frac{\rho^2(1-\alpha)}{(\mu-\alpha)(\alpha-\sigma_0)} \cdot \left(\frac{\mu-1}{\rho}\right)^{c_5}$$

and

$$c_7 = (2 - 2\sigma_0) \cdot \log \frac{\mu - \alpha}{\mu - 1} / \log \frac{\rho}{\mu - \alpha}.$$

Since $c_7 \to 0$ for $\alpha \to 1$, the proof of Lemma 2 is completed.

Numerical computations show that for $m_0 = 10^5$ good results can be obtained by choosing $\mu = 10$, $\rho = 9.9$ and $\alpha = 0.975$. With these values we obtain $c_2 = 10.8685$ and $\nu \approx 315$.

Using (7), and $a_n \ge 1$ for n a cube, we obtain the following estimations for c_3 :

$$\begin{split} \sum_{j=0}^{[\nu]-1} b_j (\mu - \alpha)^j &\geqslant \zeta_K(\mu) + \sum_{j=1}^{300} \frac{1}{j!} \sum_{n=2}^{\infty} \frac{a_n}{n^{\mu}} ((\mu - \alpha) \log n)^j \\ &> \zeta(3\mu) + \sum_{k=2}^{N_0} \frac{1}{k^{3\mu}} \sum_{j=1}^{300} \frac{1}{j!} ((\mu - \alpha) 3 \cdot \log k)^j \\ &> 1 + \sum_{k=2}^{N_0} \frac{1}{k^{3\mu}} \left(k^{3(\mu - \alpha)} - \frac{((\mu - \alpha) 3 \cdot \log k)^{301}}{301!} \cdot \frac{302}{302 - (\mu - \alpha) 3 \cdot \log k} \right), \end{split}$$

where $N_0 < e^{302/3(\mu-\alpha)}$. With the special values for μ , ρ and α , and $N_0 = 100$, we obtain

$$\sum_{j=0}^{\lfloor \nu \rfloor - 1} b_j (\mu - \alpha)^j > \sum_{k=1}^{100} k^{-2.925} - 10^{-40} > 1.2175 = c_3.$$

These values yield $c_6 > 0.023$ and $c_7 < 0.054$, and thus (2) is proved.

Institut für Mathematik Karl-Franzens-Universität Halbärthgasse 1 A-8010 Graz Österreich, Austria

- 1. N. C. Ankeny, S. Chowla & H. Hasse, "On the class-number of the maximal real subfield of a cyclotomic field," J. Reine Angew. Math., v. 217, 1965, pp. 217-220.
- 2. A. CHÂTELET, "Arithmétique des corps abéliens du troisième degré," Ann. Sci. École Norm. Sup. (3), v. 63, 1946, pp. 109-160.
- 3. G. CORNELL & L. C. WASHINGTON, "Class numbers of cyclotomic fields," J. Number Theory, v. 21, 1985, pp. 260-274.

- 4. M.-N. GRAS, Sur le Nombre de Classes du Sous-Corps Cubique de $Q^{(p)}$ ($p \equiv 1$ (3)), Thèse, Grenoble, 1971.
- 5. M.-N. Gras, "Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q," J. Reine Angew. Math., v. 277, 1975, pp. 89-116.
- 6. M.-N. GRAS, "Note a propos d'une conjecture de H. J. Godwin sur les unités des corps cubiques," Ann. Inst. Fourier (Grenoble), v. 30/4, 1980, pp. 1-6.
- 7. G. H. HARDY & E. M. WRIGHT, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, New York, 1979.
- 8. H. HASSE, "Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern," Abh. Deutsch. Akad. Wiss. Berlin Math.-Nat. Kl., 1948, Nr. 2, 95
- 9. S.-D. LANG, "Note on the class-number of the maximal real subfield of a cyclotomic field", J. Reine Angew. Math., v. 290, 1977, pp. 70-72.
- 10. F. J. VAN DER LINDEN, "Class number computations of real abelian number fields," Math. Comp., v. 39, 1982, pp. 693-707.
- 11. C. Moser, Sur le Nombre de Classes d'un Corps K Réel Cyclique de Conducteur Premier, deg K ≥ 4, Seminaire Théorie des Nombres, Grenoble, 1980, 17 pp.
- 12. E. SEAH, L. C. WASHINGTON & H. C. WILLIAMS, "The calculation of a large cubic class number with an application to real cyclotomic fields", *Math. Comp.*, v. 41, 1983, pp. 303-305.

 13. D. Shanks, "The simplest cubic fields," *Math. Comp.*, v. 28, 1974, pp. 1137-1152.
- 14. H. M. STARK, "Some effective cases of the Brauer-Siegel Theorem," Invent. Math., v. 23, 1974, pp. 135-152.
- 15. H. TAKEUCHI, "On the class-number of the maximal real subfield of a cyclotomic field," Canad. J. Math., v. 33, 1981, pp. 55-58.
 - 16. L. C. WASHINGTON, Introduction to Cyclotomic Fields, GTM 83, Springer, New York, 1982.
- 17. H. YOKOI, "On the diophantine equation $x^2 py^2 = \pm 4q$ and the class number of real subfields of a cyclotomic field," Nagoya Math. J., v. 91, 1983, pp. 151-161.