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Abstract. We consider the problem of solving the algebraic system of equations which 
arise from the discretization of symmetric elliptic boundary value problems via finite 
element methods. A new class of preconditioners for these discrete systems is developed 
based on substructuring (also known as domain decomposition). The resulting precon- 
ditioned algorithms are well suited to emerging parallel computing architectures. The 
proposed methods are applicable to problems on general domains involving differential 
operators with rather general coefficients. A basic theory for the analysis of the condi- 
tion number of the preconditioned system (which determines the iterative convergence 
rate of the algorithm) is given. Techniques for applying the theory and algorithms to 
problems with irregular geometry are discussed and the results of extensive numerical 
experiments are reported. 

1. Introduction. The aim of this series of papers is to propose and analyze 
methods for efficiently solving the equations resulting from finite element discretiza- 
tions of second-order elliptic boundary value problems on general domains in R2 
and R3. In particular, we shall be concerned with constructing easily invertible and 
"effective" preconditioners for the resulting system of discrete equations which can 
be used in a preconditioned iterative algorithm to achieve a rapid solution method. 
The methods to be presented are well suited to parallel computing architectures. 

In this paper we shall restrict ourselves to boundary value problems in R2. 
Let Q be a bounded domain in R2 with a piecewise smooth boundary 9Q. As a 
model problem for a second-order uniformly elliptic equation we shall consider the 
Dirichlet problem 

(1.1) Lu=f in Q, u=O onal, 

where 

Lv=- E <iz- (aij, 
i,j= 1 
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with aij uniformly positive definite, bounded and piecewise smooth on Q. The 
generalized Dirichlet form is given by 

(1.2) A(v,q$) = E aijzi a -dx , 

which is defined for all v and X in the Sobolev space H1 (Q) (the space of distribu- 
tions with square-integrable first derivatives). The L2 (Q)-inner product is denoted 

(Vq5) = Jvo dx. 

The subspace Ho (Q) is the completion of the smooth functions with support in Q 
with respect to the norm in H1 (a). The weak formulation of the problem defined 
by (1.1) is: Find u E Ho (Q) such that 

(1.3) A(u, q) = (f, q) 

for all q E Ho (Q). This leads immediately to the standard Galerkin approximation. 
Let Sh (Q) be a finite-dimensional subspace of Ho (s). The Galerkin approximation 
is defined as the solution of the following problem: Find U E Sh (Q) such that 

(1.4) A(U, A) = (f, I) 

for all 4 E Sh,(Q). Once a basis {Xi} N l for Sh,(O) is chosen, (1.4) leads to a system 
of linear algebraic equations. Write U = EN &iXi. Then (1.4) becomes 

N 

(1.5) Z oiA(Xi, Xj) = (fxj), 

j = 1, ... , N. We shall choose Sh(O) so that firstly, the function U will be a 
good approximation to u and secondly, efficient algorithms for the solution of the 
underlying linear system (1.5) can be developed. In particular, we will consider 
subspaces Sh(Q) of Hd1(Q) which are defined so that certain related subproblems 
can be efficiently solved. We will see that this leads to algorithms for the solution 
of the global linear system which is well suited to parallel processing. 

The strategy of choosing Sh (Q) so that efficient algorithms exist for the solution 
of the resulting linear system is not unusual. For example, for the Laplace operator 
on a rectangular region, a subspace Sh(O) of piecewise linear functions on a uni- 
form triangulation leads to the usual 5-point approximation to the Laplacian. The 
resulting equations may be solved "fast" using, for example, fast Fourier transform 
techniques. In this case, other choices of Sh (Q) may lead to good approximate solu- 
tions, but these solutions may be more difficult to obtain computationally. Another 
example of a special choice of Sh (Q) which leads often to a fast algorithm is one 
which may be thought of as connected with a nested set of grids. For such spaces, 
a "multigrid" algorithm may be applied. 

The underlying method which we will consider is a preconditioned iterative 
method. The choice of a particular iterative method within a certain class is not 
essential, but for the purpose of this exposition we may think of the well-known 
conjugate gradient method [12], [15] which is often used in practice. Roughly, the 
application of a preconditioned method may be described as follows. Let A be the 
N x N matrix with entries A(Xi, Xj), a the column vector whose components are 
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as in (1.5), and F the vector with components (f, Xj). Then (1.5) may be written 
as 

(1.6) Ac = F. 

Generally, the matrix A is not well-conditioned so that a direct application of 
the conjugate gradient method to the symmetric positive-definite system (1.6) will 
not be a very efficient algorithm. The preconditioned conjugate gradient method 
(PCG) consists of choosing a positive-definite symmetric matrix B and writing the 
equivalent system 

(1.7) B-lAa = B-'F. 

In the present context the matrix B will be associated with another bilinear form 
B(.,) defined on So(U2) x Sh(U2). The system (1.7) is symmetric with respect to 
the inner product defined by 

N 

(1.8) lat,:0]_ Bijei~j. 
i,j=l 

Thus, the conjugate gradient method may be applied to (1.7) with respect to (1.8). 
The importance of making a "good" choice for B is well known. The matrix B 
should have two properties. First, the solution of the problem 

(1.9) B3 = b 

should be easy to obtain. This is tantamount to applying the operator B-1 to the 
vector b. Secondly, B should be spectrally close to A in the sense that the condition 
number K of B-lA should not be large. Clearly, K < Al/Ao, where Ao and Al are 
constants such that 

Ao[,f] < [B-'A,0] < Aj[fl,/] for all f e RN. 

In terms of the form B(., .), the first property means that the solution W of 

(1.10) B(W, (?) = (g, 4?), for all 4 E Sh(e ) 

for a given function g should be easier to obtain than the solution of (1.4). The 
spectral condition, in terms of the forms, is 

(1.11) AoB(VV) < A(VV) < AlB(VV) for all V E Sh(Q). 
These two properties will guarantee, firstly, that the work per iterative step in 
applying the preconditioned method will be small, and, secondly, that the number 
of steps to reduce the error to a given size will also be small so that an efficient 
algorithm will result. 

In this paper we will describe and analyze a technique for constructing the bi- 
linear form B(., ) so that the action of the corresponding matrix problem B-1 is 
easy to compute. As a preliminary step, the domain is subdivided into subdomains. 
Our preconditioner will be defined so that the computation of its inverse applied to 
a vector only involves solving in parallel related Galerkin (or matrix) equations on 
subregions of Q1 and some interconnecting equations, which may also be solved in 
parallel. The preconditioner B will be the first of our domain decomposition pre- 
conditioners to be developed in this series of papers and will sometimes be denoted 
DD1. 

In Section 2, the preconditioner B-1 will be defined and the essential step in 
the iterative algorithm of computing the action of B-1 will be described in detail. 
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The main result concerning the condition number K is also stated in this section as 
Theorem 1. Section 3 is devoted to a complete proof of Theorem 1. In Section 4 we 
show how SO(Q) can be constructed and how various coefficients introduced in the 
definition of the preconditioner (see Section 2) can be chosen so that the related 
subproblems can be efficiently solved, even in rather complex domain geometry. 
Section 5 contains a reexamination of the process of applying the action of B-1 
in the context of "block Gauss elimination". Finally, in Section 6 we describe the 
results of numerical calculations which show that the theoretical estimates are fully 
realized in practice. 

For other works dealing with the numerical solution of boundary value problems 
via substructuring we refer to [1], [2], [4]-[7], [10]. We emphasize that a novel 
feature of our approach is that more than two subdomains can meet at an interior 
point of the original domain. In addition, our results remain valid independently 
of the number of such points. As a simple example, our approach applies to a 
checkerboard subdivision of a square. 

2. The Construction of B(., ) and the Preconditioning Algorithm. As 
mentioned in the introduction, the preconditioner which we will construct involves 
the solution of smaller related problems on subdomains and subdomain boundaries. 
For the sake of simplicity of exposition we shall proceed with the discussion only 
for the special case of polygonal domains and piecewise linear approximations. 

More precisely, we shall begin with the following assumptions with regard to Q. 
A. 1: Q is a polygonal domain. 
A.2: For each h, 0 < h < 1 a parameter, Q has been given a quasi-uniform 

triangulation fQh. By this we mean that there exists a positive constant cl inde- 
pendent of h such that each triangle Th E Qh contains a ball of radius clh and is 
contained in a ball of radius h. 

A.3: For each triangulation Qh, Q may be written as the union of disjoint regions 
Qk, which are either quadrilaterals or triangles whose sides coincide with the mesh 
lines of the original triangulation and which are quasi-uniform of size d > h with 
constants, as above, which are independent of d and h. If fQk is a quadrilateral, we 
require additionally that the lengths of each side be bounded from below by cid 
and that any interior angle a satisfy 0 < Co < a < C1 < ir. The collection of 
regions Qk will frequently be referred to as the subdomains. 

The vertices of the {fQk } will be labeled v; (ordered in some way) and Fij will 
denote the straight line segment with endpoints vi and vj. Throughout this paper 
we shall only consider Fi3 when Fij is an edge of some Qk. Furthermore, we 
associate with each Q2k the triangulation inherited from the original triangulation 
Qh. The examples given in Figures 2.1 and 2.2 should help clarify the situation. 

For each h, let Sh (Q) be the space of continuous piecewise linear functions defined 
relative to the triangulation Qh and Sh(Q) be the subspace of Sh(Q) consisting of 
those functions which vanish on OQ. ShX(%j) will denote the subspace of Sh2(Q) of 
functions whose supports are contained in Q. (in particular, they vanish on aQj and 
outside f2Q). In addition, Sh(Q;) will be the set of functions which are restrictions 
of those in Sh?(Q) to f2Q. Subspaces on the boundaries of the subdomains will 
be denoted as follows. Sh(0Qj) will denote the restrictions of Sh(Q;) to aOQ and 
Sh? (Fij), the subspace of Sh (OQj) consisting of functions whose support is contained 
on the edge Fij. In what follows, c and C (with or without subscript) will denote 
generic positive constants which are independent of h, d and the Qk. 
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V7 

V2 

FIGURE 2.1. The domain Q and subdomains. 

F IGURE 2.2. The d omain with mesh. 

We construct our preconditioner B by constructing its corresponding bilinear 
form B(.,.) defined on Sh(Q2) X Sh(Q2). We first introduce another form A(.,.) 
which is defined by first setting 

Ak(U,V)= |ak,, dx, 
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and then defining 

A(U, V) = ZAk (U V). 
k 

Here for each k, ak is a piecewise smooth (possibly discontinuous) uniformly 
positive-definite matrix. The reason for the form of A will become clear as we 
proceed with the development. We note, however, that 

CoA(U, U) < A(U, U) < Cl A(U, U) 

for positive constants Co and C1. Thus, the problem of finding a preconditioner 
for A is the same as finding one for A. 

We next decompose functions in Sh[(Q) as follows: Write W = Wp + WH where 
Wp E Sho (Q[1) E ... ED Sho([2r) and satisfies 

Ak(Wp, D) = Ak(W, C) for all 1 E Sho(Qk) 

for each k. Notice that Wp is determined on Qk by the values of W on Qk and 
that 

Ak(WHa) =0 for all 4 E Sh(0k). 

Thus on each f1k, W is decomposed into a function Wp which vanishes on 892k and 
a function WH E Sh(0k) which satisfies the above homogeneous equations and has 
the same boundary values as W. We shall refer to such a function WH as "discrete 
Ak-harmonic." 

Remark 2.1. The matrices with entries atk are in principle arbitrary but, as will 
be seen in Section 4, they may be chosen in such a way that the subproblems deter- 
mining Wp and WH may be easily solved once the values of WH on the subdomain 
boundaries are known. 

We note that the above decomposition is orthogonal in the A-inner product and 
hence, 

A(W, W) = A(Wp, Wp) + A(WH, WH). 

We shall define B(-, ) by replacing the A(WH, WH) term above. To do this, we 
decompose WH E Sh(0k) into WH = WE +WV, where WV E Sh([k) is the discrete 
Ak-harmonic function whose values on a0k are the linear function along each rij 
with the same values as W at the vertices. Thus WE is a discrete Ak-harmonic 
function in [k for each k which vanishes at all of the vertices. 

Before defining the form B(., .), we note that for any discrete Ak-harmonic func- 
tion W with zero mean value on Qk, 

(2.1) YoAk(W, W) ? W12,aQk < 'yAk(W W) , 

where -yo and -yj are positive constants and I - 11/2,aQk is the norm on the Sobolev 
space H1/2(O[2k). This will be proved in Section 3 but is noted here to motivate 
our construction. Now it will also be shown in the next section that 
if W = 0 at the vertices, then the norm IWI1/2aQk may be replaced in (2.1) 
by Zr.. cli;(a-iO/2W, W) ri with new values of -yo and -5y such that yi/o < 
0(1 + ln(d/h)2). Here lo is the operator defined for each rij on Sho(rij) by 

(2.2) (a-1loW, )rj = (aW', ")rij for all 1 Esh(rij). 
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The prime denotes differentiation with respect to arc length s along rij. In (2.2) a 
is, for simplicity, a positive piecewise constant function on rij, 0 < ao < a < al, 
with ao and a, independent of rij and h, and 

(0, i)ri, = f Hi ds. 

Note that lo is symmetric and positive definite in the inner product (a-'*, )ri and 
hence its square root is well-defined. 

Here again we may, in principle, choose the function a quite arbitrarily, but, as 
will be seen in Section 4, computational considerations dictate a natural choice. aij 
is a positive constant which will also be chosen explicitly later. We however require 
that 0 < Co < aij < C, for constants Co and C, which are independent of h, di 
and the Qk'S. 

Finally, as is shown in the next section, for WV as defined above, 

CoAk(WVWV) < Eaij(Wv(v)-WV(Vj)) < CAk(WV,WV) 
rij 

holds for some positive constants Co and C1. 
With the above statements in mind, we now define the form B(., ) by 

B(W, D) = A(Wp, Bp) + E a j(a' 1i0 WE, BE) ri 
(2.3) rij 

+ Zaij(Wv(vi) - Wv(vj))( v(vi) - (vj)). 
rij 

The following theorem is proved in Section 3: 

THEOREM 1. There are positive constants Ao, Al and C such that 

AoB(W, W) < A(W, W) < AjB(W, W) for all W ESh(f)i 

where Al/Ao < 0(1 + ln(d/h)2). If all of the vertices of the Ilk lie on d972, then 
Al/Ao < C. 

Thus the condition number grows at most like (1 + ln(d/h)2) as h tends to zero. 
This means that the preconditioned iteration will converge rapidly and corresponds 
to the second of the two desirable properties mentioned earlier. 

The first property previously discussed states that problem (1.10) should be 
much more easily solved than the original (1.4). This means that the solution of 
the corresponding matrix equation (1.9) is relatively easy to obtain. 

We shall demonstrate howv (1.10) can be solved efficiently. In fact, we shall see 
that the defining equations have been chosen to conveniently lend themselves to a 
"block Gauss elimination" procedure. Here, we shall describe the process used to 
solve (1.10). The matrix interpretation is given in Section 5. 

Given g, the problem of solving (1.10) reduces to finding the functions Wp and 
WH. The function Wp restricted to f1k satisfies 

(2.4) Ak(Wp, A) = (9, ID) for all 1? E Sh(172k). 

Thus the function Wp on Ik can be obtained by solving the corresponding Dirichlet 
problem (2.4). Note that the problems on different subdomains are independent of 
each other so that they may be solved in parallel. 
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With Wp now known, we are left with the equation 

E aij(a- 1io/ WE, BiEE)r, Jr E aij (Wv (vi) - Wv (vj)) ((v (vi) - 4?v (vj)) 
(2.5) rJ3 rat 

= (g, 4) - A(Wp, bp) = (g, D) - A(Wp, D), 

the last equality holding since A(Wp, 4DH) = 0. Notice that the value of (g, 4D) - 
A(Wp, D), for each D, depends only on the value of D on the rij's. Thus (2.5) 
gives rise to a set of equations on the restriction of Sho(Q) to U rij. To solve these 
equations, we proceed as follows: For each Fij choose 1 in the subspace of Sh?(q) 
whose elements vanish in the interior mesh points of every Qk and on all other F's 
and, in particular, at the endpoints of ri3. Thus, on this subspace, (2.5) decouples 
into the independent problems of finding WE E Sh,(Fij) given by 

(2.6) aij(a -l/ WE, ?)r'j = (9, I) - A(Wp, (D) 

for each Fij. The computational aspects of solving for WE on each rij are fully 
discussed in Section 4; however, note that these are local problems with unknowns 
corresponding to the nodes on Fij and may be solved in parallel. 

Next we must solve for WV on the edges. We consider the subspace of Sh2(0) 
consisting of functions which are linear between the endpoints of each Fij and 
vanish at mesh points in 2h which are interior to any [2j. Clearly, such a subspace 
has dimension equal to the number of interior vertices, i.e., vertices of the 2k which 
do not lie on XIL For each D in this subspace, 4?E = 0 and (2.5) reduces to 

(2.7) E aij (Wv (vi) - Wv (v)) ((v (vi) - (v (v)) = (g, 1?) - A(WP, ). 
r,3 

A basis for this subspace may be chosen as follows: Choose D1, .. ., 4M, where M 
is the number of vertices not on D9i and Vi(vj) = 8ij where &ij = 1 if i = j and 0 
otherwise. This choice gives rise to a difference equation for the function WV on the 
interior vertices which is independent of (2.6) and may be solved concurrently. The 
values WV at the vertices determine WV on the edges and hence WH = WE + WV 
is known on all of the edges rij. 

The last step consists of determining WH in each fk so that 

(2.8) Ak(WH, (D) = 0 for all 4D E Sh(Qk). 

The problem of finding the solution of (2.8), given the values of WH on the boundary 
of the subdomains, reduces to independent Dirichlet solves on the subdomains. 
Hence the solution of (1.10) is determined by W = Wp + WH. 

We summarize the process by outlining the steps for obtaining the solution of 

B(W, fb) = (g, ?) for all f E Sh(Q), 

and hence for computing the action of B-1. 

Algorithm DD1. 
1. Find Wp by solving Dirichlet problems on subregions. The solution of the 

individual Dirichlet problems on the subdomains may be done in parallel. 
2. Find WE on Fij by solving one-dimensional equations on each Fij. 
3. Find WV on U Fij by first finding WV on the interior vertices of 2k by solving 

a coarse mesh difference equation and then extending piecewise linearly to the edges 
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Fij. The solution on the different segments Fij of Step 2 and Step 3 may be done 
in parallel. 

4. Find WH by extending the values of WE + WV on the Fij discrete Ak- 
harmonically to the subregions; i.e., solve Dirichlet problems on the subregions. 
As in Step 1, the solutions of the individual Dirichlet problems on the various 
subdomains may be done in parallel. 

5. Set W=Wp+WH. 

We shall now discuss several features of this preconditioning algorithm. 
Remark 2.2. The process described above is just that which is required for 

applying the "action" of the matrix B- 1 to an arbitrary vector. We again emphasize 
that it involves solving some local problems on subdomains which are independent 
of each other so that they can be solved concurrently on computers with parallel 
architecture. 

Remark 2.3. As remarked previously in this section, the matrices of coeffi- 
cients akj defining the forms Ak need only, in principle, be chosen so that they are 
uniformly positive definite (which implies the spectral equivalence of A and A). 
However, as will be seen in later sections, a judicious choice of akj can often be 23 

made which results in subdomain problems which can be "fast" solved. In Section 
4, we shall explicitly show one method of choosing the coefficients ak in a simple 
way so that known efficient direct methods may be used to solve the problems on 
the subdomains. 

Remark 2.4. The theoretical results for this algorithm remain valid independent 
of the number of subdomains and interior vertices used in the decomposition of Q. 
This is important when the coefficients aij(x) are rapidly varying, in which case 
preconditioners with smaller subdomains more closely reflect the behavior of the 
coefficients and give rise to more rapidly convergent algorithms. The freedom to use 
many subdomains may also prove to be important in developing the most efficient 
preconditioner for a computer with a large number of parallel processors. 

Remark 2.5. For simplicity of presentation, we have assumed that Q is a polyg- 
onal domain and the subdomains Qj are either quadrilaterals or triangles and that 
the subspaces consist of piecewise linear functions. The algorithm and theorem 
can be extended, under reasonable assumptions, to the case where Q is a bounded 
domain with piecewise smooth boundary and the subdomains Qj have either piece- 
wise smooth boundaries or are mesh domains which approximate piecewise smooth 
boundaries. We can also extend the above algorithms to a class of higher-order 
piecewise polynomial subspaces. We intend to deal with these extensions in a later 
paper. 

Remark 2.6. We could also define another preconditioner by replacing the form 
on the left-hand side of (2.7) by a form, corresponding to a weighted identity oper- 
ator, leading to the equations for Wv given by 

M 
(2.9) i Wv(v i)4 v (v i) = (g, ID) - A(Wp, 4), 

i=l1 

where the sum is taken over all interior vertices of the Qj's. Note that in the case 
M = 1, this formulation coincides with (2.7). The choice of basis functions J? as 
indicated after (2.7) leads to 

WV(Vi) = (9 ) - A (Wp, I) i = 1...I M. 
ali 
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In this case one can prove, using the techniques given in Section 3, that Theorem 1 
holds with 

(2.10) A1/Ao ? Cd-2(1 + ln(d/h)2), 
where C is independent of d and h. The estimate indicates that this procedure 
may be reasonable if d is large, i.e., there are very few subdomains, but will become 
inefficient as d becomes small, i.e., as the number of subdomains is increased. This 
is illustrated by the results of Example 6 of Section 6. 

Remark 2.7. In the case that the forms Ak(., ) and A(., ) coincide on functions 
in Sh(ak) then the variables which are interior to Qk can be eliminated from the 
iterative process. Consequently, if the above forms coincide on every subdomain, 
then the iterative process can be reduced to a boundary iteration. The resulting 
algorithm is more efficient than the general algorithm in that each iteration does 
not require the solution of (2.4). However, much of the generality and flexibility of 
the general algorithm is lost. 

3. A Proof of Theorem 1. In this section, we prove the main theorem of 
the paper which provides bounds on the condition number for the preconditioned 
system corresponding to (1.7). This, as previously noted, reduces to the estimation 
of the quantities A0 and A1 appearing in quadratic form inequalities (1.11). This 
will be done here in the special case of assumptions A.1, A.2, A.3, and where the 
finite element subspaces are as in Section 2. 

We shall first need some preliminaries. We remind the reader that c or C, with 
or without subscript, will denote a generic positive constant which is independent 
of h, d, the subdivision Qk and the triangulation Qh. 

The derivation of the estimates in this section requires the use of various norms 
defined on the subdomain boundaries. Let Qi be a subdomain of Qh (as defined in 
Section 2) and /i be the set of indices jk with rjk E 69Qi, hence AQj = U r1k for 
jk e /3i. The Sobolev space of order one half on &Qi will be denoted H'/2(OIQ) 
and is defined in [11], [14], [161. With d as in A.3 (roughly the diameter of Qi), we 
define the weighted norm on H1/2(DQi) by 

(3.1) IWll/2,&a~ = (f(2i f (wX) - w(y))2 ds(x) ds(y) 1/2 

+ d-1 IWIL2(aj)) 

where s is arc length along aQi. If v is a smooth function on aQi with support 
contained in one of the edges rjk C a~i, then the integral term in (3.1) reduces to 

Ir Vr ) _ V~y))2 ds(x) ds(y) + 2 IX - ds(y) ds(x). 

A straightforward computation gives that 

C - Y1-2 ds(y) < IX - VkI-1 + IX - vj_1 - < C j - Yl-2 ds(y). 
~i /rik n,/rik 

Thus, for smooth v with support contained on rFk, the norm in (3.1) is equivalent to 

(3.2) K +'~i~ ' X-y ds (x) ds(y) (3-2) ik ik~ vIx) v x)2 1/2 
I I(Xvk ? () ds(x) 

ikIX- kjIx-vu Jj 
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The space H'1/2 (rjk) is defined to be the completion of the smooth functions with 
compact support in rjk with respect to the norm (3.2). We shall denote by I 11/2,rik 

the norm on H'/2(rjk) given by (3.2). It is well known that the space H'2 (rjk) 
is the interpolation space which is halfway between Ho (rjk) and L2('rjk) [14], [16]. 
We note that the operator (-92/9S2) with domain of definition Ho (rjk) is posi- 
tive definite and selfadjoint on L2(Lr'k) and domain of (_92/9s2)l/2 = H1/2(rjk) 
Consequently, the corresponding norm given by 

(3 3) ((( 2/a82)1W W, 
wrj) 

is equivalent to the norm of (3.2) on H/2 (rjk). We note that the discrete operator 
lo defined on So(rjk) by 

(low, ?)rjk = (W', 5')rfk for all $ E so(rjk), 

is a finite-dimensional approximation to (_92/9S2). Using A.2, it can be shown by 
interpolation [13, Theorem 9.1] that 

(3.4) CIWI1/2,rjk < lo/2 WW)r < CIW12,pj for all W E So(rFk) 

We also note that by the assumptions on the coefficients defining lo in (2.2), 

c(l0WW)rjk ?jKa<ioWW) 
? C(loW,W)rjk forallWeSh(FJk). 

By A.3 and a similar interpolation argument, 

c lW/2w, W) < ?a-1/2WI W 

< <clj' Ww) for all W e So(rjk) 

We shall need several lemmas which will be used in the proof of the main theorem. 
LEMMA 3.1. For V E Sh((rjk), let V be the function which is equal to V on r3k 

and is equal to zero on the remaining edges of Qi. Let v denote the Ai-harmonic 
extension of V satisfying v = V on aJi and 
(3.6) Ai(i, 1) = O for all e Ho' (i). 
Then 

cAip(, v) < (a-'lo 1VI V) rj < CAi (v Iv) 

Proof. Let Di (u, O) = fo, Vu * Vo dx, and let v* e H1 (Q) satisfy v* = V on (90i, 
and Di(v*, 0) = 0 for all 0 e Ho (Ri). Then, using a trace inequality, A.3, and the 
uniform positive definiteness of the {aik}, 

(3 7) |Vl 1~2/ i < cDi P, v) < cAiv,) 
< cAi(v*, v*) < CDi (v*, v*). 

Using A.3 and a well-known a priori inequality, we have Di (v*, v*) < C 1/2,aii I 
and hence 

(3.8) C IV 11/2,ai < Ai(vv) < C V1/2,ai 
The lemma easily follows from the equivalence of norms (3.1) and (3.2) for functions 
V, (3.4), (3.5) and (3.8). 0 

We shall need some a priori estimates for discrete Ai-harmonic functions. 
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LEMMA 3.2. Let W E Sh(Q) be discrete Ai-harmonic, then 

(3.9) Ai(W, W) < C IW12 

Furthermore, the following hold: 
(i) If W has mean value zero on Qi, then 

(3.10) c1Wl/2,aQi < Ai (WI W). 

(ii) If W vanishes at the vertices of Qi, then 

(3.11) Aj(W,W)?C Z E ijka-'lo/WW)W 
jkC-f3i 

(iii) If W is a linear function on each edge 1jk C D3Qi, then 

(3.12) Ai(W,,W) < C E cjk(W(Vi) -W(vk))2. 
jkC-3% 

Proof. The inequalities (3.9), (3.10), and (3.11) were essentially proved in [4]. 
For completeness we shall include a proof of (3.9) and (3.10) at the end of this 
section. Here we shall show how (3.11) and (3.12) follow from (3.9), (3.10) and 
earlier inequalities. We prove (3.11) as follows. Let 1ik be any edge of Qi and let 
Wjk be the discrete Ai-harmonic function which is equal to W on rjk and vanishes 
on all the other edges of oQi. Clearly, W Z Ejkge,31 Wk and the triangle inequality 
yields 

(3.13) Ai(W,W) < C E Ai(WjkWjk) 
jkefJ 

Applying (3.9), the equivalence of norms (3.1) and (3.2) on the functions Wjk, (3.4) 
and (3.5) gives 

Ai(Wjk, Wjk) < CIWjk I12,aQ, 

(3.14) < C 1Wjk 1/2Fr k < C (a-' WI W) 

Combining (3.13) and (3.14) proves (3.11). 
We next prove (3.12). Applying (3.9) to the function W-/3, where / is a constant 

to be determined later, gives 

(3.15) Ai(W, W) =Ai(W - 3, W - o) < C IW - 012 

If Qi is a triangle (resp. quadrilateral), let W* be the linear (resp. bilinear) function 
on Qi which has the same boundary values as W - /. Choosing / so that the average 
of W* on Qi is zero, applying a trace and Poincare inequality gives 

(3.16) IW -_ 12 < CD(W*, W*). 

An elementary calculation yields 

Di(W*, W*) < C E (W(vj) - W(vk))2 

(3.17) ? jkG/3% 

jkG/3 

Thus (3.12) follows from (3.15), (3.16), and (3.17). n 
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An important ingredient for our analysis is a certain type of discrete Sobolev 
inequality. Let Q be a polygonal domain which satisfies a cone condition with 
radius d and angle -y. Let Sh for 0 < h < 1 be any family of subspaces of W1 (0) 
satsifying the inverse inequality 

(3.18) <CVWjL-() < h1 |W|L?() for all W E Sh, 

where d > h. We then have the following lemma. 

LEMMA 3.3. There exists a positive constant C independent of h and d and 
depending only on -y and Ci in (3.18) such that 

(3.19) LW 2() < C (d- LW 2(Q) + ln(d/h)Dj(W, W)) for all W E Sh, 

where Do(., ) denotes the Dirichlet form on Q. 

Various discrete Sobolev inequalities have appeared in the literature [3], [19]. 
Since the results in the literature do not correspond exactly to the given lemma, 
we shall include an elementary proof of the lemma after the proof of Theorem 1. 

Some consequences of Lemma 3.3 which are important in our present consider- 
ations are the following discrete type Sobolev inequalities. 

LEMMA 3.4. Let W be in Sh(Qi)._ 
(i) If W(p) = 0 for some point p E Qi, then 

(3.20) IIW I12(Qi) < C(1 + ln(d/h))Ai(W, W). 

(ii) For any function W E Sh(Qi), 

(3.21) Z jk(W(Vj) - W(Vk))2 < C(1 + ln(d/h))Ai(W, W). 
jk~oi 

Proof. In order to prove (3.20) we first observe that by A.2, (3.19) is satisfied 
for Sh Sh(Qi). Let a be the average value of W on Qi. Applying the Poincare 
inequality yields 

d-2 IIW - a 11L2(Qi) < CD%(W, W) < CAi(W, W). 

Thus, applying Lemma 3.3 to the function W - a gives 

IIW - a 112. < C(1 + ln(d/h))A%(W, W) 

Note that since W(p) = 0, 

(3.22) alY < ||W - ahl(0i) 

and (3.20) follows by the triangle inequality. 
Since 

Z ajk(W(Vj) - W(Vk))2 < C (W(Vj) -W(Vk) 

jk~oi jkG/i 

the inequality (3.21) follows by applying (3.20) to the function W(x) - W(vm), 
where vm is a vertex of Qi. This completes the proof of the lemma. n 
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LEMMA 3.5. Let W E Sh(Qi) satisfy W = 0 on the vertices of Qi and let 
WL E Sh(fi) be a discrete Ai-harmonic function which is linear on each edge 
3rjk C D9i. Then 

Z &jk~a-le/2 

(3.23) jkG/3j 

< C(1 + ln(d/h)2)Ai(W + WL, W + WL). 
Proof. We shall first prove (3.23) in the case that WL = 0. Let 1jk be any edge 

of Qi. It follows from (3.5), (3.4), (3.2), and (3.1) that 

(3.24) %k (a -1/2WW) < c {IW1li2,aoi + kW(X)2 W(X)2 ds-x)} jk 
a 0 

WjW 
rj 

112,a~i 
+ 

IX- VkI + IX - VjI 

s x 

Let a be the average value of W on Qi. Applying (3.22), (3.10), and (3.20) leads to 

IWI/2aoi <?C (aI2 +? 1W - at12 

< C (iW- -IILo(rik) + Ai(WI W)) 

< C(1 + ln(d/h)) Ai(W, W). 

Hence, it suffices to show that 

I(W) _Il(W) +I2(W) 

(3.25) f Xk|2 ds(x)?j T(X)2 ds(x) 

< C(1 + ln(d/h)2)Ai(W, W). 
Without loss of generality, we assume that vk is the origin and that rjk is the line 
segment with x1 = 0 and x2 E [0, Y]. Then, 

11(W) = j W( y)2 dy. 

Let Yi be the y-value of the node on rjk closest to zero. We bound the preceding 
integral by considering 

(3.26) W(Oy)2 d Y W(oy)2 d 
Y W(oy)2 dy. 

(3.26) JO Y JO Y JY1 Y 
Note that by A.2, ch < Yi < Ch. Therefore, by the mean-value theorem (using the 
hypothesis that W(0, 0) = 0), 

(3.27) fW(0)2dy?< Oh2 W(,)2 ~ ~ IWI,~ 
( ) O0 Y 11 AY L([O yi]) 

where the second inequality used the inverse property for the subspace Sho('10 
Hence, by (3.20) and (3.27), 

7' W (0,y)2 d ( t91W(O Y)dy < C(1 + ln(d/h))Ai (w w). 

For the second term in (3.26) we have 
Y 

W(Oy)2 d < ?1W112. Y < C0(1 + ln(d/h) 2)Ai(W,W). 
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Combining the above estimates gives a bound for the first term in (3.25); the second 
term is estimated similarly. Hence (3.23) follows in the case that WL =0. 

To prove (3.23) in the general case, let WL be the function in Sh(Qi) which 
satisfies Wi (vm) = WL(vyin) for all vertices vm of d2Qi and Ai(WL,O) = 0 for all 
X E Sh(Oi) with k(vm) = 0 on all vertices of adi. Notice that W + WL- W1 
vanishes at the vertices of Qi. Applying the arithmetic-geometric mean inequality 
and the special case of (3.23) proved above gives 

ajk (a-'1 WX W) 

? 2Ojk (a- 1i/2(W + WL - W?),(W ? WL - 

+ 2cjk (a 110/ (WL- W?),(WL - 

? C (1 + ln(d/h)2 )Ai((W + WL- WA),(W + WL- W)) 

+ 2cjk Ka- 1,/2 (WL - W I), (WL -WA rjk 

Since the functions (W + WL - WL) and WL are orthogonal in the Ai(., .)-inner 
product, 

Ai((W + WL- W?),(W + WL- Ww)) < Ai(W + WLW + WL). 

Thus to complete the proof of the lemma we need only show that 

(3.28) (a_)o WL - W), (WL - rjk 

< C(1 + ln(d/h)2 )Ai(W + WL, W + WL). 

Since WL- W_ vanishes at the vertices of Oi, applying inequality (3.24) and the 
subsequent arguments give 

(a lo/2(WL- W), (WL - W)) 

< (1 + ln(d/h))Ai(WL- w?, wL - WW-) + I(WL- W- ) 

where I is defined in (3.25). Since WL is orthogonal to WL-W1 in the Ai(., .)-inner 
product, we have in view of (3.12) and (3.21) that 

Ai(WL- W1,WL - W1) < Ai(WLWL) 

<C E ajk[(W(Vj) + WL(Vj)) - (W(Vk) + WL(Vk))]2 

jkEAi 

< 0(1 + ln(d/h))Ai(W + WL, W + WL). 

Hence, in order to complete the proof of (3.28), it suffices to show that 

(3.29) I(WL- W1)< C(1 + ln(d/h)2 )Ai(W + WL,W + WL). 

Now with 1, and I2 as in (3.25) we have by the arithmetic-geometric mean inequal- 
ity, 

(3.30) I1(WL - W?) < 211(W? - W1(Vk)) + 2I1(WL- WL(Vk)). 
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For the first term on the right we apply (3.25) and then use the fact that Ai (W, WI) 
? A-(W + WLI, W + WL) to obtain 

11(W1 -WI (Vk)) < C(1+ln(d/h)2)Ai(W+WLW+WL)- 

A simple calculation using the linearity of WL on Fjk and (3.21) yields 

I1 (WL - WL (Vk)) < CEJk (WL (V) - WL (Vk ))2 

< C(1 + ln(d/h))Ai(W + WL, W + WL). 

Thus 
I1(WL -W1) < 0(1 + ln(d/h) )Ai(W + WL, W + WL). 

Obviously, the same bound holds for 12(WL - W1), which completes the proof of 
(3.29) and hence the lemma. f 

We are now in a position to prove Theorem 1. 
Proof of Theorem 1. By the uniform positive definiteness of the matrices {a3_k} 

and {aik}, 

cA(W, W) < A(W, W) < CA(W, W) for all W E So (Q). 

Hence, it suffices to compare the quadratic forms A(.,.) with B(., .). As in Section 
2, we decompose W E Sh,(Q) into W = Wp + WE + WV. With WH = WE + WV, 
we have (as noted in Section 2) 

A(W, W) = A(Wp, Wp) + A(WH, WH) 

and 
B(W, W) = A(Wp, Wp) + B(WH, WH). 

Hence, it suffices to compare A(WH, WH) with B(WH, WH). More specifically, the 
proof will be complete when we have shown that 

(3.31) A(WH,WH) < CB(WHWH), 

and 

(3.32) B(WH, WH) < C(1 + ln(d/h)2)A(WH, WH). 

Consider a subdomain f2i. Using the arithmetic-geometric mean inequality, 
(3.11) and (3.12) yield 

Ai(WH, WH) < 2(Ai(WE, WE) + A-(WV, WV)) 

<0 Z Qik ((a 1 /2WE) WE) + (Wv(v)-WV(vk))2)- Ek /3 k 0 
+3 /W ( 

Summing with respect to i gives (3.31). In view of (3.21) applied to WV, and (3.23) 
applied to WE and WV (replacing W and WL, respectively, in (3.23)), we have on 
each Qi, 

Z ajk ((a lo/ WE rWE) + (Wv(vj) -Wv(vk))2) 

< C(1 + ln(d/h)2)Ai(WH, WH), 

and summing with respect to i gives (3.32) which completes the proof of the theorem 
in the case where interior vertices are present. 
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We now turn to the case where all the vertices of the Qi lie on DFQ. Since the 
function WV vanishes at all the vertices, it follows that Wv -0 on Q so that 
WH = WE and hence the preconditioning form B simplifies to 

B(W, W) = A(Wp, Wp) + Z a3%k (a-1'l/ WE, WE) 
rjk 

Reasoning as in the proof of the first part of this theorem, we have A(WE, WE) < 

CB(WE, WE) which is a special case of (3.31). Hence, we need only show the 
sharper version of (3.32), 

(3.33) B(WEWE) < CA(WEWE). 

Let us first note that WE 0 on oQ and by our assumption that the vertices of 
the Qi are in this case fixed independent of h, there are a fixed number of interior 
edges Fjk on which possibly WE : 0. Consider any interior edge Fjk. Identifying 
Fjk as two segments, say Frk and F'k with opposite orientations, it is not difficult 
to prove that either 

(i) Fjk separates Q into two polygonal domains, one of which (say Q1) has a 
boundary aOj consisting of rk and nonempty parts of OQ meeting each vertex of 
F' , or 

(ii) rl and rFk may be considered to be part of the boundary O91 of a polygonal 
domain bounding a subdomain, say Qi of Q, where F and are separated 
(there is a positive distance with respect to arc length along aOQ between them) 
by components of D9. 

In either case, by equivalence of norms, 

ajk a 0/WE, WE)r jk (a 4 WE, WE)r < c -WEIi/2 i 

Using a trace theorem for Q, we have 

ajk Ka- 1/ WE, WE) < CA(WEWE). 

The inequality (3.33) follows after summing over all interior edges '3k. This com- 
pletes the proof of Theorem 1. 

In the remainder of this section, we shall give the proof of Lemma 3.3 and the 
inequalities (3.9) and (3.10) of Lemma 3.2. 

Proof of (3.9) and (3.10). It is not difficult to see (by scaling Qi to unit size 
and using A.3) that it suffices to prove (3.9) and (3.10) under the assumption that 
d= 1. 

We first prove (3.9). Let W c Sh(QR) be Ai-discrete harmonic and w be the 
Ai-harmonic function defined by 

Ai(w, b) = 0 for all qc Ho (Qi), w = W on O9i. 

Using the well-known a priori inequality for harmonic functions, Aj(w,w) < 

c IWI12 43, and the triangle inequality, it suffices to prove 

(3.34) Ai(w - W, w - W) < c IW 12,2 . 
Now from the definition of w and W it follows easily that 

Ai(w - W, w - W) < inf Aj(d0 - w, (D - w), 
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with the infimum taken over functions TX E Sh(QR) with X = W on Qi. By 
well-known properties of Sh(Qi), we see that for 0 < E < 1/2, 

inf Ai(4? - w, 41 - w) < Ch2e lWH1 W e( ) . 

Now using a well-known a priori inequality (cf. [14], [16]) and an "inverse property" 
implied by A.2, we see that 

h IF 
IWI12 Qi < Ch 2e 

W1~l2+(i < C IWl1/2 i 

which proves (3.34) and hence also (3.9). 
We next prove (3.10). Let W E Sh(Q) have mean value zero on Qi. Applying 

a trace inequality gives IW1/2 < c<{Di(W, W) + IIWI122(Q) }. Using a Poincare 

inequality and the assumptions on the coefficients a"k defining Ai yields 

IW12/2<~ CDi ft, W) < CAi ft, W), 
which proves (3.10). El 

Proof of Lemma 3.3. Let W be in Sh and x be a point of Q where IW(x)l = 

IIWIILOO(Q) Let A c Q be a cone of radius d, angle -y, and vertex x. Without loss 
of generality assume that x = 0. For any point y in A, the Fundamental Theorem 
of Calculus gives that 

W(O) = W(y) - VW (l f) * TYI dt. 

Breaking up the integral into two regions and integrating over 0 gives 

'y |W(0)| '?|; W(y(0)) dO + | 6h VW tY(O)) ) Y) dt dO 

+ /Ah VW() *12 

where 6 > 0 is to be chosen and Abh is the cone contained in A of radius Sh, angle 
y and vertex (0, 0). The second term above is estimated by 

jj6h 'VW ( ty(O) ) - Y(O) dt dO < a6h IIVWIL-(n) < cS |W(O)| 
~y(O)V I y(O)1 

and then kicked back. Applying the Schwarz inequality to the first and the third 
terms gives 

w ~~~IWYO)2 _S 
W(O)| ? C{ (j W(y(O)) dO) + IIVWIIL2(Q) k A/A6 d2 } 

(3.35) /~ 

<C{ (f W(y(O))l2 dO) + ln ( I) I1 VWIIL2() 

Squaring Eq. (3.35), applying the arithmetic-geometric mean inequality, multiply- 
ing by IyI and integrating from 0 to d with respect to IyI gives 

2 W(0)2 < (dw2(Q) + ln (-) D(WW)) 

which completes the proof of the lemma. El 
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4. The Choice of the Coefficients Defining A; the "Fast Solvability" 
of the Subproblems. As stated in Section 2, the application of our precondi- 
tioning algorithm involves solving the subproblems defined in (2.4), (2.6), (2.7) and 
(2.8). We have shown that Theorem 1 holds when the coefficients defining these 
problems are chosen among a rather large class of functions. Once a specific choice 
of coefficients has been made, one is then faced with the problem of choosing a 
method for solving the resulting equations. There are many ways in which this can 
be done. In general, a good choice may depend on the particular problem and the 
architecture of the particular computing machine. It is for this reason that we have 
stated Theorem 1 in a somewhat general form. In a forthcoming paper we shall give 
a detailed discussion of some possible approaches which are applicable to a large 
variety of boundary value problems and which have the additional feature that the 
subproblems (2.4), (2.6) and (2.8) may be solved by known "fast" methods. Our 
aim in this section is to give a very brief discussion of a very special case of one 
of these methods, which will be used in the calculation of the examples given in 
Section 6. 

FIGURE 4.1. A regular mesh on a rectangle. 

A globally efficient algorithm results when the original domain is split into sub- 
regions whose subproblems can, be efficiently solved. The possibility of "fast solv- 
ability" for a subproblem is inherently linked to the coefficients defining Ak and the 
geometry of the mesh on the subdomain. We shall first consider some simple sub- 
domain problems where "fast solvers" are available. We will then show how these 
solvers can be used with Algorithm DD1 to solve much more complex problems on 
the original domain. 

We shall begin by discussing "fast solvability" in the special case where a sub- 
domain is a rectangle which has been triangulated with a regular mesh and then 
indicate how this may be extended to more general subregions. For m and n pos- 
itive integers and 0 < h < 1, let Qk R denote the rectangle R = {(X1,X2) 0 ? < 

Xl < mh, 0 < X2 < nh}. Assume that R has been triangulated with a uniform 
mesh of size h as indicated in Figure 4.1. Here, for simplicity of notation, the de- 
pendence of R on m, n, h and k has been omitted. The choice of m, n, and h will 
be clear in the context in which they are used. As before, let Sh(R) be the space 
of piecewise linear functions defined relative to the given triangulation and So (R) 
the subspace of Sh(R) whose functions vanish on AR. We shall restrict ourselves to 
a particularly simple choice of the form Ak, namely a constant times the Dirichlet 
form for the Laplace operator, 

(4.1) Ak (U, V) = qkDk (U, V), 

where qk is a constant which is to be chosen below. 
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Let us first consider the problem of inverting (2.4). Let : denote the vector 
whose components {fi} are the values of Wp at the interior nodal points of the 
triangulation, ordered say successively along columns. Then the corresponding set 
of linear equations can be written as 

(4.2) M3 = b, 

where M is the (m - 1) x (m - 1) block tridiagonal matrix with block order n - 1 
given by 

T -I 
-I T -I 

M=qk 

-I T - 
- I T 

Here I is the (n - 1) x (n - 1) identity matrix and T is the (n - 1) x (n - 1) matrix 

4 - 1 
-1 4 -1 

T= 

-1 4 -1 
- 1 4 

The matrix M of course corresponds to the usual five-point centered difference 
approximation to -A . It is well known that (4.2) may be solved by, for example, 
"fast" direct methods. An excellent discussion of some of these methods, which 
are also applicable to problems more general than (4.1), (4.2) on rectangles, may 
be found in Swarztrauber [18]. Let us just mention that using a discrete Fourier 
method or a cyclic reduction algorithm, the computational complexity of solving 
(4.2) on a serial machine is O(mn log(n)). The Facr(l) algorithm which uses a 
combination of both of these is shown in [18] to have a computational complexity 
of O(mn log log(n)), where for convenience we have taken n < m. 

Let us now turn to the choice of the constant qk. As noted in Remark 2.3, any 
qk > 0 will satisfy the hypothesis of Theorem 1. It is obvious, however, that A 
should model the original form A as closely as possible (with this simple choice of 
qk). One prescription is as follows: Choose any point, say x- c R, and let qo and 
qi be the smallest and largest eigenvalue of the matrix {aij3(x)} (which may be 
trivially calculated). We can choose qk to be any number satisfying 

(4.3) qo < qk < q. 

Obviously, the problem (2.8) may be handled in exactly the same fashion since it 
also can be reduced to solving (4.2) with appropriate b. 

We now turn to problem (2.6). Let Fij be an edge which is on the common 
boundary segment for the subdomains say Qk and R. Since the mesh is equally 
spaced on Fij, we take a = 1 (see (2.2)) on Fij and hence, 10/2 - lo/2. Without loss 
of generality, assume that there are n - 1 (as opposed to (m - 1)) interior nodes 
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on r j. Let /3 be the vector of length n - 1 whose components {fop} are the nodal 
values of WE (the solution of (2.6)) on r j and let {14I} be the nodal basis for 
sh(rij). The problem of computing /3 is the same as the matrix problem No = -y, 
where N is given by 

(4.4) Npq = akij (a- 1/2 4p )qj 

Since the nodes are equally spaced, the eigenvectors of N are given by 

( sin(7rp/n) 

=4 5) sin(27rp/n) 

sin((n - 1)7rp/n) 

The eigenvalues for N are then given by 

/(2 - 2 cos(7rp/n))(4 + 2 cos(7rp/n)) 
(4.6) AP= 6j3 

Thus the computation of nodal values of WE reduces to the expansion of -y in terms 
of the eigenvectors (4.5), the division of the resulting coefficients by the eigenvalues 
(4.6), and the evaluation of the resulting expansion (with the divided coefficients) 
at the nodal values. Both the expansion of y in terms of the eigenvectors and the 
subsequent evaluation at the nodes reduce to discrete sine transforms. Using the 
Fast Fourier Transform, the sine transforms and hence the solution of (2.6) on each 
edge r j can be computed in computational work on the order of O(n log(n)). 

Finally, we come to the choice of the coefficients cai. and solution of the difference 
equation (2.7). Again, let rFj be an interior edge which is a common boundary 
segment of the two subdomains Flk and fl. We take 

(4.7) a- = qk + qj. 

We solve the difference equations (2.7) by applying some standard method, for 
example sparse Gaussian elimination techniques [8], [9]. We emphasize that (2.7) 
may be solved in parallel with (2.6) and if the number of internal nodes is reasonable, 
the cost of solving (2.7) will be negligible. 

We now turn our attention to the more general situation where the subregions 
may be quadrilaterals. For simplicity of presentation, let us indicate by an example 
how the subproblems (2.4), (2.6) and (2.8) may be set up so as to utilize the fast 
solution methods previously mentioned. Consider the region given in Figure 4.2. 
The key idea here is to set up a mesh on each subdomain Flk which is topologically 
equivalent to a regular mesh on R. Then, the coefficients a~k defining Ak can be 
chosen so that the matrix problem for (2.4) and (2.8) can be solved by fast direct 
methods. To make this example nontrivial we shall consider subspaces which are 
somewhat refined near the nonconvex corners of the domain. 

We start by imposing a "radial like" rectangular refinement around these corners 
which is then extended to the rest of the domain as illustrated in Figure 4.3. The 
final triangular grid is shown in Figure 4.4 and is formed by subdividing each 
quadrilateral in Figure 4.3 into two triangles. 

Obviously, the triangulation of each subdomain Qk in Figure 4.4 has the same 
topological nodal structure as that of R in Figure 4.1, and we can order the nodal 
points in precisely the same fashion. In fact, the triangulation are equivalent in 
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FIGURE 4.2. A more general domain. 

FIGURE 4.3. The domain with rectangular subdivision. 

the sense that there exists a nondegenerate piecewise linear mapping of the triangu- 
lation of Figure 4.1 onto any of the subdomain triangulations of Figure 4.4. It can 
be shown that any simply connected piecewise smooth domain may be triangulated 
in an analogous way and hence our assumption that 7k is a quadrilateral is just 
for convenience of presentation. 

We shall use the piecewise linear mapping mentioned above to define the coef- 
ficients ak . Fix k and let T be the corresponding piecewise linear mapping of R 
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FIGURE 4.4. The domain with triangular subdivision. 

onto Qk We clearly have, by a change of variable, that 

JR ~ ~~ f ak.v(T-l(x)) O9v(T-1(x)) d 

(4.8) X |V~l2 dz = E 'X aj Ax az j (4.8) dx '- OXI x3 

Ak(v,V), 

where {a.} is a piecewise constant 2 x 2 matrix (here qk is a positive constant to 
be defined later). We use (4.8) to define a. . If { i} denotes the usual nodal basis 
for Sh((Q) restricted to Qk, then {'Tj J0 o T} is the usual nodal basis for the 
subspace Sh(R). Thus, the form A applied to basis functions is given by 

(4.9) Ak(011, (Dj) = qk J Vi . Vj dx. 

In light of (4.9), it is clear that the coefficients ak. need never be computed. Fur- 
thermore, the matrix problem for the solution of (2.4) and (2.8) is given by (4.2) 
and hence can be fast solved. 

The constant qk may be chosen in the following manner: Let x be any fixed 
point of Qk. By a change of variable, we clearly have 

Dav av dx Dv(T(x)) 9v(T(x)) 
/aj - dx= aj- - dx. , 

Q ax. axj Jr axi axj ik a 1 3v Dv JOTx) x 

Let q, and qO denote the largest and smallest eigenvalue of the matrix {~aj(x)}. 
Then we may choose qk to be any number 

(4.10) qo < qk < qj 

This again is a trivial calculation. We remark that it is easily seen that Ak corre- 
sponds, in this case, to a form whose coefficients akj are piecewise constant functions 
on the triangles of the triangulation of Qk. 
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We now turn to defining lo and solving the problem (2.6). As in the definition 
of the coefficients akj above, we shall use a "mapping" technique to define the 
coefficient a in (2.2). Fix ij and assume that Fij has n - 1 interior nodes and 
is a common boundary segment between subdomains Qk and Q. Let L denote 
the line segment [0, nh] which has an associated equally-spaced mesh with n equal 
segments. There is a piecewise linear mapping T which maps the mesh of L onto 
the nodes of Fij. We clearly have, by a variable change, 

(V o T. V ? T)L = (a'lvv)p.j 

and 
dv (T (x)) dv (T (x)) )= (av',v') = (a)orv' 

K dx ' dx IL j 
for appropriate piecewise constant a. Let : be the vector whose components are 
the nodal values of WE on Fij. Then, : is the solution of 

(4.11) N/3 = - 

for an appropriate right-hand side vector -y, where the matrix N is given by (4.4). 
The discussion following (4.4) describes an efficient procedure for solving (4.11). 
Again, the coefficient a is a theoretical device and need never be actually computed 
in the implementation of Algorithm DD1. 

Finally, the coefficients in (2.7) are chosen in exactly the same way as for the 
case of a rectangle, i.e., they are defined by (4.7) and (4.10). 

5. Matrix Representation of the Operators. In this section we will de- 
scribe the action of inverting the preconditioner B (given by Algorithm DD1) in 
terms of block matrices. It will be shown that B has a special structure and that 
the process for solving Bcx = / previously described may also be seen to be a block 
Gauss elimination process with an appropriate basis. 

We consider the inversion of B in terms of basis functions of the following form: 
1. {fIi } is the set of basis functions for U Shk(Q ). These functions correspond 

to the usual nodal basis of functions which are one on one of the nodes interior to 
some subdomain and zero on all of the remaining nodes. 

2. {fiE} is the set of basis functions corresponding to the variables which lie on 
the edges of the subregions (excluding the corners). This basis consists of the usual 
nodal basis functions which are one on one of the edge nodes and zero on all of the 
remaining nodes of qh. 

3. { (D} is a basis for the functions which are linear on the edges of the subre- 
gions. The function (Dv is one on vi, zero on all other vertices vj with j 74 i, zero on 
all of the nodes which are interior to any of the subregions, and extended linearly 
along the edges of the subdomains. 

It is easily seen that the above collection of functions give rise to a basis for 
Sh2(Q). As usual, we decompose functions in S,?(Q) in terms of linear combinations 
of these basis functions and an arbitrary function in the subspace is represented by 
a vector of its coefficients. We order these vectors as follows: 
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where Vp, VE, and vV represent coefficients for basis functions of type 1, 2, and 3 
respectively. In terms of block matrices the system corresponding to B is then 

(Bvv ByE BVP VV (bv'\ 
(5.1) BtVE BEE BEP VE = bE 

B1Bt1p B Bpp J VP kbpj 

The first step of Algorithm DD1 corresponds to computing the solution of Bj bp. 
Using this solution to calculate the data for the inversions of Steps 2 and 3 of 
Algorithm DD1 corresponds to eliminating two blocks in the third column of (5.1) 
to obtain 

Bvv - BvpBBBtp BvE - BvPB-BtP 0 VV 
BtVr - BEpBpBtyp BEE - BEPB-BtP 0 VE 

(5.2) Bt Bt BPP J VP 

(bv - BvpBp-bp 
= bE - BEpB-bP I 

We note that the inversions of Steps 2 and 3 are problems which can be solved 
independently and involve the edge and vertex basis functions respectively. This 
fact means that the two blocks BVE - BvpBP-Bt and BtVE - BEpB-BBt4p in 
matrix (5.2) must be identically zero. Furthermore, the upper two diagonal blocks 
of (5.2) must correspond to 

MkI E ij ( (Vi V-T_ ( )) ( Vj))( i (V,) _) ) 

rij 

and 
NkI = Eaij K(lo i E b r ' 

respectively. Steps 4 and 5 of the algorithm correspond to backsolving (5.2) once 
the values of vV and VE are known. 

6. Numerical Experiments. In this section, we shall present some results of 
numerical experiments which illustrate the convergence properties of the precondi- 
tioning algorithm using DD1 as a preconditioner discussed in Section 2, when used 
in conjunction with the conjugate gradient method. To this end we shall report a 
number of parameters which measure or effect the convergence of the scheme. We 
shall, for example, compute the condition number K of the preconditioned system. 
In some examples, we shall also report n, the number of iterations required to re- 
duce the matrix norm (Ax- x)1/2 of the error En = U - Un below an indicated 
tolerance. Here U is a randomly generated solution of the matrix equations nor- 
malized so that -1 < U < 1 and Un is the approximation to U obtained using n 
steps of the iterative algorithm. 

The examples were chosen to illustrate the effectiveness of the algorithm on 
problems with both smooth and discontinuous coefficients on domains with different 
geometries. In all of these examples subspaces S2(Q) of piecewise linear functions 
defined on a quasi-uniform mesh of size h were used and the algorithm was applied to 
solve the finite element equations approximating the solution of an elliptic problem 
of the form 

Lu=f ins, u=0 onD9. 
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FIGURE 6.1. Subdivision of the square. 

The procedure discussed in Section 4 for choosing the coefficients of the precon- 
ditioning form and solving the related subproblems (in particular problems (2.4), 
(2.6), and (2.8) by fast methods) was used throughout this section. 

Example 1. For our first example we take L = -/, the Laplace operator (i.e., 
all = a22 = 1 and a12 = a21 = 0), Q the unit square and Sh(Q) the piecewise linear 
functions on a regular mesh of size h which vanish on D90. Note that although, in this 
very simple case, the resulting equations may be fast solved on a serial machine by 
any of the methods discussed in Section 4, the algorithm used would be particularly 
appealing for a machine with parallel architecture. We will also use this example 
as a benchmark for the more complicated examples to follow. We subdivide the 
domain Q into sixteen subregions as indicated in Figure 6.1. 

TABLE 6.1. Iterative convergence for Example 1. 

AA-error Njax-error 
Iterat ion A-error Average Max-error average Iteratio A-error Reduction Reduction 

1 9.5 x 10-2 .095 6.6 x 10-1 .66 
2 5.5 x 10-2 .23 5.4 x 10-1 .74 
3 2.4 x 10-2 .29 1.8 x 10-1 .56 
4 4.8 x 10-3 .26 4.2 x 10-2 .45 
5 1.2 x 10-3 .26 9.9 X 10-3 .40 
6 6.7 x 10-4 .30 9.6 x 10-3 .46 
7 3.6 x 10-4 .32 3.2 x 10-3 .44 
8 9.5 x i0-5 .31 7.5 x 10-4 .41 
9 1.6 x i0-5 .29 1.2 x 10-4 .37 
10 5.0 x 10-6 .30 5.6 x i0-5 .38 
11 3.3 x 10-6 .32 4.2 x i0-5 .40 

Table 6.1 illustrates the iterative reduction rates for Example 1 when h = 1/32. 
The table lists the total reduction and average reduction rate as a function of the 
number of iterations in the matrix norm (Ax x) 1/2 and the maximum norm. These 
reductions are normalized so that the initial error is unity. We see, for example, 
that a reduction of .0001 in the A norm (resp. maximum norm) requires only 8 
(resp. 10) iterations. 
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FIGURE 6.2. The coefficients for Example 2. 

To more fully illustrate the convergence behavior of the method on this problem 
we consider Table 6.2 which gives the condition number and theoretical reduction 
p** for Example 1 as a function of the mesh size h. We note that the theoretical 
reduction gives a pessimistic bound on the worst-case convergence in the A norm. 
For example, the actual reduction rate given in Table 6.1 for 11 iterations was .32 
which is considerably better than the theoretical rate of .45 given in Table 6.2 for 
h = 1/32. We also compare the condition number to the function (log21/h)2/3.5 
and hence demonstrate the log-squared growth in the condition number which sug- 
gests that Theorem 1 is sharp. 

TABLE 6.2. Condition number and theoretical reduction for Example 1. 

h K (log21/h)2/3.5 p 

1/8 3.0 2.6 .27 
1/16 4.5 4.6 .36 
1/32 7.0 7.1 .45 
1/64 10.3 10.3 .52 

1/128 14.0 14.0 .58 
1/256 18.6 18.3 .62 

Example 2. In this example, Q is the unit square and the subdomains were taken 
as in Example 1 (see Figure 6.1). The operator L is taken to have coefficients which 
have jump discontinuities across the subdomain boundaries. More specifically, we 
take all = a22 = pu and a12 = a2l = 0, where y is the randomly chosen piecewise 
constant function on the subdomains as indicated in Figure 6.2. Table 6.3 gives 
the results for the condition number of the preconditioned system and the theo- 
retical reduction factors for this example as a function of h. Note that the results 
differ negligibly from those given for the Laplacian in Table 6.2. We remark that 
similar results were obtained in tests with other randomly chosen coefficients. This 
indicates that the iterative method DD1 will be extremely effective on interface 

**It is well known (cf. [17]) that the error for preconditioned conjugate gradient iteration 
satisfies (AE, En) < 4p2n (AEo Eo), where the reduction factor p is given by p 

(a - 1)/(VK + 1). 
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TABLE 6.3. Condition number and theoretical reduction for Example 2. 

h K (log21/h)2/3.2 Pt 

1/8 3.0 2.8 .27 
1/16 5.0 5.0 .38 
1/32 7.7 7.8 .47 
1/64 11.2 11.3 .54 

1/128 15.2 15.3 .59 

problems, even when the coefficients change drastically across interfaces, as long as 
the subdomain boundaries align with the interface boundaries. 

Example 3. Here we take L to be an operator with smoothly varying coeffi- 
cients. The region Q and the subdomains are taken exactly as in Example 1. The 
coefficients are defined by 

(6.1) all = 1 +4(x2 +y2), a12 = 3xy, 

a2l =3xy, a22 = 1+11(x2 +y2). 

This example illustrates that the introduction of more subdomains allows the pre- 
conditioner to more closely model the differential operator. Table 6.4 gives conver- 
gence results for the above problem as a function of nr, the number of subdomains 
used. The coefficients defining the preconditioner were chosen as in Section 4. More 
precisely, we set qk = aqoq, where qo and q, are as in (4.3) and the point x- (see 
(4.3)) is chosen as the center of the subdomain. All computations in Table 6.4 were 
made for h = 1/64. 

Note that if the Laplace operator on the original domain was used as a precondi- 
tioner for the variable coefficient problem (6.1), then the condition number would 
be larger than 55. In contrast, the results given in Table 6.4 show considerable 
improvement even when relatively few subdomains are used. 

Table 6.4 also illustrates the fact that the theoretical reduction (computed from 
the eigenvalues of the discrete system) provides a useful bound for the actual rate 
of convergence. We finally included n, the number of iterations required to reduce 
the matrix norm (Ax. x)1/2 of the error En = U - Un by a factor of .0001. 

TABLE 6.4. Convergence results for Example 3. 

nr K pt Observ~ed n _ A -Reduction n 

4 42.3 .73 .56 17 
16 17.5 .61 .51 14 
64 11.1 .54 .45 12 

256 7.4 .46 .43 11 

Example 4. In this example, we consider an interface problem where the interface 
separates two domains with irregular geometries. The domain Q is again the unit 
square subdivided into sixteen subdomains as illustrated in Figure 6.3. The space 
SO(Q) is taken to be piecewise linear functions defined on an irregular mesh. A 

t See footnote * 
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FIGURE 6.3. The irregular geometry of Example 4. 

f I~~~~~I F =1 

FIGURE 6.4. The coefficients of Example 4. 

portion of this mesh is illustrated by the fine triangulation in Figure 6.3. Again 
the coefficients of L are piecewise constant functions defined by all = a22 = pu and 
a12 = a2l = 0 where yu is given by Figure 6.4. 

Results for this problem are given in Table 6.5. A comparison with Table 6.2 
indicates that the irregular geometry of this example only increased the condition 
number by about 2.5. This results in less than a factor of two increase in the number 
of iterations required for a given accuracy. We again remark that fast methods were 
used to solve the subproblems (2.4), (2.6) and (2.8) required for the preconditioner. 

TABLE 6.5. Convergence results for Example 4. 

h K ___ Ob?erved n h K pt~P Reduction 
1/8 5.6 .41 .32 9 

1/16 10.8 .53 .45 13 
1/32 17.6 .62 .51 15 
1/64 25.4 .67 .55 16 

t See footnote **. 
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FIGURE 6.5. The mesh and subdomairn structure for Example 5. 

Example 5. In this example, we illustrate Algorithm DD1 applied to the solution 
of a problem on a polygonal domain with nonconvex corners. The mesh and subdo- 
main structure were chosen as illustrated in Figure 6.5. Note the mild refinement 
near the nonconvex corners of the domain. For the operator L we use the Laplacian 
as in Example 1. The results for this case are given in Table 6.6. This example 
illustrates some of the power and flexibility of this algorithm which will be more 
fully developed in later papers. 

TABLE 6.6. Convergence results for Example 5. 

Number of t Observed n 
Unknowns P Reduction 

405 8.54 .49 .45 12 
1705 14.4 .58 .50 14 
6993 20.6 .64 .55 15 

Example 6. As a final example, we compare the preconditioner DD1 with the 
somewhat simpler preconditioner discussed in Remark 2.6. In particular, we replace 
the global difference equation (2.7) by a weighted identity (2.9) on the coarse mesh 
points. For this example, we use the Laplace operator on the square as in Example 
1. This example illustrates the effect that the diameter of the subdomains has on 

t See footnote **. 
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the actual condition number observed in practice. Table 6.7 compares the condition 
numbers for DD1 and the preconditioner of Remark 2.6 as a function of d. Observe 
the clear superiority of DD1 in applications with many subdivisions. 

TABLE 6.7. Comparison of DD1 and the preconditioner of Remark 2.6. 

d K(DD1) K (Remark 2.6) h 

1/2 6.3 6.3 1/16 
1/4 7.0 10.5 1/32 
1/8 7.5 26.6 1/64 
1/16 7.5 96.9 1/128 
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